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Supplementary File 1. Full search strategy

Set # PubMed Results
1 "gastrointestinal microbiome"[MeSH Terms] OR ((gut[tiab] OR intestin*[tiab] OR 89194
Gut gastrointestin*[tiab] OR colon*[tiab] OR rectal[tiab] OR rectum[tiab] OR stool[tiab]

Microbio  OR feces[tiab] OR faeces[tiab] OR fecal[tiab] OR faecal[tiab]) AND

me ("microbiota"[MeSH Terms] OR "mycobiome"”[MeSH Terms] OR

microbiome*[tiab] OR microbiota*[tiab] OR microbial[tiab] OR microbe*[tiab] OR
microflora*[tiab] OR flora*[tiab] OR microorganism*[tiab] OR pathobiont*[tiab]
OR mycobiome*[tiab] OR mycobiota*[tiab] OR virome*[tiab] OR
phylotype*[tiab])) OR enterotype*|[tiab]

2 diversit*[tiab] OR abundan*[tiab] OR richness*[tiab] OR evenness*[tiab] OR 489439
Diversity dissimilarit*[tiab]

3 #1 AND #2 16344
4 animals[MeSH Terms] NOT humans[MeSH Terms] 4682770
5 #3 NOT #4 11807
6 English[lang] 26086457
7 #5 AND #6 11634
8 "2019/01/01"[PDAT] : "2019/12/31"[PDAT] 1402266
9 #7 AND #8 3111
Set # Embase Results
1 ‘intestine flora/exp OR ((‘gut":ti,ab OR 'intestin*":ti,ab OR 'gastrointestin*":ti,ab OR 126127
Gut ‘colon*":ti,ab OR 'rectal"ti,ab OR 'rectum’.ti,ab OR 'stool"ti,ab OR 'feces'ti,ab OR

Microbiome ‘faeces"ti,ab OR ‘fecal':ti,ab OR 'faecal"ti,ab) AND (‘'microbiome/exp OR
'microflora’/exp OR 'mycobiome/exp OR 'microbiome*":ti,ab OR
'microbiota*"ti,ab OR 'microbialti,ab OR 'microbe*"ti,ab OR 'microflora*"ti,ab
OR ‘flora*":ti,ab OR 'microorganism*"ti,ab OR 'pathobiont*"ti,ab OR
'mycobiome*":ti,ab OR 'mycobiota*".ti,ab OR 'virome*"ti,ab OR 'phylotype*".ti,ab))
OR 'enterotype*":ti,ab

2 'diversit*"ti,ab OR 'abundan*"ti,ab OR 'richness*".ti,ab OR ‘evenness*".ti,ab OR 549572
Diversity 'dissimilarit*"ti,ab

3 #1 AND #2 21632
4 [animals]/lim NOT [humans]/lim 5765837
5 #3 NOT #4 13783
6 english:la 31021053
7 #5 AND #6 13542
8 [2019]/py 1585050
9 #7 AND #8 2536
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Set # CENTRAL Results
1 [mh “gastrointestinal microbiome'] OR ((gut:ti,ab,kw OR intestin*:ti,ab,kw OR 8915
Gut gastrointestin*:ti,ab,kw OR colon*:ti,ab,kw OR rectal:ti,ab,kw OR rectum:ti,ab,kw
Microbiome  OR stool:ti,ab,kw OR feces:ti,ab,kw OR faeces:ti,ab,kw OR fecal:ti,ab,kw OR

faecal:ti,ab,kw) AND ([mh microbiota] OR [mh mycobiome] OR

microbiome*:ti,ab,kw OR microbiota*:ti,ab,kw OR microbial:ti,ab,kw OR

microbe*:ti,ab,kw OR microflora*:ti,ab,kw OR flora*:ti,ab,kw OR

microorganism™*:ti,ab,kw OR pathobiont*:ti,ab,kw OR mycobiome*:ti,ab,kw OR

mycobiota*:ti,ab,kw OR virome*:ti,ab,kw OR phylotype*:ti,ab,kw)) OR

enterotype*:ti,ab,kw
2 diversit*:ti,ab,kw OR abundan*:ti,ab,kw OR richness*:ti,ab,kw OR 4452
Diversity evenness*:ti,ab,kw OR dissimilarit*:ti,ab,kw
3 #1 AND #2 1067
4 [mh animals] NOT [mh humans] 6950
5 #3 NOT #4 1051
6 #5 restrict publication year to 2019 282
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es for metabolic conditions: A systematic scoping review

