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Introduction 
 

uman microbiota are microorganisms that live in 
several areas of the body, including the oral 

cavity, genital organs, respiratory tract, skin, and 
gastrointestinal system.1 The number of human 
microbiota, including bacteria, fungi, and viruses, is 
approximately 1013-1014 microbial cells, with the ratio 
of microbial cells to human cells being 1:1.1,2 The 
dominant bacterial phyla in the human gastrointes-
tinal tract are Firmicutes, Bacteroidetes, Actino-
bacteria, and Proteobacteria.3 Current research has 
found associations between microbiota and systemic 
diseases, particularly type I and type II diabetes, 

obesity, and metabolic syndrome, which are related 
with immune response processes.4 

Nowadays, the identification of dominant 
microbial communities is increasing with the 
invention of high-throughput sequencing technology. 
The most important and widely used diversities are 
alpha-diversity and beta-diversity.5 Alpha diversity, 
including Shannon index diversity, chao1 diversity, 
etc., is the average species diversity within a habitat 
type at a local scale.6 Numerous alpha-diversity 
indices exist, such as Shannon index diversity and 
chao1 diversity, each representing a unique aspect of 
community diversity. The key distinctions include 
how the indices evaluate variation in rare species, 
whether they focus only on presence/absence or also 
on abundance, and how they interpret shared 
absence.6 Conversely, beta-diversity, such as Bray-
Curtis dissimilarity and Unifrac, indicates the 
differentiation between microbial communities from 
different environments.7 Beta diversity is an essential 
measure for several widely used statistical techniques 
in ecology, such as ordination-based methods. It is 
often used to investigate the relationship between 
environmental factors and microbial composition.6 

Both diversities consider two aspects of a 
community: the number of different organisms in a 
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Chao1 index (19 studies) and Operational Taxonomic Unit (OTU) richness (15 studies). The advantages of 
Shannon diversity are simplicity and appropriateness for the community dominant by two or three species. 
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sample and the range of abundance for each one.8 
Many researchers have found the relationship 

between gut microbiota and metabolic diseases by 
diversity analysis.9-11 However, no systematic study 
focused on the most widely used method for diversity 
measurement of the association between gut 
microbiota and metabolic diseases. Additionally, 
there was no systematic review examining the 
benefits and drawbacks of each measure of gut 
microbiome diversity. This systematic scoping 
review aimed to discuss and compare the 
measurement methods of microbiome diversity that 
are widely used in current research.   
 

Materials and Methods 
 

Registration of protocols 
This study was conducted following the recom-
mendations of the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses Extension 
for Scoping Review (PRISMA-ScR) statement. We 
registered the systematic review with OSF, The Open 
Science Framework (registration: osf.io/ux2fs). 
 

Data sources and searches 
We used PubMed, Embase, and Cochrane Central 
Register of Clinical Trials to search for articles 
published in 2019 in the English language. We 
excluded articles before 2019 because they would 
contain many articles to extract. We conducted a 
systematic review of a single year and hypothesized 
that the previous year's tool utilization followed a 
similar pattern. The terms "gastrointestinal 
microbiome", "gut microbiome", "microbiota", and 
"microflora" were used in combination with 
"diversity", "richness", "evenness", and "dissimilarity" 
as the keywords for literature search along with their 
synonyms. The search strategy is presented in detail 
in Supplementary Appendix 1. Additionally, the 
reference lists of included articles and related 
citations from other journals via Google Scholar were 
searched. 
 

Study selection 
For this systematic scoping review, we worked with 
an information specialist to design an appropriate 
search strategy to identify original peer-reviewed 
articles of randomized controlled trials, quasi-
experimental, and observational studies evaluating 
gut microbiome diversity in patients with a diagnosis 
of metabolic disease, including metabolic syndrome, 
diabetes mellitus, hypertension, dyslipidemia, 
obesity, and nonalcoholic fatty liver disease 
(NAFLD). Two independent reviewers (CS and TN) 
screened the articles for eligible studies. 
Discrepancies between the two reviewers were 
resolved by consensus. 
 

Data extraction 
Data extraction was done by two independent 
reviewers (CS and TN) using the published summary 

gut microbiome diversity index. Discrepancies 
between the two reviewers were resolved by 
consensus. We extracted the following data: (1) study 
characteristics (authors, study type, journal name, 
contact information, country, and funding), (2) 
patient characteristics (sample size, type of metabolic 
disease, and mean age), (3) outcomes (measurement 
methods of alpha and beta diversity of gut 
microbiome) as well as any other relevant 
information. All relevant text, tables, and figures 
were examined for data extraction. We contacted the 
authors of the study with incompletely reported data. 
If the study authors did not respond within 14 days, 
we analyzed only the available data. 
 

