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Abstract
Background Evidence on the association between the gut microbiome and metabolic conditions has been
increasing during the past decades. Unlike the straightforward identification of beneficial non-pathogenic
bacteria as a potential probiotic for clinical use, the analysis of gut microbiome diversity is more complex. It
requires a better understanding of various measures.
Aim To summarize an elaborated list of gut microbiome diversity measures and analyze each measure's
benefits and drawbacks.
Design and setting Systematic scoping review.
Method Systematic search was conducted in three databases: PubMed, Embase, and Cochrane Central
Register of Clinical Trials for the relationship between gut microbiota and metabolic diseases published in
2019.
Results Of 5929 potential studies, 47 were included in the systematic review (14632 patients). Of the 13 alpha
diversity measures, the Shannon index was the most commonly used in 37 studies (78.7%), followed by the
Chaol index (19 studies) and Operational Taxonomic Unit (OTU) richness (15 studies). The advantages of
Shannon diversity are simplicity and appropriateness for the community dominant by two or three species.
The UniFrac was the most commonly used of the two beta diversity measures in 24 studies (17 Unweighted
and 16 Weighted studies), followed by Bray-Curtis dissimilarity (16 studies). There is no predilection for beta
diversity.
Conclusion Various measurements of gut microbiome diversity have been used in the literature. They have
unique characteristics, advantages, and disadvantages, leading to different usage frequencies. The measures
were chosen considering cost, simplicity, and types of research.
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obesity, and metabolic syndrome, which are related
with immune response processes.*

Nowadays, the identification of dominant
microbial communities is increasing with the
invention of high-throughput sequencing technology.

Introduction

uman microbiota are microorganisms that live in
several areas of the body, including the oral
cavity, genital organs, respiratory tract, skin, and

gastrointestinal system.! The number of human
microbiota, including bacteria, fungi, and viruses, is
approximately 10'3-10'* microbial cells, with the ratio
of microbial cells to human cells being 1:1."> The
dominant bacterial phyla in the human gastrointes-
tinal tract are Firmicutes, Bacteroidetes, Actino-
bacteria, and Proteobacteria.® Current research has
found associations between microbiota and systemic
diseases, particularly type I and type II diabetes,
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The most important and widely used diversities are
alpha-diversity and beta-diversity.> Alpha diversity,
including Shannon index diversity, chaol diversity,
etc., is the average species diversity within a habitat
type at a local scale.® Numerous alpha-diversity
indices exist, such as Shannon index diversity and
chaol diversity, each representing a unique aspect of
community diversity. The key distinctions include
how the indices evaluate variation in rare species,
whether they focus only on presence/absence or also
on abundance, and how they interpret shared
absence.’ Conversely, beta-diversity, such as Bray-
Curtis  dissimilarity and Unifrac, indicates the
differentiation between microbial communities from
different environments.” Beta diversity is an essential
measure for several widely used statistical techniques
in ecology, such as ordination-based methods. It is
often used to investigate the relationship between
environmental factors and microbial composition.®
Both diversities consider two aspects of a
community: the number of different organisms in a
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sample and the range of abundance for each one.®

Many researchers have found the relationship
between gut microbiota and metabolic diseases by
diversity analysis.>!' However, no systematic study
focused on the most widely used method for diversity
measurement of the association between gut
microbiota and metabolic diseases. Additionally,
there was no systematic review examining the
benefits and drawbacks of each measure of gut
microbiome diversity. This systematic scoping
review aimed to discuss and compare the
measurement methods of microbiome diversity that
are widely used in current research.

Materials and Methods

Registration of protocols

This study was conducted following the recom-
mendations of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension
for Scoping Review (PRISMA-ScR) statement. We
registered the systematic review with OSF, The Open
Science Framework (registration: osf.io/ux2fs).

