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Characterization of ion channels in human coronary artery endothelial
cells
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Abstract

Endothelial ion channels play important roles in regulating coronary vascular tone by modulating
endothelial intracellular Ca®* concentration, which in turn controls the production and release of vasoactive
substances. These transport molecules either provide direct Ca®* influx pathway through Ca?'-permeable non-
selective cation channels, or influence Ca*" electrochemical driving force via alterations in the K™ and CI”
conductance. We aimed to characterize the type and contribution of ionic currents in human coronary artery
endothelial cells (HCAECs), using whole-cell patch clamp technique. Average peak whole-cell current
amplitude of HCAECs at +60 mV was 8.07 = 0.31 pA/pF (n = 336). The percentages of total currents blocked
in 10 uM La’*, 250 uM DIDS, 1 nM apamin, and 10 uM clotrimazole, were 36.11 + 1.42% (n = 8), 20.34 =
2.81% (n = 8), 15.51 £ 1.92% (n = 6), and 19.82 + 2.02% (n = 10) at +60 mV, suggesting the fractions
contributed by non-selective cation, CI~, small-conductance Ca* -sensitive K (SK¢,), and intermediate-
conductance Ca**-sensitive K (IK,) channels, respectively (P < 0.05). In addition, I mM TEA and 100 nM
iberiotoxin could suppress 16.51 £ 5.35% (n = 6) and 16.02 + 3.99% (n = 5) of the control currents at +60
mV, indicating that the fraction responsible by large-conductance Ca*"-sensitive K™ (BK(,) channel was about
16%. Thus, HCAEC currents at +60 mV were mostly (> 50%) made up of K currents, which included, at
least, BK,, IK¢,, and SK¢, currents. The rest of the currents passed through NSC and CI channels. Finally,
100 uM Ba?", a specific blocker of inward rectifier potassium (K;,) channel, inhibited 37.06 + 4.59% (n = 6) at
-100 mV. These observations could be a basis for further investigation on the role of endothelial ion channels

in coronary vascular physiology in human.
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Introduction are subdivided according to the structure and function
into three main groups: Ca*'-activated (Kc,), inward
uman coronary artery endothelial cells  rectifier (K,,), and ATP-sensitive (Karp) K channels.*
(HCAECs) are pivotal in the maintenance of Finally, CI channels are important for the regulation
coronary vascular tone. They exert significant of cell volume, intracellular pH and membrane
autocrine and paracrine actions on the underlying potential in endothelial cells.*
coronary vascular smooth muscle cells, which in turn Only a few reports have studied HCAEC ion
control coronary blood flow. Dysfunctional or injured  channels electrophysiologically, ~ despite  their
coronary endothelial cells are associated with  jpyolvement in coronary vascular regulation and
atheroscllesbrotic changes and  coronary artery potential therapeutic significance. In one study, Ki
disease. and NSC currents were reported;’ in another,
Studies in other endothelial cells, most notably  outwardly rectifying CI” current was described.® Two
those of human umbilical veins, have found various  pore recent studies focused on Kc, currents in this
types of ion channels. Non-selective cation (NSC)  cell type.”'® Data from a quantitative RT-PCR study
channels, which mostly consist of transient receptor  ghowed that HCAEC expressed K', ClI” and transient
potential (TRP) channels,® are the principal influx receptor potential (TRP) channel subunits."
routes for Ca*" and other cations.” K" channels help Therefore, to assess the functional types and relative
determine resting membrane potential, control nitric  ¢ontributions of ion channels in HC AECs, we studied
oxide release, and mediate actions of vasoactive  their ionic currents by employing whole-cell patch

substances, SUCh4 635 +end0thelium—derived hyper-  clamp technique and various ion channel blockers.
polarizing factors.”” K" channels in endothelial cells
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conventional culture medium (Lonza) consisting of
endothelial cell basal medium, 5% fetal bovine
serum, 0.4% bovine brain extract, 0.1% recombinant
human epidermal growth factor, 0.1% hydro-
cortisone, 30 pg/ml gentamycin sulfate, and 15 ng/ml
amphotericin-B. When cells were 70-80% confluent,
they were subcultured and seeded in culture dishes
containing poly-L-lysine-coated cover slips.