Data synthesis and analysis 
The primary outcome was measurement methods of 
alpha and beta diversity of the gut microbiome. We 
synthesized the overall usage of the gut microbiome 
diversity index, whether alpha and beta diversities 
had been measured in the included studies and which 
index had been used. We then provided subgroup 
analyses based on study design, type of metabolic 
disease, geographical location, and country income. 
 

Patient and public involvement 
There were no patient or public involvement in the 
design and conduct of this systematic scoping review. 
Nonetheless, the gut diversity measures summarized 
in this review could be helpful for provider-patient 
education and treatment decision processes. 
 

Results 
 

Study selection 
The database search identified 5,929 potential 
records. After removing duplicates, 4,111 titles 
passed the initial screen, and 527 theme-related 
abstracts were selected for further full-text articles 
assessed for eligibility (Figure 1). A total of 480 were 
excluded as the following: 338 were non-peer-
reviewed, 65 did not report microbiome diversity, 25 
were protocol, 22 had the wrong publication year, 15 
were in vitro, 6 were review articles, 4 were letters to 
the editor, three non-English, and two editorials. 
Forty-seven studies were eligible for data synthesis. 
 

Study characteristics 
Of the 47 included studies, there were 33 
observational studies, nine randomized controlled 
trials, and five quasi-experimental studies (Table 1). 
The number of patients per study ranged from 12 to 
6,627, totaling 14,632 patients. The mean age of 
patients varied from the day of life 3 to 69 years old 
(Figure 2). There were 28 studies focused on obesity, 
12 on type II diabetes mellitus, four on hypertension, 
four on NAFLD, three on metabolic syndrome, three 
on gestational diabetes mellitus, two on dyslipidemia, 
and a study on type I diabetes mellitus. The 
characteristics of included studies were shown in 
Supplementary Table 1. 



 
Gut microbiome diversity measures for metabolic conditions: systematic review J Physiol Biomed Sci. 2022; 33(2): 11-19 
 

13 

According to the WHO region, there were 21 
studies conducted in the Western Pacific Region, 14 
in the European Region, 10 in the Regions of the 
Americas, and two in the Eastern Mediterranean 
Region. According to the World Bank12 there were 27 
studies conducted in high-income countries, 19 in 
upper-middle-income countries, and one in low-
middle-income countries. 
 

Gut microbiome diversity measures 
Of the 13 alpha diversity measures, the Shannon index 
was the most commonly used in 37 studies (78.7%), 
followed by the Chao1 index (19 studies), Operational 
Taxonomic Unit (OTU) richness (15 studies), Simpson  
  

 
 

Figure 1 Flow chart diagram presenting the study selection with Preferred Reporting Items for 
Systematic Reviews and Meta-analyses (PRISMA) guidelines. 

 

 
 

Figure 2 The mean age of patients in the included articles 
stratified by age range. 

 
 

Figure 3 The number of Alpha-diversity and Beta-diversity 
used in the included articles. 
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index (13 studies), Faith's Phylogenetic diversity (11 
studies), Abundance-based Coverage Estimators 
(ACE) index (10 studies), Good's coverage (3 studies), 
Pielou's evenness index (2 studies), Amplicon 
Sequence Variant (ASV) richness (2 studies), inversed 
Simpson index (2 studies), and Fisher alpha index (1 
study). The alpha-diversity and beta-diversity of 
included studies are shown in Figure 3.  

Of the two beta diversity measures, the UniFrac 
was the most commonly used in 24 studies, including 
Unweighted UniFrac (17 studies) and Weighted 
UniFrac (16 studies), followed by Bray-Curtis 
dissimilarity (16 studies). The summary result is 
shown in Table 1, and the result for each included 
study was provided in the online Supplementary 
Appendix 2. 
 

Type of metabolic diseases and gut microbiome 
diversity measures 
The most common microbiome alpha diversity for 
almost all metabolic diseases was Shannon diversity. 

The most common microbiome beta-diversity 
measures for obesity and type II diabetes mellitus 
were Weighted Unifrac (39.3%) and Bray-Curtis 
dissimilarity (33.3%), respectively.13-16 The type of 
metabolic diseases and gut microbiome diversity 
measures are shown in Figures 4A and 4B. 
 