Data sources and searches

We used PubMed, Embase, and Cochrane Central
Register of Clinical Trials to search for articles
published in 2019 in the English language. We
excluded articles before 2019 because they would
contain many articles to extract. We conducted a
systematic review of a single year and hypothesized
that the previous year's tool utilization followed a

similar ~ pattern. The terms  '"gastrointestinal
microbiome", "gut microbiome", "microbiota", and
"microflora” were wused in combination with

non

"diversity", "richness", "evenness", and "dissimilarity"
as the keywords for literature search along with their
synonyms. The search strategy is presented in detail
in Supplementary Appendix 1. Additionally, the
reference lists of included articles and related
citations from other journals via Google Scholar were
searched.

Study selection

For this systematic scoping review, we worked with
an information specialist to design an appropriate
search strategy to identify original peer-reviewed
articles of randomized controlled trials, quasi-
experimental, and observational studies evaluating
gut microbiome diversity in patients with a diagnosis
of metabolic disease, including metabolic syndrome,
diabetes  mellitus, hypertension,  dyslipidemia,
obesity, and nonalcoholic fatty liver disease
(NAFLD). Two independent reviewers (CS and TN)
screened the articles for eligible studies.
Discrepancies between the two reviewers were
resolved by consensus.

Data extraction
Data extraction was done by two independent
reviewers (CS and TN) using the published summary
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gut microbiome diversity index. Discrepancies
between the two reviewers were resolved by
consensus. We extracted the following data: (1) study
characteristics (authors, study type, journal name,
contact information, country, and funding), (2)
patient characteristics (sample size, type of metabolic
disease, and mean age), (3) outcomes (measurement
methods of alpha and beta diversity of gut
microbiome) as well as any other relevant
information. All relevant text, tables, and figures
were examined for data extraction. We contacted the
authors of the study with incompletely reported data.
If the study authors did not respond within 14 days,
we analyzed only the available data.

Data synthesis and analysis

The primary outcome was measurement methods of
alpha and beta diversity of the gut microbiome. We
synthesized the overall usage of the gut microbiome
diversity index, whether alpha and beta diversities
had been measured in the included studies and which
index had been used. We then provided subgroup
analyses based on study design, type of metabolic
disease, geographical location, and country income.

Patient and public involvement

There were no patient or public involvement in the
design and conduct of this systematic scoping review.
Nonetheless, the gut diversity measures summarized
in this review could be helpful for provider-patient
education and treatment decision processes.

Results
Study selection
The database search identified 5,929 potential
records. After removing duplicates, 4,111 titles

passed the initial screen, and 527 theme-related
abstracts were selected for further full-text articles
assessed for eligibility (Figure 1). A total of 480 were
excluded as the following: 338 were non-peer-
reviewed, 65 did not report microbiome diversity, 25
were protocol, 22 had the wrong publication year, 15
were in vitro, 6 were review articles, 4 were letters to
the editor, three non-English, and two editorials.
Forty-seven studies were eligible for data synthesis.

Study characteristics

Of the 47 included studies, there were 33
observational studies, nine randomized controlled
trials, and five quasi-experimental studies (Table 1).
The number of patients per study ranged from 12 to
6,627, totaling 14,632 patients. The mean age of
patients varied from the day of life 3 to 69 years old
(Figure 2). There were 28 studies focused on obesity,
12 on type II diabetes mellitus, four on hypertension,
four on NAFLD, three on metabolic syndrome, three
on gestational diabetes mellitus, two on dyslipidemia,
and a study on type I diabetes mellitus. The
characteristics of included studies were shown in
Supplementary Table 1.
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Figure 1 Flow chart diagram presenting the study selection with Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guidelines.
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Figure 2 The mean age of patients in the included articles
stratified by age range.

According to the WHO region, there were 21

studies conducted in the Western Pacific Region, 14
in the European Region, 10 in the Regions of the
Americas, and two in the Eastern Mediterranean
Region. According to the World Bank'? there were 27
studies conducted in high-income countries, 19 in
upper-middle-income countries, and one in low-
middle-income countries.