Electrophysiology

Whole-cell currents were recorded in response to a
ramp protocol, consisting of a 200-ms voltage ramp
from -100 to +80 mV (holding potential, -40 mV),
using an Axopatch 200B patch-clamp amplifier and a
Digidata 1440A analog-to-digital converter (both
from Axon Instruments, Foster City, CA, USA). Low
resistance glass pipettes used for whole-cell
recording, were pulled from borosilicate glass
capillaries (1.2 mm outer diameter, 0.69 mm inner
diameter) using commercially available pullers (PP-
830, Narishige, Tokyo, Japan), followed by fire-
polishing with a microforge (MP-830, Narishige).
The filled pipette resistance was 2-5 MQ in the bath
solution. The signal was filtered at 2 kHz (low-pass
Bessel filter). Pipette and whole-cell capacitance
were compensated.

Solutions

The external solution (bath) contained (in mM) 140
NacCl, 5.6 KCl, 2.6 CaCl,, 1.2 MgCl,, and 10 HEPES
(pH 7.3, adjusted with NaOH; 320-325 mOsmol/kg).
The standard pipette (internal) solution contained (in
mM): 40 KCl, 100 K-aspartate, 1 MgCl,, 4 CaCl,, 5
HEPES, 7 EGTA, and 3 MgATP (pH 7.2, adjusted
with KOH; 290-300 mOsmol/kg). The free Ca®*
concentration of the internal solution was calculated
to be 245 nM (Patton C. CaMgATPEGTA Program
version 1.0, using constants from NIST database.
http://maxchelator.stanford.edu).

Chemicals and reagents

Tetracthylammonium (TEA), 4,4'-diisothiocyanato-
stilbene-2,2'-disulfonic acid, (DIDS), Ba®', iberotoxin
and La’* were dissolved in deionized water.
Clotrimazole was dissolved in DMSO; final DMSO
concentrations did not exceed 0.1%. Apamin was
dissolved in 1% acetic acid and the final solution was
pH-adjusted before using in an experiment. All
chemicals were obtained from Sigma Chemicals (St
Louis, MO, USA) except apamin (from Calbiochem,
San Diego, CA, USA).

Experimental procedure

Ion channel types were identified by using specific
ion channel blockers and, if possible, the
characteristic current-voltage relation. Membrane
currents were first recorded in a control external
solution, then after exposure to a channel blocker
(dissolved in identical external solution), and finally
on returning to the control external solution for
washout currents and for testing repeatability.
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Blockers used were 100 pM Ba®' (a K; channel
blocker),'”” 1 mM TEA or 100 nM iberotoxin (large-
conductance K¢, or BK, channel blockers),13 10 uM
clotrimazole (an intermediate-conductance K¢, or
IK¢, channel blocker),'* 100 nM apamin (a small-
conductance K¢, or SK, blocker),15 250 uM DIDS (a
Cl™ channel blocker),' and 10 uM La’" (a NSC
channel blocker)."”

Data Analysis

All data were initially analyzed with pClamp 10.0
program. Subsequent simple calculations were done
in Microsoft” Excel. Membrane potentials were
corrected off-line for liquid junction potentials.
Plotting of current density-voltage (I-V) curves and
bar graphs, as well as statistical analyses, were
carried out with GraphPad PRISM 5 (GraphPad
Software, San Diego, CA, USA). Data from a cell
were discarded if the seal resistance was less than 1
GQ, the maximum voltage error was more than 3
mV, or the cell current amplitude at +60 mV was less
than 20 pA. Currents were normalized with the cell
capacitance, yielding current density in pA/pF.
Results were expressed as mean = SEM. Data from
blocker experiments were expressed as % inhibited
and tested for normality using Kolmogorov-Smirnov
test. Since all blocker data were normally distributed,
one-sample ¢ test was used for testing the statistical
significance of the inhibition; P < 0.05 was
considered significant.
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Figure 1 HCAEC membrane currents, elicited by 200 ms
ramp protocol between -100 and +80 mV from a holding
potential of -40 mV (inset). A) A current from a representative
cell; the x axis shows corresponding voltages. B) Average |-V
relationship from 336 cells. Error bars are SEM.
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Figure 2 HCAEC currents in La*, DIDS or Ba®". Left panels show representative ramp currents in control external solution
(Control), in 10 uM La** (A), 250 uM DIDS (C), or 100 uM Ba*" (E), and on return to control external solution (Washout). Right
panels (B, D or F) are corresponding average I-V curves; washout currents were not obtained for all cells and therefore the
average were not shown. Error bars are SEM; n = number of cells.

