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Inspection of Spongy Tissue in ‘Namdokmai Sithong’ Mango Fruit

by Near Infrared Spectroscopy
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Abstract: This study aimed to apply near infrared spectroscopy (NIRS) to investigate spongy tissue
symptom in ‘Namdokmai Sithong’ mango. Spectral data were acquired from healthy (1,470 points) and
spongy (97 points) tissues from 163 mango fruits prior to developing training models using artificial neural
network (ANN). The ANN models were thereafter tested for their efficacies using K-fold cross validation to
predict healthy and spongy tissues of mangoes. The results indicated that spectral data of a short-wave
near infrared (12500 - 9000 c¢cm™ or 800 - 2500 nm) preprocessed by second derivative provided the
highest coefficient of determination (R%) during model training and validating; 0.60 and 0.75, respectively.
The ANN model also provided high accuracy for predicting healthy and spongy tissues; 99.32 and 73.68
percent, respectively. Therefore, NIRS combined with ANN might be a possible nondestructive technique

for inspecting spongy tissue in 'Namdokmai Sithong' mango.
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2019) wana N feinsldmaiadiefBunien
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(internal disorders) 184HARNANIIN TAIWBATNT 1S
nanetila laun n1smadeneansidnivesialowin
njﬁu WUTN UWUIUAA83A283T Linear discriminant
analysis (LDA) waz partial least squares discriminant
analysis (PLS-DA) g@1snsaauunte 90.1 wlafifust
(Takizawa et al., 2014) N1TATIRAALAINTIE A
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Figure 1. Longitudinal section of 'Namdokmai Sithong' mango fruit with healthy tissue (A), fruit with spongy

tissue (B), healthy tissue (C), and spongy tissue (D)
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Figure 2. Area meshing (A) and spectral collection using a solid probe of MPA FT-NIR spectrometer (B)
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Figure 3. Average spectra of healthy and spongy tissues, scanned on the outside of fruits, obtained from

'Namdokmai Sithong' mango

187



M5A19NAT 39(2): 183 - 195 (2566)

arnnasiAsvddeayaailnniudoy
aa | P A o & a
5t ngdszaminenwenunelleUniuas
Wl ueaNziag WU gaulnmsudaaaNeng
ARLAUTBILH T UNI1LTA (12500 - 9000 cm’’

w38 800 - 1100 nm) e nufuusefssaywus

Fusuandliuuusians HAduilsz@nanas-
Nansaun (coefficient of determination: R?) ua e
INAEITRIAITNARTIALARBURFIA0L0RE
(root mean square error: RMSE) mQQﬁJ@HQIuﬂ; ]
training WiNAy 0.60 WAL 0.16 AMNANAL WATN AN
R*war RMSE 2189923 alugn validating winriu
0.75 Az 0.13 ANAAL wuuanaadlnedalase
dradsrarnienaesdayade training Lazgn
validating grunsiunsienalnfldaanu-
L WINAY 99.41 waz 99.32 Wlafidus AauaAL
Lagyaunganiafalnseldaanuuty Wy
60.26 Way 73.68 Wafidus nauatay (Table 1)
AAARRINLIIUIAURY Gabriéls et al. (2020)
fldgdrenauuasinaaiulduaziafaunsisn
mwmmﬁluﬁzu (visible and short wave near
infrared: Vis/SWNIR) luda3a218819AAY 300 -
1100 nm miqfﬂm‘ﬂun’]ﬂﬁmﬁ@ai’mm (internal
browning) 184N TN 4R UT Keitt Tneafiquuy
a1neelasadnalszaniian Nan1INAAL S
wuq1 Aaaananaldanuuiulun1inunenisiia
Heduniananndn 80 wefdus deaunsn
lfaruunpmuatnaasnzilagld Wumaaiy
ITUIFEURY Mogollon et al. (2020) 7149 Vis/SWNIR
Lﬁ@mmmumﬂﬁmmmw’f‘:@iuiﬂﬁwﬁm
(jelly seed) LAZaINIT I A (black flesh) 124

HANTHNWUE Keitt ud9a i Line Inediasey

ﬁ@yj@mﬂﬂm%’uﬁqﬁfﬁ logistic regression analysis
(LRA) e linear discriminant analysis (LDA) K&
NIINAADINLIT WLLANAANTUEUAIN1TD
mmmummaﬁaiuln@”mﬁmmefmﬂﬂﬁwﬁ
geenriaeldfszdunannunul sy 80
afidust