Gut microbiome diversity measures

Of the 13 alpha diversity measures, the Shannon index
was the most commonly used in 37 studies (78.7%),
followed by the Chaol index (19 studies), Operational
Taxonomic Unit (OTU) richness (15 studies), Simpson
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Figure 3 The number of Alpha-diversity and Beta-diversity
used in the included articles.
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Table 1 Gut microbiome diversity index usage in metabolic disease articles.

Alpha-Diversity Beta-Diversity
S’;lu%gs ouT |sh . - , Unweighte | Weighted .
) an- lACE _Chao Fisherl Pielou’s _/iSV Faith’s | Good’s Inverse d Unifrac | Unifrac Br_ay—Cums
richness| non | index | index evennesslrichness) PD |coverage|Simpson distances | distances distances
rotal 47 15 37 | 10 19 | 1 2 2 11 3 2 17 16 16
(31.9) | (78.7)| (21.3) | 404) [21)| (43) | @43) | (234) | 64) | 43) | (362) (34.0) (34.0)
Study design
' 12 28 8 B | 1 2 1 7 3 2 15 12 10
Observational | 33 | 364 | 84.8)| (242) | 455 |3.0)| 61) | 30) | @12 | @1 | 61 | @55 | 64 | (301)
Quasiexp 5 1 2 2 1 0 0 0 3 0 0 1 2 1
(20.0) | (40.0)| 40.0) | (20.0) [0.0)] (0.0) | (0.0) | (60.0) | (0.0) | (0.0) | (20.0) (40.0) (20.0)
CT 9 2 7 0 3 0 0 1 1 0 0 1 2 5
(22.2) | (77.8)| (0.0) | (333) [0.0)| (0.0) | (11.) | (11.1) | 00) | 0.0 | (11.1) (22.2) (55.6)
I!!etabolic
bLP 5 0 1 0 2 0 0 0 0 0 0 0 0 2
0.0) |(50.0)| (0.0) |(100.0)[0.0)] (0.0) | ©0.0) | 0.0) | 0.0) | (0.0 (0.0) (0.0) (100.0)
oM 3 0 3 1 1 0 0 0 0 0 0 2 1 2
0.0) |(100.0)| (33.3) | (33.3) [ (0.0)| (0.0) | (0.0) | 0.0) | (0.0) | (0.0) | (66.7) (33.3) (66.7)
T 4 2 3 1 2 0 1 0 0 1 0 1 2 1
(50.0) | (75.0)| (25.0) | (50.0) | 0.0)| 25.0) | (0.0) | (0.0) | 250) | (0.0) | (25.0) (50.0) (25.0)
Metabolic 3 0 2 0 1 0 0 0 1 0 0 0 2 1
syndrome 0.0) |(66.7)| (0.0) | (33.3) [(0.0)] (0.0) | (0.0) | (33.3) | (0.0) | (0.0) (0.0) (66.7) (33.3)
NAFLD 4 1 4 0 0 0 0 1 1 0 0 2 1 2
(25.0) |(100.0)| (0.0) | (0.0) [0.0)] (0.0) | (25.0)| (25.0) | (0.0) | (0.0) | (50.0) (25.0) (50.0)
Obesity 28 11 20 6 0 | 1 1 1 7 2 1 10 11 8
(39.3) | (714)| (21.4) | (35.7) |36)| (36) | (36) | 25.0) | @) | 36) | (35.7) (39.3) (28.6)
1DM p 1 0 0 0 0 0 0 0 0 1 0 0 0
(100.0) | (0.0) | (0.0) | (0.0) [©0.0)] (0.0) | ©.0) | 0.0) | (0.0) | (100.0) | (0.0) (0.0) (0.0)
DM 12 3 10 2 4 0 0 0 3 0 0 4 3 5
(25.0) | (83.3)| (16.7) | (33.3) [(0.0)| (0.0) | (0.0) | (25.0) | (0.0) | (0.0) | (33.3) (25.0) @1.7)
'WHO region
) 4 8 0 1 1 0 0 2 0 1 6 4 2
(Americas 10 | @40.0) |(80.0)] (0.0) | (100) |(100) ©0) | ©0) | 20.0) | ©00) | 10.0) | (60.0) (40.0) (20.0)
Eastemn 5 2 1 0 0 0 0 0 0 0 0 1 1 1
Mediterranean (100.0) | (50.0)| (0.0) | (0.0) [0.0)] (0.0) | (©.0) | ©.0) | 00) | (0.0) | (50.0) (50.0) (50.0)
European 14 3 9 2 6 0 1 1 4 0 0 3 4 5
(214) | (643)| (14.3) | 429) |0.0)| @.1) | 71) | (286) | (00) | (0.0) | (214) (28.6) (35.7)
- 6 19 8 12 | 0 1 1 5 3 1 7 7 8
Westem Pacific | 21 | (»56) | (90.5)| (38.1) | (57.1) | 0.0)| (4.8) | (4.8) | @38) | (143) | 48 | 333) | (333) | (38.1)
Country
iIncome
s P 7 19 2 8 1 1 2 7 0 2 8 8 10
(259) | (704)| (74) | 296) |37 37 | 74) | 259 | 00) | 74) | (296) (29.6) (37.0)
MICs p 1 1 0 0 0 0 0 0 0 0 1 1 0
(100.0) |(100.0) (0.0) | (0.0) |©.0)] (0.0) | ©.0) | (0.0) | (0.0) | (0.0) | (100.0) | (100.0) (0.0)
UMICs 19 7 17 | 10 (K 0 1 0 4 3 0 8 7 6
(36.8) |(89.5)| (21.3) | (57.9) | (0.0)] (5:3) | (0.0) | (21.1) | (158) | (0.0) | (42.1) (36.8) (31.6)

