

COMPARISON OF DIFFERENT PROCEDURES FOR THE DETERMINATION OF AMMONIUM IN SOIL EXTRACTS

Arawan Shutsrirung¹

การเปรียบเทียบวิธีการวัดแอม培เมตรวิ่งในสารละลายน้ำที่สกัดได้จาก ดินโดยวิธีต่างๆ

រវាងនេះ ជោរសីវាំង¹

ABSTRACT : A laboratory experiment was set up to determine the ammonium concentration in 0.01 M CaCl_2 soil extracts by three different procedures : an NH_3 - gas diffusion electrode, a Continuous Flow System (CFS) and High Pressure Liquid Chromatography (HPLC). The influence of time on the measured ammonium concentration when leaving the extracting solutions to stand was also tested. The NH_4^+ -nitrogen concentration in soil samples extracted with 0.01 M CaCl_2 and measured by a continuous-flow technique and HPLC gave almost equal values. The values obtained by measurement with a gas-diffusion electrode was slightly lower than those obtained by CFS in the soil samples dried at 40 °C but slightly higher than the samples dried at 105 °C. The analytical problems in the measurement of low NH_4^+ -nitrogen concentration using a gas - diffusion electrode is that these values do not differ statistically. The NH_4^+ -nitrogen concentration

¹ រាជធានីភ្នំពេញ និង នគរាមេដ្ឋាន បានរាយការណាមូលដ្ឋាន នគរាមេដ្ឋាន ផ្លូវ 50002.

¹ Department of Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50002, THAILAND.

in the soil extracts does not change during storage for at least 5 hours. The same result was found when this soil was shaken for only 30 minutes instead of the conventional 2 hours. The concentration of measured NH_4^+ was not influence by shaking time and standing time.

INTRODUCTION

The determination of NH_4^+ in soil samples is still problematic. The results of the NH_4^+ determination are varied due to analytical procedures. Moreover, the conditions such as drying temperature of the soil and time of measurement after extraction may influence the results. It was assumed that when soil extracts are measured at high pH more NH_4^+ might be found due to hydrolysis of organic nitrogen in the extracts during measurement. The study of Bogdanovic (1989) proved that the ammonium concentration was higher at high drying temperature (105°C) than at low drying temperature (40°C). She concluded also that the ammonium concentration was higher when using a continuous flow system (spectrophotometric, CFS) than using a chromatographic detection procedure. Villalobos (1989) reported that 0.01 M CaCl_2 soil extracts could be analyzed for ammonium concentration by using the ammonium gas-selective electrode when the concentrations is higher than 3×10^{-6} M which equals 0.42 mg NH_4^+ -nitrogen per kg dry soil.

The aim of this study is to compare the ammonium concentration in 0.01 M CaCl_2 soil extracts by 3 different procedures : an ammonium-gas diffusion electrode, a CFS and high pressure liquid chromatography (HPLC). The influence of time the measured NH_4^+ concentration on stand leaving the extracting solutions was also tested.

MATERIALS AND METHODS

Soil samples

Six soil types in the surrounding of Wageningen, The Netherlands, were selected. The soil types differed in chemical and physical properties. The name of the soil types are as follows:

Veenendaal : a peat soil, Uiterwaarden : a calcareous river clay soil, Droevedaala : a sandy soil, Engsoil : a sandy soil rich in phosphate, Nude soil : a river clay soil, and Heide : a poor sandy soil.

After mixing, each soil sample was divided into two parts : first part was dry at 40 °C (with ventilation) and the other part at 105 °C. Thereafter the dry soil samples were thoroughly mixed and ground to the fraction < 2 mm.

Extraction

Eight g of each soil sample was weighted out and placed into 100 ml centrifuge tubes. Then 80 ml of 0.01 M CaCl_2 was added. After adding the extracting solution, the soil samples were shaken immediately at room temperature for 2 hours. After shaking, the centrifuge tubes were centrifuged for 10 minutes at 2000-2200 rpm.