Results

HCAEC whole-cell capacitance and currents

The average whole-cell capacitance of HCAECs was
12.38 £ 031 pF (n 336). Typical membrane
currents in response to the ramp protocol are shown
in Figure 1. Currents from HCAECs displayed
slightly non-linear current-voltage relationship at
both negative and positive potentials. The average
current magnitude at +60 mV and -100 mV were
87.59 £ 3.07 and -60.75 + 2.55 pA, respectively, and
average current density at +60 mV and -100 mV were
8.07 £ 0.31 and -5.43 + 0.21 pA/pF, respectively. In
our experiments, the average series resistance was
9.06 £ 0.14 MQ, yielding an average maximum
voltage error of 0.79 = 0.03 mV.

Identification of ion channel types in HCAECs
In the presence of 10 uM La’*, a non-specific blocker
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of NSC channel, in the external solution, the total
currents at +60 mV were significantly and reversibly
inhibited by 36.11 £ 1.42% (n = 8; P = < 0.0001).
Typical current tracings from an experiment and
average [-V curves from eight cells are shown in
Figures 2A and 2B, respectively. When 250 uM
DIDS, a non-specific blocker of Cl channel, was
included externally to test the contribution of CI
currents, the whole-cell currents at +60 mV were also
significantly and reversibly inhibited by 20.34 +
2.81% (n = 8; P = 0.0002). Representative current
tracings and average [-V curves are shown in Figures
2C and 2D, respectively. Figures 2E and 2F show
typical currents from a cell and average I-V curves in
experiments with 100 uM Ba®', a specific blocker of
K; channel. As expected, 100 pM Ba®" mainly
suppressed the inward currents. The Ba’'-sensitive
component at -100 mV was 37.06 + 4.59% (n = 6; P
=0.0005).
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Figure 3 HCAEC currents in apamin, clotrimazole, TEA or iberiotoxin. Left panels show representative ramp currents in
control external solution (Control), compared with that in 100 nM apamin (A), 10 uM clotrimazole (C), 1 mM TEA (E), or 100
nM iberiotoxin (G). Washout currents could be obtained only after clotrimazole and TEA. Right panels (B, D, F or H) are
corresponding average |-V curves; in F, washout currents were not obtained for all cells and therefore the average were not
shown. Error bars are SEM; n = number of cells.
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Figure 3 summarizes results from experiments to
define the contribution of each K¢, subtype.
Experiments with external 100 nM apamin, a specific
blocker of SK¢, channel, demonstrated that the total
currents at +60 mV were significantly reduced by
15.51 £ 1.92% (n = 6; P = 0.0005; washout current
could not be obtained in these experiments; Figure
3A-B). With external 100 pM clotrimazole, a specific
blocker of IKc, channel, -clotrimazole-sensitive
current at +60 mV was shown to be 19.82 +2.02% of
control, on average (n = 10; P < 0.0001; reversible;
Figure 3C-D). For BK(, channel, 1 mM TEA or 100
nM iberiotoxin (both specific for BKc, ref. 15)
applied externally could similarly block the HCAEC
whole-cell currents by 16.51 + 5.35% and 16.02 +
3.99% (n =6, P =0.0273 and n = 5, P = 0.0160,
respectively; Figure 3E-H). Finally, all results of
blocker experiments were summarized as bar graphs
in Figure 4.

Discussion

Our findings demonstrated the existence of K', NSC
and Cl, in HCAECs. At +60 mV, K’ currents
appeared to collectively contribute around 50% of the
total currents. The presence of four types of K’
currents, i.e. K, SK¢,, IKc,, and BK,, are consistent
with those reported previously in coronary artery
endothelium of porcine, guinea-pig and human.”'>'*
20 However, a report did not find BK¢, channel in
bovine coronary endothelium.®' It is therefore
possible that BKc, channel expression could be
species specific. As shown in this study, both 100 nM
iberotixin and 1 mM TEA, a specific and a
nonspecific BK¢, channel inhibitors, respectively,
could inhibit total currents to the same extent, thus
confirming that BKc, channel is expressed in
HCAEC:sS, as in other human endothelial cells.”® We
used 100 uM Ba2+, a high affinity blocker for K;
channel,20 to characterize K;. currents in HCAECs.
The finding that 100 puM Ba®" could inhibit inward
current more than outward current was consistent
with the inward-rectifying property of K;, channels.
Other studies demonstrated the presence of Kj
current in guinea-pig or human coronary artery
endothelial cells.””