Numbers in parentheses are percentages of total studies in each row. ACE, abundance-based coverage estimators; ASV,
amplicon sequence variant; DLP, dyslipidemia; GDM, gestational diabetes mellitus; HICs, high-income countries; HT,
hypertension; LMICs, low-middle-income countries; NAFLD, nonalcoholic fatty liver disease; OTU, operational taxonomic unit; PD,
phylogenetic diversity; Quasi-exp, quasi-experimental; RCT, randomized controlled trial; T1DM, type | diabetes mellitus; T2DM,
type Il diabetes mellitus; UMICs, upper-middle-income countries; WHO, World Health Organization.

The most common microbiome

index (13 studies), Faith's Phylogenetic diversity (11
studies), Abundance-based Coverage Estimators
(ACE) index (10 studies), Good's coverage (3 studies),
Pielou's evenness index (2 studies), Amplicon
Sequence Variant (ASV) richness (2 studies), inversed
Simpson index (2 studies), and Fisher alpha index (1
study). The alpha-diversity and beta-diversity of
included studies are shown in Figure 3.

Of the two beta diversity measures, the UniFrac
was the most commonly used in 24 studies, including
Unweighted UniFrac (17 studies) and Weighted
UniFrac (16 studies), followed by Bray-Curtis
dissimilarity (16 studies). The summary result is
shown in Table 1, and the result for each included
study was provided in the online Supplementary
Appendix 2.

Type of metabolic diseases and gut microbiome
diversity measures

The most common microbiome alpha diversity for
almost all metabolic diseases was Shannon diversity.
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beta-diversity
measures for obesity and type II diabetes mellitus
were Weighted Unifrac (39.3%) and Bray-Curtis
dissimilarity (33.3%), respectively.'*! The type of
metabolic diseases and gut microbiome diversity
measures are shown in Figures 4A and 4B.