Country income and gut microbiome diversity 
measures 
The most common microbiome alpha diversity for 
all types of country income was Shannon diversity.  
Amplicon Sequence Variant (ASV) richness (2 
studies),17,18 and inversed Simpson index (2 studies) 
were both used in only HICs.19,20 Good's coverage (3 
studies) were used only in UMICs.21-23 

There was a variation of the most common 
microbiome beta-diversity measures among different 
country incomes. For HICs, Bray-Curtis dissimilarity 
was the most common beta diversity measure (37%), 
Unweighted Unifrac for UMICs (42.1%), and both 
Weighted and Unweighted Unifrac for LMIC (100%).24  

Table 1 Gut microbiome diversity index usage in metabolic disease articles. 
 

 
No.of 

Studies 

Alpha-Diversity Beta-Diversity 

 OUT 
richness 

Shan-
non 

ACE 
index 

Chao 
index Fisher Pielou’s 

evenness 
ASV 

richness
Faith’s 

PD 
Good’s 

coverage 
Inverse 

Simpson 

Unweighte
d Unifrac 
distances 

Weighted 
Unifrac 

distances 

Bray-Curtis 
distances 

Total 47 15 
(31.9) 

37 
(78.7) 

10 
(21.3) 

19 
(40.4) 

1 
(2.1) 

2 
(4.3) 

2 
(4.3) 

11 
(23.4) 

3 
(6.4) 

2 
(4.3) 

17 
(36.2) 

16 
(34.0) 

16 
(34.0) 

Study design               

Observational 33 12 
(36.4) 

28 
(84.8) 

8 
(24.2) 

15 
(45.5) 

1 
(3.0) 

2 
(6.1) 

1 
(3.0) 

7 
(21.2) 

3 
(9.1) 

2 
(6.1) 

15 
(45.5) 

12 
(36.4) 

10 
(30.1) 

Quasi-exp 5 1 
(20.0) 

2 
(40.0) 

2 
(40.0) 

1 
(20.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

3 
(60.0) 

0 
(0.0) 

0 
(0.0) 

1 
(20.0) 

2 
(40.0) 

1 
(20.0) 

RCT 9 2 
(22.2) 

7 
(77.8) 

0 
(0.0) 

3 
(33.3) 

0 
(0.0) 

0 
(0.0) 

1 
(11.1) 

1 
(11.1) 

0 
(0.0) 

0 
(0.0) 

1 
(11.1) 

2 
(22.2) 

5 
(55.6) 

Metabolic 
diseases               

DLP 2 0 
(0.0) 

1 
(50.0) 

0 
(0.0) 

2 
(100.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

2 
(100.0) 

GDM 3 0 
(0.0) 

3 
(100.0) 

1 
(33.3) 

1 
(33.3) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

2 
(66.7) 

1 
(33.3) 

2 
(66.7) 

HT 4 2 
(50.0) 

3 
(75.0) 

1 
(25.0) 

2 
(50.0) 

0 
(0.0) 

1 
(25.0) 

0 
(0.0) 

0 
(0.0) 

1 
(25.0) 

0 
(0.0) 

1 
(25.0) 

2 
(50.0) 

1 
(25.0) 

Metabolic 
syndrome 3 0 

(0.0) 
2 

(66.7) 
0 

(0.0) 
1 

(33.3) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
1 

(33.3) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
2 

(66.7) 
1 

(33.3) 

NAFLD 4 1 
(25.0) 

4 
(100.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(25.0) 

1 
(25.0) 

0 
(0.0) 

0 
(0.0) 

2 
(50.0) 

1 
(25.0) 

2 
(50.0) 

Obesity 28 11 
(39.3) 

20 
(71.4) 

6 
(21.4) 

10 
(35.7) 

1 
(3.6) 

1 
(3.6) 

1 
(3.6) 

7 
25.0) 

2 
(7.1) 

1 
(3.6) 

10 
(35.7) 

11 
(39.3) 

8 
(28.6) 

T1DM 1 1 
(100.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(100.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

T2DM 12 3 
(25.0) 

10 
(83.3) 

2 
(16.7) 

4 
(33.3) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

3 
(25.0) 

0 
(0.0) 

0 
(0.0) 

4 
(33.3) 

3 
(25.0) 

5 
(41.7) 

WHO region               

Americas 10 4 
(40.0) 