Procedure

Clear supernatant were used for the determination of ammonium by :

Measurement of NH_4^+ with an NH_3 -gas diffusion electrode

1. The standard series had NH_3 concentration of 10^{-6} , 3×10^{-6} , 10^{-5} , 3×10^{-5} , 3×10^{-4} and 1×10^{-3} M.
2. 50 ml of the standard series as well as the clear supernatant (soil extracts) were used for the measurement.
3. The electrical potential for each sample was recorded at 0.5 minute intervals during a period of 5 minutes. Each standard solution and soil extracts was measured at least in duplicate. Since the readings were not steady, the values were chosen when the variation of potential was 1 mv/30 seconds, both for the standard series and soil extracts.

Measurement of NH_4^+ with a CFS of ammonium were done by Mr. Heij, Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The Netherlands. Briefly procedures are as follows: NH_4^+ was determined

spectrophotometrically with the Berthelot reaction, in which a phenol derivative formed and azodye in the presence of hypochlorite and salicylate. The extinction of the formed indophenol blue complex was measured at 660 nm and was in relation to the concentration of the ammonia.

Measurements of NH_4^+ with HPLC were done by Department of microbiology, Wageningen Agricultural University, The Netherlands. Principles of the measurement are as given by Hasset (1982).

RESULTS AND DISCUSSION

Ammonium concentration measured by ammonium gas-selective electrode and CFS.

Six soil samples were extracted in duplicate. 50 ml of each clear extract was pipetted to be measured with the ammonium gas-selective electrode. From the same extracts, another 15 ml was pipetted and analysed by using CFS. The results from ammonium gas-selective electrode and CFS methods are given in Table 1.

The results from Table 1 (40 °C) show that most of the values obtained with CFS are higher than the values obtained with the ammonium gas-selective electrode.

The results from Table 1 (150 °C) show that, however, most of the values obtained with the ammonium gas-selective electrode are higher than that obtained with CFS except for the Droevedaal soil.

Table 1. NH_4^+ -nitrogen concentration in soil samples extracted with 0.01 M CaCl_2 soil extracts as measured by an ammonium gas-selective electrode and CFS.

Soil samples	NH_4^+ -nitrogen conc. (mg N/kg oven-dry soil)				
	Gas electrode		CFS		
	Replication 1	Replication 2	Replication 1	Replication 2	
Dried at 40 °C					
Veen.	1.24	1.25	1.96	2.06	
Uiterw.	1.54	1.68	1.94	2.55	
Droeven.	2.21	2.18	2.41	2.41	
Eng.	4.62	5.23	5.86	5.56	
Nude.	3.39	3.18	3.26	3.37	
Heide	5.24	5.42	5.83	5.83	
Dried at 105 °C					
Veen.	16.59	16.44	13.55	13.45	
Uiterw.	17.60	18.98	15.76	16.46	
Droeven.	5.33	5.89	6.11	6.11	
Eng.	12.90	12.56	11.72	11.52	
Nude.	12.09	11.95	10.94	10.94	
Heide	10.38	11.25	10.32	10.62	

Influence of time on the ammonium concentration

The Heide soil dried at 40 °C was chosen for this study. Eleven sub samples of this soil were extracted and the shaking time was 2 hours. After centrifuging, the soil extracts were measured at different time intervals using the gas-diffusion electrode according to the procedure described before. The initial measurement was made at 15 minutes after centrifuging and there after using 30 minutes time interval. The results from Table 2 show that there is hardly any influence of time (up to about 5 hours) on the ammonium concentration in the soil extracts. Therefore, it can be concluded that the soil extracts can be stored at room temperature up to approximately 5 hours (after extraction) without any change in the ammonium concentration.

Table 2. Influence of time on the ammonium concentration in soil extracts. (Shaking time 2 hours).

Time after centrifuging (min.)	NH_4^+ concentration mg N/kg oven dry soil
0	5.21
15	5.35
45	4.65
75	5.42
105	4.86
135	4.76
165	5.17
195	4.96
225	5.18
255	5.46
285	5.63

Influence of time and shaking time on the ammonium concentration.