Country income and gut microbiome diversity
measures
The most common microbiome alpha diversity for
all types of country income was Shannon diversity.
Amplicon Sequence Variant (ASV) richness (2
studies),'”!® and inversed Simpson index (2 studies)
were both used in only HICs.'?° Good's coverage (3
studies) were used only in UMICs.?!-?3

There was a variation of the most common
microbiome beta-diversity measures among different
country incomes. For HICs, Bray-Curtis dissimilarity
was the most common beta diversity measure (37%),
Unweighted Unifrac for UMICs (42.1%), and both
Weighted and Unweighted Unifrac for LMIC (100%).24



Gut microbiome diversity measures for metabolic conditions: systematic review

J Physiol Biomed Sci. 2022; 33(2): 11-19

A Alpha-diversity B Beta-diversity
100% ST
80% 80%
60% ] 60% |
40% | 40% |
20% i |
0% s
0% Unweighted UniFrac Waighted UniFrac Bray-Curtis distances

Chao Shannen OUT richness

dstences dstances

HDLP EGDM mHT = Metabolicsyndrome EMNAFLD B Obesity MTIDM N TIDM

EDLP EGDM mHT ® Metabolic syndrome BNAFLD M Obesity BTIDM BTZDM

C Alpha diversity D Beta-diversity
100% 100%
80% 80%
60% 60%
40% 40%
” - I I I I
0% 0%
Unweighted UniFrac  Weighted Unifrac  Bray-Curtis distances
Shannon distances distances
HHICs mLMICs mUMICs EHICs mLMICs ®mUMICs
E Alpha-diversity F Beta-diversity
100% 100%
80% 80%
60% | b0%
A0% | | ‘ 40%
- o
B THE | I N I
[ | ‘ I 0% : i

0%

Shannon Chao index OTU richness

M Americas M Eastern Mediterranean B European B Western Pacific

Figure 4 Alpha-diversity and beta-diversity of the included article
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and geographical location. A, Alpha-diversity categorized by metabolic diseases; B, beta-diversity categorized by metabolic
diseases; C, alpha-diversity categorized by country income; D, beta-diversity categorized by country income; E, alpha-

diversity categorized by geographical location; F, beta-diversity c

Country outcome and gut microbiome diversity
measures are shown in Figures 4C and 4D.

Geographical location and gut microbiome
diversity measures

The most common microbiome alpha-diversity for
studies in Western Pacific, European, and America
Regions was Shannon diversity. The most common
microbiome alpha-diversity in Eastern Mediterranean
Region was OTU richness. Good's coverage (3
studies) was used only in Western Pacific Region.?!?3

15

ategorized by geographical location.

The most common microbiome beta-diversity
measures for Western Pacific, European, and
America were Bray-Curtis dissimilarity (38.1%),
Bray-Curtis ~ dissimilarity ~ (35.7%),!>!517%  and
Unweighted Unifrac (60%) respectively.2®3!  For
microbiome beta-diversity measures for Eastern
Mediterranean, all beta-diversity were equal in
number (1 study, 50%). Geographical location and
gut microbiome diversity measures are shown in
Figures 4E and 4F.
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Discussion

This systematic review reports the choice of gut
microbiome diversity measurements in patients with
metabolic  conditions. The systematic review
identified 47 articles that met the inclusion and
exclusion criteria. A meta-analysis was not performed
because this study aimed to determine the usage of
gut microbiome diversity measurement in metabolic
disease studies. The results suggested variations in
measures of gut microbiome diversity in the
metabolic disease literature. For alpha diversity, 13
different measurement methods were used to analyze
gut microbiota. The Shannon index was the most
commonly used, which was presented in 37 studies
(78.7%).

In contrast, other methods, including the Chaol
index, Operational Taxonomic Unit (OTU) richness,
Simpson index, Faith's Phylogenetic diversity, and
Abundance-based Coverage Estimators (ACE) index,
were used only 20-40%. For beta-diversity, the
UniFrac was the most commonly used assessed in 24
studies (Unweighted 17 studies and Weighted 16
studies), followed by Bray-Curtis dissimilarity (16
studies). All beta-diversity measures were used in a
similar quantity. Therefore, our findings have shown
that Shannon diversity is the most widely used alpha
diversity, while there is no predilection for beta
diversity.