Author Country Alpha-diversity Beta-diversity
ouT Shannon ACE index  Chao Simpson Fisher Piclou's ASV  Faith's Good inverse |unweighted — weighted Bray-Curtis
index eveness Phylogenetic coverage  simpson |UniFrac UniFrac distances
diversity distances Distance

Robinson Australia 0 1 0 1 0 0 0 0 0 0 0 0 0 1
Harbison Australiia 1 0 0 0 0 0 0 0 0 0 1 0 0 0
Horvath Austria 0 1 0 1 0 0 0 0 0 0 0 0 0 1
LiuT China 1 1 0 1 0 0 0 0 1 0 0 0 0 0
Lv China 1 1 1 1 1 0 0 0 0 1 0 1 1 0
Mushtaq China 1 1 1 1 1 0 0 0 0 1 0 0 1 0
Nuli a China 0 1 0 0 0 0 0 0 0 0 0 1 0 0
Nuli b China 0 1 1 1 1 0 0 0 0 0 0 0 0 0
Qiu China 0 1 0 1 1 0 0 0 1 0 0 0 1 1
Tao China 1 1 1 1 1 0 0 0 0 0 0 0 1 1
Wang China 0 1 1 1 0 0 0 0 1 1 0 1 1 0
Wu China 0 1 0 0 0 0 0 0 0 0 0 0 0 1
Xu China 0 1 1 0 1 0 0 0 0 0 0 1 1 1
Zhang China 0 1 0 0 0 0 0 0 0 0 0 1 0 0
Zhao China 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Zheng China 0 1 0 1 1 0 0 0 0 0 0 0 0 1
Zhou China 0 1 1 1 1 0 0 0 1 0 0 1 0 0
Zuo b China 0 1 0 1 0 0 1 0 0 0 0 0 0 0
Cuesta-Zuluaga Colombia 1 0 0 0 0 0 0 0 0 0 0 1 1 0
Kern Denmark 0 1 0 0 0 0 0 1 0 0 0 0 1 1
Salah Egypt 1 1 0 0 0 0 0 0 0 0 0 1 1 0
Olsson France 1 0 0 1 0 0 1 0 1 0 0 1 0 0
Seck France 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Frost Germany 0 0 0 0 1 0 0 0 1 0 0 0 0 1
Kellerer Germany 1 1 0 0 0 0 0 0 0 0 0 0 1 0
Ejtahed Iran 1 0 0 0 1 0 0 0 0 0 0 0 0 1
Conterno Italy 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Ponzo Italy 0 1 0 1 0 0 0 0 0 0 0 1 0 0
Uemura Japan 0 1 0 0 1 0 0 0 0 0 0 0 0 0
Vera Mexico 0 1 0 0 0 0 0 0 0 0 0 1 0 0
Bakker Netherland 0 0 0 0 0 0 0 0 1 0 0 0 1 0
vanBommel Netherland 0 1 0 0 0 0 0 0 1 0 0 0 0 1
Belkova Russia 0 1 1 1 1 0 0 0 0 0 0 0 0 0
Koo Singapore 0 1 0 0 1 0 0 0 0 0 0 0 0 1
Velikonja Slovenia 0 1 0 1 0 0 0 0 0 0 0 0 1 0
Kim South korea 0 1 0 0 0 0 0 1 1 0 0 1 1 1
Romo-Vaquero Spain 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Lin Taiwan 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Astbury United Kingdom 0 1 0 0 0 0 0 0 0 0 0 1 0 0
Faucher USA 1 1 0 0 0 1 0 0 0 0 1 1 1 0
Fei USA 1 1 0 1 0 0 0 0 0 0 0 1 1 0
Karvonen USA 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Maskarinec USA 0 1 0 0 0 0 0 0 0 0 0 1 1 0
Schwimmer USA 0 1 0 0 0 0 0 0 0 0 0 0 0 1
Shen USA 0 0 0 0 0 0 0 0 1 0 0 1 0 0
Stanislawski USA 0 1 0 0 0 0 0 0 1 0 0 0 0 0
Sun USA 0 1 0 0 0 0 0 0 0 0 0 0 0 1