The Heide soil dried at 40 °C and 105 °C were used. Eleven sub samples for each drying temperature were extracted. The shaking time was 30 minutes instead of 2 hours. After centrifuging, the clear supernatants for all soil samples were pipetted into clean vessels and then well closed with a covers. The first measurement was made at 15, and thereafter 30 minutes time interval. The results are given in Table 3.

It clearly show that there is no influence of shaking time (2 hours) and standing time on the measure NH_4^+ -nitrogen concentration in the Heide soil (Table 2 and 3).

Table 3. Influence of shaking time and waiting on the ammonium concentration (Shaking time 30 minutes).

Time after centrifuging (min.)	NH_4^+ conc. (mg N/kg soil)	
	Heide 40 °C	Heide 105 °C
0	4.93	9.67
15	4.94	10.94
30	4.85	10.24
60	4.94	11.22
90	5.00	10.66
120	5.49	11.36
150	5.07	10.66
180	5.21	10.80
210	5.07	11.36
240	4.93	11.36
270	5.14	11.22

Comparision of the ammonium concentration measured by CFS and HPLC.

Veen. 105 °C

Uiterw. 105 °C

Heide 105 °C

Veen. 40 °C

Uiterw. 40 °C

Heide 105 °C

Standard solution of 3×10^{-5} M NH_3

The Veen. 105 °C, Uiterw. 105 °C, Heide 105 °C, Veen. 40 °C, Uiterw. 40 °C and Heide 105 °C soil samples were extracted with 0.01 M CaCl_2 . The shaking time was 2 hours. After centrifuging, 20 ml of the clear supernatant was pipetted into 100 ml erlenmeyer flasks and measured by CFS. Another aliquot of the same soil extracts was pipetted and measured by HPLC. Since the measurement by HPLC took very long time (greater than 20 hours), all the soil extracts were measured again with CFS on the day after the extraction. The results are given in Table 4,

Comparison of Different Procedures for the Determination of Ammonium in Soil Extracts

in general, there is no difference between the NH_4^+ concentration value obtained by both methods. The NH_4^+ concentrations measured by CFS on the day of the extraction and one day after the extraction are equal, with exception for Veen soil dried at 40 °C. This is thought to be a wrong value.

Table 4. Comparision of NH_4^+ concentration between CFS and HPLC.

Samples	NH_4^+ conc. (mg N/kg soil)		HPLC	
	CFS			
	first day	second day		
Veen. 105 °C	11.65	12.00	12.93	
Uiterw. 105 °C	15.66	15.96	17.29	
Heide. 40 °C	10.02	10.22	10.98	
Veen. 40 °C	1.75	4.08	1.14	
Uiterw. 40 °C	1.54	2.06	1.04	
Heide. 40 °C	5.23	5.33	4.37	
Stand. 3×10^{-5}	-	-	2.84×10^{-5}	

ACKNOWLEDGEMENTS

The author wish to express her appreciation to Dr. V.J.G. Houba and Dr. I. Novozamsky of the Agricultural University, Wageningen, The Netherlands for their supervision and encouragement during the entire experiment.

REFERENCES

Bogdanovic, D. (1989). Influence of drying temperature and drying conditions on extractable nutrients and elements by 0.01 M CaCl_2 . Master Thesis, Agric. Univ. Wageningen, The Netherlands, 39p.

Hasset, J.J. (1982). High-pressure liquid chromatography. In : Methods of Soil analysis, part 2. Page *et al.* (eds.) Soil Science Society of America, Inc. pp 123-131.

Shao Xiao Hou. (1988). Aspects of the study of 0.01 CaCl_2 as extracting solution for different N fractions in soils. Master Thesis, Agric. Univ. Wageningen The Netherlands, 55p.

Villalobos-Penalosa, M. (1989). Standardization of the use of an ammonia gas-selective electrode to determine low concentrations of ammonium. Minor Thesis, Agri. Univ. Wageningen, The Netherlands, 13 p.