The strength of our systematic review is that this
is the first systematic review reporting the choice of
gut microbiome diversity measurements in patients
with metabolic conditions. Moreover, we reported the
distinct characteristics, advantages, and disadvantages
of each microbiome diversity measurement method,
leading to various usage frequencies in metabolic
condition studies. However, there were several
limitations in this systematic scoping review. First,
this systematic scoping review aims to provide
evidence on the usage of gut microbiome diversity
measurement in metabolic disease studies; thus,
meta-analysis was not planned to perform. Second,
this study only focused on the gut microbiome
diversity measures in patients with metabolic
conditions. The generalizability should be considered
when applying the results in studies on other diseases.

No study conducted a systematic review reporting
the choice of gut microbiome diversity measurements
in patients with metabolic conditions. A microbiome
diversity index is an essential tool for diagnosing
metabolic disorders. Metabolic diseases reached
epidemic proportions and burdened world health
related tothe gut microbiome.> More than 500
individual research on the relationship between the
human microbiome and metabolic health have been
published.’? However, no study has indicated which
microbiome diversity tools should be used to obtain
these essential results. Therefore, we conducted
numerous literature reviews to conclude these
microbiome diversity tools inour systematic review

16
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Figure 5 The illustration depicting the definition of species
richness and evenness by showing the community "A" and
community "B." Communities were defined as circles. The
squares contained within each circle represented species of
organism, with each color representing a different species.
Community "A" and community "B" have the same species
richness, five species each. The organisms in community
"A" are more evenly distributed than in community "B"
(community "A" have greater evenness than community
"B").

and connect the information with our findings.

Alpha diversity is used to identify the richness
(number of taxonomic groups), evenness (distribution
of abundances of the groups), or both. There are three
subtypes of alpha diversity for estimation: richness
estimators, richness and evenness estimators, and
phylogenetic estimators. The difference between
these estimators is shown in online Supplementary
Table 2. Species richness refers to the number of
species present in a community, while evenness
compares the uniformity of the species' population
(Figure 5).

Shannon diversity was the most common alpha
diversity measurement of all included studies.
Shannon diversity is an example of the richness and
evenness estimators in which diversity's value
increases both when the number of species increases
and when evenness grows. The concept behind this
measure is that the more species seen, the more
evenly distributed their abundances are.®® It is a
measurement of entropy and the uncertainty of the
sampling  outcome. Shannon  diversity  also
contemplates the relative abundances of different
species.’* The advantages of Shannon diversity are
simplicity and appropriateness for the community
dominant by two or three species. However, Shannon
diversity weighs more on species richness which
causes measures of the character of the species
abundance distribution (evenness) to be less sensitive.

Another richness and evenness estimator is
Simpson's diversity. The advantage of Simpson's
diversity is simplicity, while the drawback is the
insensitivity of the species richness measurement.
Due to simplicity and ability to measure both richness
and evenness, Shannon's and Simpson's diversity are
widely used in all studies.>

Another type of estimator is the richness
estimator, which includes OTU richness, Chaol
index, and ACE index. OTU richness is defined as
the count of different species represented in a
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community. Similar to Shannon and Simpson's
diversity, the advantage of OTU richness is simplicity
which makes OTU richness in the top three of alpha
diversity measurement usage. However, the
disadvantage of OTU richness is the sensitivity to
sample size. In our study, the Chaol index was used
in 19 studies (40.4%) and the ACE index in 10
studies (21.3%). Richness estimators evaluate the
total richness of a community.’® Chaol and ACE
have been developed to estimate richness from
abundance data. They are indicators of species
richness that are sensitive to rare OTUs. Chaol is
based on the theory that rare species provide the most
information about the number of missing species,
which is helpful for rare species and performs
accurately if the sample size is reasonably large.
Therefore, Chaol index is handy for low-abundance
species, while underestimating rich and highly
heterogeneous species is the drawback.