Supplementary table 1. Characteristics of Included Studies

Income

Author Country Level WHO Regions Study design n Population Mean age (SD)
Robinson[1] Australia HICs Western Pacific | Observational 22 | 22 Obesity/Overweight with Ketonuria Med 33 (IQR 29-
38), without Med 32 (IQR 29-33)
Harbison[2] Australia HICs Western Pacific | Observational 88 | 47 T2DM, 41 Control Med 10.9 (Range 4.8-26.7)
Horvath[3] Austria HICs European RCT 26 | 26 T2DM with Obesity 60 (NR)
Liu T[4] China UMICs Western Pacific | Observational 6627 | 495 IFG, 304 T2DM, 51.8 (NR)
5828 Control
Lv[5] China UMICs Western Pacific | Observational 28 | 9 Overweight/Obesity, 22.03 (1.32)
10 Normal, 9 Lean
Mushtag[6] China UMICs Western Pacific | Observational 80 | 50 HT, 30 Control 61.8 (10.6)
Nuli a[7] China UMICs Western Pacific | Observational 60 | 20 T2DM, 20 Impaired glucose NR
regulation, 20 Control
Nuli b[8] China UMICs Western Pacific | Observational 561 | 145 T2DM, 138 IFG, 47.08 (10.43)
278 Control
Qiul9] China UMICs Western Pacific | Observational 55 | 28 Obesity, 27 Control 37.75 (12.54)
Tao[10] China UMICs Western Pacific | Observational 56 | 14 DN, 14 T2DM without DN, 50.84 (12.30)
28 Control
Wang[11] China UMICs Western Pacific | Observational 46 | 26 Obesity 20 Healthy 34.2 (10.1)
Wu[12] China UMICs Western Pacific | Observational 49 | 23 GDM, 26 Non-GDM GDM Mean 36 (IQR 32-38.5),
Non-GDM Mean 32.5 (IQR 30-35)
Xu[13] China UMICs Western Pacific | Observational 61 | 30 GDM, 31 Control 33.0 (4.5)
Zhang[14] China UMICs Western Pacific | Observational 180 | 130 T2DM, 50 Healthy 58.7 (9.4)
Zhao[15] China UMICs Western Pacific | Observational 58 | 25 Obesity with NAFLD, 13.7 (1.8)
18 Obesity only, 15 Healthy
Zheng[16] China UMICs Western Pacific | Observational 99 | 36 DLP, 63 Healthy 36 (NR)
Zhou[17] China UMICs Western Pacific | Quasi-exp 30 | 30 Obesity or Overweight 479 (5.4)
Zuo b[18] China UMICs Western Pacific | Observational 49 | 34 HT, 15 Healthy HT Med 54.5 (IQR 49.25, 57.75),
Healthy Med 58 (IQR 52, 60)
Cuesta- Colombia UMICs Americas Observational 441 | 30% Obesity (132), 41% Central | 41 (1)
Zuluaga[19] Obesity (180), 59% HT (259)
Kern[20] Denmark HICs European RCT 88 | 88 Overweight or Obesity Med 36 (IQR 30, 41)
Salah[21] Egypt LMICs Eastern Observational 60 | 25 Obesity with T2DM, 25 43.9 (13.3)
Mediterranean Obesity only,
5 T2DM only, 5 Control
Olsson[22] France HICs European Observational 58 | 34 Obesity, 24 non-Obesity 42.3 (16.3)
Seck[23] France HICs European Observational 56 | 17 Obesity, 39 Lean NR
Frost[24] Germany HICs European Quasi-exp 12 | 12 T2DM with Obesity 57.2 (NR)
Kellerer[25] Germany HICs European Quasi-exp 17 | 17 Morbid Obesity 41.8 (9.1)
Ejtahed[26] Iran UMICs Eastern RCT 36 | 36 Non-Diabetic Obese Woman | 36 (7)
Mediterranean
Conterno[27] Italy HICs European RCT 62 | 62 Hypercholesterolemia 48.5 (9.0)
Ponzo[28] Italy HICs European Observational 29 | 29 GDM Offspring 3-5 Day of Life
Uemura[29] Japan HICs Western Pacific | RCT 44 | 44 Obesity 62.7 (8.8)
Vera[30] Mexico UMICs Americas RCT 81 | 81 T2DM Range 30-60
Bakker[31] Netherlands HICs European Quasi-exp 20 | 10 Obesity with Metabolic 43.6 (17.2)
Syndrome, 10 Lean
vanBommel[32] Netherlands HICs European RCT 44 | 44 T2DM NR
Belkova[33] Russia UMICs European Observational 30 | 12 Obesity, 18 Normal weight 14.6 (1.6)
Koo[34] Singapore HICs Western Pacific | Observational 35 | 5 Metabolic Syndrome, 9 Med 39 (Range 22-70)
Obesity,
2 T2DM, 22 Central Obesity
Velikonja[35] Slovenia HICs European RCT 43 | 43 Metabolic syndrome/High 52.07 (7.71)
risk for Metabolic Syndrome
Kim[36] South Korea | HICs Western Pacific | Observational 766 | 313 NAFLD, 453 Control 44.9 (8.1)
Romo- Spain HICs European Quasi-exp 249 | 49 Obesity/Overweight, 42.6 (11.5)
Vaquero[37] 200 Healthy
Lin[38] Taiwan HICs Western Pacific | Observational 20 | 20 Obesity 37.11 (10.0)
Astbury[39] UK HICs European Observational 141 | 65 Biopsy-proven NASH, 64.19 (2.96)
76 Healthy
Faucher[40] USA HICs Americas Observational 21 | 15 Obesity, 6 Normal 29.7 (5.1)
Fei[41] USA HICs Americas Observational 655 | 229 Obesity, 149 Overweight, 34.9 (6.4)
277 Normal
Karvonen[42] USA HICs Americas RCT 502 | 149 Obesity, 353 Normal 3 (NR)