% inhibited at -100 mV
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Figure 4 A) Bar graphs showing
percentages of whole-cell HCAEC
currents inhibited in the presence of 10
pM La**, 250 uM DIDS, 100 nM apamin,
10 uM clotrimazole, 1 mM TEA or 100
nM iberiotoxin externally (at +60 mV). B)
Bar graphs showing the percentage of
currents inhibited during exposure to 100
uM Ba®* externally (at -100 mV). Error
bars are SEM. *P < 0.05; **P < 0.01;
Apa, apamin; Clo, clotrimazole; Ib,
iberiotoxin.
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Nonselective cation (NSC) currents in this study
were identified by 10 pM La®*, which is known to
block most TRP channels.”” We found that La®'-
sensitive currents comprised about 36% of total
currents. This NSC fraction when added to those
ascribable to Cl” and K" channels (about 20% and
50%, respectively) equaled approximately 100%,
suggesting that most NSC channels in HCAECs are
La’"-sensitive and could be attributed to TRP
channels. This is in agreement with a recent
quantitative RT-PCR study in cultured HCAECs,
which demonstrated that several types of TRP
channels were expressed in these cells.'" Although
most TRP channels are blocked by La™, it has been
reported that TRPC4 and TRPM2 channels are not
inhibited by this trivalent ion.”** However TRPC4
and TRPM2 mRNAs were found to be expressed at
relatively low levels in HCAECs,'" and therefore may
contribute little to HCAEC currents.

Among the three main components of HCAEC
currents studied, ClI current contributed the least,
only around 20%. In our study, 250 uM DIDS, a
nonspecific ClI channel inhibitor, was used to
identify Cl currents. Other electrophysiological
studies in human umbilical vein and pulmonary artery
endothelial cells found that Cl currents were
completely inhibited by 250 uM DIDS (ICsy = 7-50
uM).'**>2° CI” channel subunits found in HCEACs
were CIC-3, CIC-4 and CIC-7, which are voltage-
gated and Ca”"-activated CI~ channels.'" Studies in
human umbilical vein endothelial cells similarly
found only a small Cl current at normal pH (7.4) and
osmolality (300-320 mOsmol/I).>"*®

It is possible that using the magnitude of blocker
inhibition to represent each current may over- or
under estimate the fraction contributed by each
channel. Specifically, some ion channel blockers used
in our experiments could cross-inhibit other channels,
albeit involving only small fractions. For example,
TEA at 1 mM was used in this study for blocking
BKc, channel (IC50 = 0.4 mM),” but this dose has
been reported to slightly inhibit IK¢, and SKc, (8-
10%).***" Apamin has a high affinity for SK, (IC50
=1-10 pM)32 and does not cross-react with BK,, but
it could minimally inhibit IK¢, (10%).* On the other
hand, the antifungal clotrimazole is quite selective for
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IKc, (ICs5o = 70 nM) and has no effect on other K,
channels, although it could inhibit cytochrome P450
enzymes at submicromolar concentrations.*

Furthermore, differential pharmacology exists
among SKc, channel subunits. Oocyte-expressed
KCa2.2 and KCa2.3 subunits could be blocked by
apamin with high sensitivity (ICso = 60 pM and 2 nM,
respectively), while KCa2.1 subunits are not blocked
even by 100 nM apamin and have low sensitivity to
d-tubocurarine (ICso = 354.3 uM) and TEA (ICs, =
14.6 mM).*>** When co-expressed, KCa2.l and
KCa2.2 currents have intermediate apamin and d-
tubocurarine sensitivity.36 Among SK¢, channel
subunits, KCa2.3 was found to be expressed at higher
levels relative to KCa2.1 and KCa2.2 in HCAECs."
However, it is currently unknown whether native
SK¢, in HCAEC are homo- or hetero-multimers. It is
thus uncertain whether and how much apamin-
sensitive currents underestimated the contribution of
SK¢, current.

The magnitude of Kurp current was not
determined in this study, though Karp channel
subunits have also been found in HCAECs."?” In our
experiments, 3 mM MgATP was always present in
the internal solution to prevent current rundown; this
concentration has been shown to sufficiently block all
Katp current in this cell type.38 Therefore Krp may
contribute little to whole-cell HCEAC currents. This
is supported by the fact that the sum of inhibitory
percentages for all channel types studied was
approximately 100%.

Conclusion

This study demonstrated that HCAEC currents
consisted of NSC, CI” and K currents. K™ currents
were at least composed of large-, intermediate- and
small-conductance Ca**-activated K* (BKc,, IKc, and
SK¢,) currents and inward rectifier K (K current.
In our conditions, K" currents collectively contributed
the most to the total HCAEC current. These data
provide a basis for further electrophysiological
studies in human coronary artery endothelial cells.
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