Finally, phylogenetic diversity (PD) is defined as
connecting all organisms in a phylogenetic tree,
which estimates diversity across a tree and provides a
phylogenetic analog of taxonomic diversity.?” PD
provides a convenient, evolutionary measure of
diversity that does not depend on the ability to
identify species count, which ultimately leads to a
complex and relatively stable community of
microorganisms.*® PD was a more accurate predictor
of ecosystem function than species richness or the
number of functional groups, and it supported
functional diversity in explaining species richness
ecosystem function connections. Suppose the
intricacies are taken into account in future studies. In
that case, the impacts of Phylogenetic diversity have
the potential to conceptually unite the disparate

domains of community ecology, evolutionary
ecology, conservation biology, and ecosystem
ecology.*®

Beta-diversity in our research, including Unifrac
distance and Bray-Curtis dissimilarity, are similar in
usage quantities. "UniFrac" considers the phylo-
genetic relationships between the microbes found in
two samples (Similar to phylogenetic diversity),
which provides a convenient measure of diversity that
does not depend on the ability to identify species
count.*’ It estimates differences between samples or
groups based on phylogenetic distance. Unifrac
distance is divided into Unweighted and Weighted
Unifrac. Unweighted UniFrac is the fraction of
branch length between all microbes in both samples
that are different between the samples.***! Weighted
UniFrac is similar to Unweighted UniFrac but takes
the abundance of microbes in the samples into
account. The abundances of microbes broadly impact
weighted UniFrac, while Unweighted UniFrac does
not take abundance into account. Unweighted Unifrac
and Weighted Unifrac are used to determine whether
communities differed significantly. Unweighted
Unifrac is sensitive to detecting microbial richness
changes in rare species, while Weighted Unifrac can

incorporate abundance information and reduce the
rare species' contribution.

Bray-Curtis dissimilarity shows the microbes'
abundances which are shared between two samples.
Bray-Curtis dissimilarity quantifies the dissimilarity
between two samples or groups ranging from 0 to 1
which is not a true distance. For example, if both
samples have the same number of microbes at the
same abundance, their dissimilarity will equal zero.
On the other hand, the dissimilarity will equal one if
two samples have no shared microbes. The benefit of
Bray-Curtis dissimilarity is that it gives more weight
to common species. Moreover, Bray-Curtis
dissimilarity is simple and does not make
assumptions about genetic relationships.*?

The study of the microbiome in metabolic
conditions has become increasingly attractive in
recent years and has been conducted worldwide.
Additionally, there were emerging tools for assessing
the microbiome's diversity in clinical studies. The
primary consideration was that we should use the
appropriate diversity in the relevant research and a
manner consistent with the context of the resources.
In our study, we discussed each method's distinct
characteristics, advantages, and disadvantages for
measuring microbiome diversity. The complexity and
efficacy of various tools for microbiome analysis
were distinctive. In addition, the cost to analyze
varied between these measurements. Further
researchers studying metabolic conditions with
microbiome diversity measurements will have
objective evidence regarding the measurement
methods that are most rational in terms of simplicity,
cost, and efficacy for their studies.

How this fits in

Alpha- and beta-diversity are the two most diverse
measures of gut microbiota diversity, with no
consensus on which measurement methods should be
used in a metabolic condition study. This is the first
systematic scoping review that demonstrated distinct
characteristics, advantages, and disadvantages of each
microbiome diversity measurement method leading
to various usage frequencies in metabolic condition
studies. Further, physician-scientists interested in
metabolic conditions with microbiome diversity
measurement will have impartial evidence on which
measurement methods are most rationally appropriate
for their studies regarding simplicity, cost, and
efficacy.
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