8 
(80.0) 

0 
(0.0) 

1 
(10.0) 

1 
(10.0) 

0 
(0.0) 

0 
(0.0) 

2 
(20.0) 

0 
(0.0) 

1 
(10.0) 

6 
(60.0) 

4 
(40.0) 

2 
(20.0) 

Eastern 
Mediterranean 2 2 

(100.0) 
1 

(50.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
1 

(50.0) 
1 

(50.0) 
1 

(50.0) 

European 14 3 
(21.4) 

9 
(64.3) 

2 
(14.3) 

6 
(42.9) 

0 
(0.0) 

1 
(7.1) 

1 
(7.1) 

4 
(28.6) 

0 
(0.0) 

0 
(0.0) 

3 
(21.4) 

4 
(28.6) 

5 
(35.7) 

Western Pacific 21 6 
(28.6) 

19 
(90.5) 

8 
(38.1) 

12 
(57.1) 

0 
(0.0) 

1 
(4.8) 

1 
(4.8) 

5 
(23.8) 

3 
(14.3) 

1 
(4.8) 

7 
(33.3) 

7 
(33.3) 

8 
(38.1) 

Country 
income               

HICs 27 7 
(25.9) 

19 
(70.4) 

2 
(7.4) 

8 
(29.6) 

1 
(3.7) 

1 
(3.7) 

2 
(7.4) 

7 
(25.9) 

0 
(0.0) 

2 
(7.4) 

8 
(29.6) 

8 
(29.6) 

10 
(37.0) 

LMICs 1 1 
(100.0) 

1 
(100.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(100.0) 

1 
(100.0) 

0 
(0.0) 

UMICs 19 7 
(36.8) 

17 
(89.5) 

10 
(21.3) 

11 
(57.9) 

0 
(0.0) 

1 
(5.3) 

0 
(0.0) 

4 
(21.1) 

3 
(15.8) 

0 
(0.0) 

8 
(42.1) 

7 
(36.8) 

6 
(31.6) 

 

Numbers in parentheses are percentages of total studies in each row. ACE, abundance-based coverage estimators; ASV, 
amplicon sequence variant; DLP, dyslipidemia; GDM, gestational diabetes mellitus; HICs, high-income countries; HT, 
hypertension; LMICs, low-middle-income countries; NAFLD, nonalcoholic fatty liver disease; OTU, operational taxonomic unit; PD, 
phylogenetic diversity; Quasi-exp, quasi-experimental; RCT, randomized controlled trial; T1DM, type I diabetes mellitus; T2DM, 
type II diabetes mellitus; UMICs, upper-middle-income countries; WHO, World Health Organization. 
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Country outcome and gut microbiome diversity 
measures are shown in Figures 4C and 4D. 
 

Geographical location and gut microbiome 
diversity measures 
The most common microbiome alpha-diversity for 
studies in Western Pacific, European, and America 
Regions was Shannon diversity. The most common 
microbiome alpha-diversity in Eastern Mediterranean 
Region was OTU richness. Good's coverage (3 
studies) was used only in Western Pacific Region.21-23 

The most common microbiome beta-diversity 
measures for Western Pacific, European, and 
America were Bray-Curtis dissimilarity (38.1%), 
Bray-Curtis dissimilarity (35.7%),13,15-17,25 and 
Unweighted Unifrac (60%) respectively.26-31 For 
microbiome beta-diversity measures for Eastern 
Mediterranean, all beta-diversity were equal in 
number (1 study, 50%). Geographical location and 
gut microbiome diversity measures are shown in 
Figures 4E and 4F. 
 
  

 
 

Figure 4 Alpha-diversity and beta-diversity of the included articles categorized by type of metabolic diseases, country income, 
and geographical location. A, Alpha-diversity categorized by metabolic diseases; B, beta-diversity categorized by metabolic 
diseases; C, alpha-diversity categorized by country income; D, beta-diversity categorized by country income; E, alpha-
diversity categorized by geographical location; F, beta-diversity categorized by geographical location. 

 

A B 

C D 

E F 
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Discussion 
 

This systematic review reports the choice of gut 
microbiome diversity measurements in patients with 
metabolic conditions. The systematic review 
identified 47 articles that met the inclusion and 
exclusion criteria. A meta-analysis was not performed 
because this study aimed to determine the usage of 
gut microbiome diversity measurement in metabolic 
disease studies. The results suggested variations in 
measures of gut microbiome diversity in the 
metabolic disease literature. For alpha diversity, 13 
different measurement methods were used to analyze 
gut microbiota. The Shannon index was the most 
commonly used, which was presented in 37 studies 
(78.7%). 