Maskarinec[43] USA HICs Americas Observational 1735 | 30.3% Obesity, 40.4% 69 (NR)
Overweight, 29.3% Normal

Schwimmer[44] USA HICs Americas Observational 124 | 87 Biopsy-proven NAFLD, NAFLD Med 12 (IQR 10,14),
37 Obesity without NAFLD Obesity without NAFLD Med 13

(IQR 11,14)

Shen[45] USA HICs Americas Observational 26 | 26 Severe Obesity NR

Stanislawski[46] USA HICs Americas Observational 152 | 103 Obesity, 49 Control 34.0 (12.2)

Sun[47] USA HICs Americas Observational 529 | 35.1% HT 55.3(3.4)

DLP, dyslipidemia; DN, diabetes nephropathy; GDM, gestational diabetes mellitus; HICs, high-income
countries; HT, hypertension; IFG, impaired fasting glucose; IQR, interquartile range; LMICs, lower-
middle-income countries; Med, median; NAFLD, nonalcoholic fatty liver disease; NR, not reported;
Quasi-exp, quasi-experimental; RCT, randomized controlled trial; SD, standard deviation; TLDM, type |
diabetes mellitus; T2DM, type Il diabetes mellitus; UMICs, upper-middle-income countries; WHO,
World Health Organization.
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Supplementary Table 2 The difference between each measure for alpha-diversity estimators and beta-diversity estimators

Diversity index Inventor Established year
ACE index Chao, A. and Lee, S.M. 1992
ASV richness N/A N/A
Chao index Anne Chao 1984
Faith's Phylogenetic diversity Faith. D.P. 1992
Fisher's index Fisher, R.A 1943
Alpha-
diversity Good's coverage Good. I.J 1953
Inverse simpson Edward Simpson 1949
OTU richness Robert R. Sokal and Peter H. A. Sneath 1963
Pielou's evenness Pielou, E. 1966
Shannon Claude Shannon 1948
Simpson Edward H. Simpson 1949
UniFrac distances Catherine Lozupone 2005
Beta- unweighted UniFrac distances Catherine Lozupone 2005
diversity | \yeighted UniFrac Distance Catherine Lozupone 2005
Bray-Curtis dissimilarity J. Roger Bray and John T. Curtis 1957