In contrast, other methods, including the Chao1 
index, Operational Taxonomic Unit (OTU) richness, 
Simpson index, Faith's Phylogenetic diversity, and 
Abundance-based Coverage Estimators (ACE) index, 
were used only 20-40%. For beta-diversity, the 
UniFrac was the most commonly used assessed in 24 
studies (Unweighted 17 studies and Weighted 16 
studies), followed by Bray-Curtis dissimilarity (16 
studies). All beta-diversity measures were used in a 
similar quantity. Therefore, our findings have shown 
that Shannon diversity is the most widely used alpha 
diversity, while there is no predilection for beta 
diversity. 

The strength of our systematic review is that this 
is the first systematic review reporting the choice of 
gut microbiome diversity measurements in patients 
with metabolic conditions. Moreover, we reported the 
distinct characteristics, advantages, and disadvantages 
of each microbiome diversity measurement method, 
leading to various usage frequencies in metabolic 
condition studies. However, there were several 
limitations in this systematic scoping review. First, 
this systematic scoping review aims to provide 
evidence on the usage of gut microbiome diversity 
measurement in metabolic disease studies; thus, 
meta-analysis was not planned to perform. Second, 
this study only focused on the gut microbiome 
diversity measures in patients with metabolic 
conditions. The generalizability should be considered 
when applying the results in studies on other diseases. 

No study conducted a systematic review reporting 
the choice of gut microbiome diversity measurements 
in patients with metabolic conditions. A microbiome 
diversity index is an essential tool for diagnosing 
metabolic disorders. Metabolic diseases reached 
epidemic proportions and burdened world health 
related to the gut microbiome.32 More than 500 
individual research on the relationship between the 
human microbiome and metabolic health have been 
published.32 However, no study has indicated which 
microbiome diversity tools should be used to obtain 
these essential results. Therefore, we conducted 
numerous literature reviews to conclude these 
microbiome diversity tools in our systematic review 

and connect the information with our findings. 
Alpha diversity is used to identify the richness 

(number of taxonomic groups), evenness (distribution 
of abundances of the groups), or both. There are three 
subtypes of alpha diversity for estimation: richness 
estimators, richness and evenness estimators, and 
phylogenetic estimators. The difference between 
these estimators is shown in online Supplementary 
Table 2. Species richness refers to the number of 
species present in a community, while evenness 
compares the uniformity of the species' population 
(Figure 5). 

Shannon diversity was the most common alpha 
diversity measurement of all included studies. 
Shannon diversity is an example of the richness and 
evenness estimators in which diversity's value 
increases both when the number of species increases 
and when evenness grows. The concept behind this 
measure is that the more species seen, the more 
evenly distributed their abundances are.33 It is a 
measurement of entropy and the uncertainty of the 
sampling outcome. Shannon diversity also 
contemplates the relative abundances of different 
species.34  The advantages of Shannon diversity are 
simplicity and appropriateness for the community 
dominant by two or three species. However, Shannon 
diversity weighs more on species richness which 
causes measures of the character of the species 
abundance distribution (evenness) to be less sensitive.  

Another richness and evenness estimator is 
Simpson's diversity. The advantage of Simpson's 
diversity is simplicity, while the drawback is the 
insensitivity of the species richness measurement. 
Due to simplicity and ability to measure both richness 
and evenness, Shannon's and Simpson's diversity are 
widely used in all studies.35 

Another type of estimator is the richness 
estimator, which includes OTU richness, Chao1 
index, and ACE index. OTU richness is defined as 
the count of different species represented in a 

 A    B 
 

 
 

Figure 5 The illustration depicting the definition of species 
richness and evenness by showing the community "A" and 
community "B." Communities were defined as circles. The 
squares contained within each circle represented species of 
organism, with each color representing a different species. 
Community "A" and community "B" have the same species 
richness, five species each. The organisms in community 
"A" are more evenly distributed than in community "B" 
(community "A" have greater evenness than community 
"B"). 
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community. Similar to Shannon and Simpson's 
diversity, the advantage of OTU richness is simplicity 
which makes OTU richness in the top three of alpha 
diversity measurement usage. However, the 
disadvantage of OTU richness is the sensitivity to 
sample size. In our study, the Chao1 index was used 
in 19 studies (40.4%) and the ACE index in 10 
studies (21.3%). Richness estimators evaluate the 
total richness of a community.36 Chao1 and ACE 
have been developed to estimate richness from 
abundance data. They are indicators of species 
richness that are sensitive to rare OTUs. Chao1 is 
based on the theory that rare species provide the most 
information about the number of missing species, 
which is helpful for rare species and performs 
accurately if the sample size is reasonably large. 
Therefore, Chao1 index is handy for low-abundance 
species, while underestimating rich and highly 
heterogeneous species is the drawback. 

Finally, phylogenetic diversity (PD) is defined as 
connecting all organisms in a phylogenetic tree, 
which estimates diversity across a tree and provides a 
phylogenetic analog of taxonomic diversity.37 PD 
provides a convenient, evolutionary measure of 
diversity that does not depend on the ability to 
identify species count, which ultimately leads to a 
complex and relatively stable community of 
microorganisms.38 PD was a more accurate predictor 
of ecosystem function than species richness or the 
number of functional groups, and it supported 
functional diversity in explaining species richness 
ecosystem function connections. Suppose the 
intricacies are taken into account in future studies. In 
that case, the impacts of Phylogenetic diversity have 
the potential to conceptually unite the disparate 
domains of community ecology, evolutionary 
ecology, conservation biology, and ecosystem 
ecology.39 

Beta-diversity in our research, including Unifrac 
distance and Bray-Curtis dissimilarity, are similar in 
usage quantities. "UniFrac" considers the phylo-
genetic relationships between the microbes found in 
two samples (Similar to phylogenetic diversity), 
which provides a convenient measure of diversity that 
does not depend on the ability to identify species 
count.40 It estimates differences between samples or 
groups based on phylogenetic distance. Unifrac 
distance is divided into Unweighted and Weighted 
Unifrac. Unweighted UniFrac is the fraction of 
branch length between all microbes in both samples 
that are different between the samples.40,41 Weighted 
UniFrac is similar to Unweighted UniFrac but takes 
the abundance of microbes in the samples into 
account. The abundances of microbes broadly impact 
weighted UniFrac, while Unweighted UniFrac does 
not take abundance into account. Unweighted Unifrac 
and Weighted Unifrac are used to determine whether 
communities differed significantly. Unweighted 
Unifrac is sensitive to detecting microbial richness 
changes in rare species, while Weighted Unifrac can 

incorporate abundance information and reduce the 
rare species' contribution.  

Bray-Curtis dissimilarity shows the microbes' 
abundances which are shared between two samples. 
Bray-Curtis dissimilarity quantifies the dissimilarity 
between two samples or groups ranging from 0 to 1 
which is not a true distance. For example, if both 
samples have the same number of microbes at the 
same abundance, their dissimilarity will equal zero. 
On the other hand, the dissimilarity will equal one if 
two samples have no shared microbes. The benefit of 
Bray-Curtis dissimilarity is that it gives more weight 
to common species. Moreover, Bray-Curtis 
dissimilarity is simple and does not make 
assumptions about genetic relationships.42 

The study of the microbiome in metabolic 
conditions has become increasingly attractive in 
recent years and has been conducted worldwide. 
Additionally, there were emerging tools for assessing 
the microbiome's diversity in clinical studies. The 
primary consideration was that we should use the 
appropriate diversity in the relevant research and a 
manner consistent with the context of the resources. 
In our study, we discussed each method's distinct 
characteristics, advantages, and disadvantages for 
measuring microbiome diversity. The complexity and 
efficacy of various tools for microbiome analysis 
were distinctive. In addition, the cost to analyze 
varied between these measurements. Further 
researchers studying metabolic conditions with 
microbiome diversity measurements will have 
objective evidence regarding the measurement 
methods that are most rational in terms of simplicity, 
cost, and efficacy for their studies. 

 
 

How this fits in 
Alpha- and beta-diversity are the two most diverse 
measures of gut microbiota diversity, with no 
consensus on which measurement methods should be 
used in a metabolic condition study. This is the first 
systematic scoping review that demonstrated distinct 
characteristics, advantages, and disadvantages of each 
microbiome diversity measurement method leading 
to various usage frequencies in metabolic condition 
studies. Further, physician-scientists interested in 
metabolic conditions with microbiome diversity 
measurement will have impartial evidence on which 
measurement methods are most rationally appropriate 
for their studies regarding simplicity, cost, and 
efficacy. 
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