Diversity index

Description

ACE index Estimate diversity from abundance data
ASV richness The number of unique bacterial taxa measured by ASV methods
Chao index Estimate diversity from abundance data

Faith's Phylogenetic diversity

Measures of biodiversity that incorporates phylogenetic difference between species

Fisher's index

Relationship between the number of species and the abundance of each species

Good's coverage

Estimates the percent of an entire species that is represented in a sample

Alpha- | Inverse simpson The metric tells us the sum of squares of all abundance ratios
diversity | oTU richness The count of different species for the sample
Pielou's evenness Measure of relative evenness of species richness
Summarizes the diversity in the population while assuming all species are represented in a sample and they are randomly
Shannon sampled. The Shannon index increases as both the richness and evenness of the community increase. Influenced by rare OTUs
Calculate a measure of diversity taking into account the number of taxa as well as the abundance.
The simpson index gives more weight to common or dominant species which means a few rare species with only a few
Simpson representatives will not affect the diversity of the sample
UniFrac distances Estimates differences between samples or groups based on phylogenetic distance.
unweighted UniFrac distances Purely based on sequence distances (does not include abundance information)
Beta- . . . . . . . .
diversity weighted UniFrac Distance Branch lengths are weighted by relative abundances (includes both sequence and abundance information)

Bray-Curtis dissimilarity

Measure used to quantify the compositional dissimilarity between two samples or groups.
Its value ranges from O to 1, where 0 means that the two samples or groups share all species,
and 1 means that they do not share any.




Diversity index

Pros

Cons

Useful for rare OTUs/ very accurately and efficiently estimated as long as the

Underestimate if species rich and highly heterogenous

ACE index sample size is reasonably large assemblages

Outperformed the adopted OTU method concerning community diversity, Need high sequencing depth to capture the community
ASV richness especially for fungus-related sequences complexity

Useful for rare OTUs/ useful when there are many undetectable species in a Underestimate if species rich and highly heterogenous
Chao index highly diverse assemblege assemblages

Provide a comparable, evolutionary measure of biodiversity not possible with Lack of sequence data for vast majorityof species,
Faith's Phylogenetic species count and supported functional diversity in explaining species richness require a molecular lab with basic facillities and
diversity ecosystem function connections. sequencing cost can be high

Useful for examining the diversity within a group of individuals, rather than

Not particularly useful for evaluating the dominance or

Alpha- Fisher's index pooling together all samples in the group evenness of species
diversity Unbiased algorithmic technique for rarefying samples to a fixed Does not tell you whether there is evenness in the
Good's coverage sample coverage instead of a fixed size species abundance
Heavily weighted toward the most abundant species in
Inverse simpson Do not tend to be as affected by sampling effort as the shannon index the sample.less sensitive to species richness
OTU richness Simple, Easy to calculate Sensitive to sample size
Pielou's evenness More thorough description of a community's structure can be interpreted Evenness index that generally varied less in amplitude
Combines richness and evenness, widely used, easy to calculate, useful index for Insensitive measure of the character of the species
Shannon the communtiy which two or three species were dominant abundance distribution (evenness)
Heavily weighted toward the most abundant species in
Simpson Combines richness and evenness, widely used, easy to calculate the sample.less sensitive to species richness
Should not be used as a distance metric for multivariate
UniFrac distances Could be used to determine whether communities were significantly different statistical analyses.
unweighted UniFrac
Beta- distances Sensitive for detecting richness changes in rare species Ignores the abundance information in the computation.
diversity | weighted UniFrac Incorporates the abundance information and reduces the contribution of rare

Distance

species

N/A

Bray-Curtis
dissimilarity

Gives more weight to common species

not a real distance
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