188

N133LAIEWNITaFINLATNAGA L LU L
A1883 ANNa ndaygadidnafumaanenn
pAUE Y0 aFAauN 31190 (9000 - 4000 cm’
138 1100 - 2500 nm) L&A1 b F LA uINLULANaD
Imﬂ%’@uﬁuﬁﬁuﬁuuﬁ'uﬁlﬁﬂfu wrsalne iy
‘Lﬁmmuﬁugqﬁqm TnafiAn R® uaz RMSE 299
daya training WU 0.41 4AT 0.21 AMNANAL UAE
HA1 R® uay RMSE 2189993a validating iy
0.53 uaz 0.19 mua1AL wuuanaealaedalasedng
ﬂixmmﬁﬂummﬁ"ﬂ%ﬂ@ training LAY validating
a1u1s0% e Al nFTE A N LY WAy
98.13 uaz 98.64 tlafidus nuansu adnlsiniu
LA IYNEa TN FUNLIAN ALY
Andn 40 11l e F18us (Table 2) HANITINAAD Y
AINA1IRAAAARBINU Raghavendra et al. (2021)
‘Vlﬂﬂ'izmmﬂﬂj near infrared spectroscopy (NIRS)
42921 BN AR 673 - 1900 nm LReATIAAaL
mwmmﬂmﬂ‘lwmu mqwummﬂm‘l}m
LATHANATANEAINUIN RAIINENIARUILHT
673 - 1100 nm A21u @1 N190lUN1TATIAdBY
AR avnanialuresnzdasuanndnfinanu-
419AAUTEMING 1100 - 1900 nm ANNKANITNAADS
wanaalfifiudinisldaanuananauaialunis-
nraadauAN@eriante luresnsiaalafnu-
wiupndnnsldAuenaAAudL esanaay
F94ANNEIIARUENITNFINUANNINTI9AY -
a1anaudu s lAauamsalunnmzgnzaneen
(Workman and Burns, 2001)



msasragauaInsidalnsslunanzssissnugiinanlldanas
v - da -
menasaunsusaalninsalnil

Table 1. Training and validating results of artificial neural network (ANN) using short-wave near infrared

spectra for predicting healthy and spongy tissues in 'Namdokmai Sithong' mango

Pre-
Training (n = 1254) Validating (n = 313)
treatment
Original R’ 0.52 R’ 0.57
RMSE 0.18 RMSE 0.18
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1168 (99.32 %) 8(0.68 %) Healthy 291 (98.98 %) 3(1.02 %)
(Accuracy) (Accuracy)
Spongy 46 (59.74 %) 31 (40.26 %) Spongy  10(50.00 %) 10 (50.00 %)
First R’ 0.51 R’ 0.51
derivative RMSE 0.17 RMSE 0.16
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1167 (99.24 %) 9(0.77 %) Healthy 291 (98.98 %) 3(1.02 %)
(Accuracy) (Accuracy)
Spongy 30 (38.46 %) 48 (61.54 %) Spongy 5 (26.32 %) 14 (73.68 %)
Second R 0.60 R’ 0.75
derivative RMSE 0.16 RMSE 0.13
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1169 (99.41 %) 7 (0.60 %) Healthy 292 (99.32 %) 2 (0.68 %)
(Accuracy) (Accuracy)
Spongy 31(39.74 %) 47 (60.26 %) Spongy 5 (26.32 %) 14 (73.68 %)
SNV R 0.41 R’ 0.40
RMSE 0.19 RMSE 0.19
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1172 (99.66 %) 4(0.34 %) Healthy 292 (99.32 %) 2 (0.68 %)
(Accuracy) (Accuracy)
Spongy 49 (62.82 %) 29 (37.18 %) Spongy 10 (52.63 %) 9 (47.37 %)
MSC R 0.45 R 0.37
RMSE 0.19 RMSE 0.20
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1171 (99.58 %) 5(0.43 %) Healthy 292 (99.32 %) 2 (0.68 %)
(Accuracy) (Accuracy)
Spongy 51 (65.39 %) 27 (34.62 %) Spongy 14 (73.68 %) 5(26.32 %)

Remarks: R = coefficient of determination, RMSE = root mean square error; SNV = standard normal variate; MSC = multiplicative scatter

correction
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Table 2. Training and validating results of artificial neural network (ANN) using long-wave near infrared

spectra for predicting healthy and spongy tissues in 'Namdokmai Sithong' mango

Pre-
Training (n = 1254) Validating (n = 313)
treatment
Original R’ 0.31 R’ 0.31
RMSE 0.21 RMSE 0.21
Predicted Predicted
Confusion Actual Confusion Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1169 (99.41 %) 7 (0.60 %) Healthy 289(98.30%) 5(1.70 %)
(Accuracy) (Accuracy)
Spongy 62 (79.49 %) 16 (20.51 %) Spongy  16(84.21%)  3(15.79 %)
First R’ 0.41 R’ 0.53
derivative RMSE 0.21 RMSE 0.19
Predicted Predicted
Confusion  Actual Confusion  Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1154 (98.13 %) 22 (1.87 %) Healthy 290 (98.64 %) 4 (1.36 %)
(Accuracy) (Accuracy)
Spongy 52 (66.67 %) 26 (33.33 %) Spongy  12(63.16 %) 7 (36.84 %)
Second R’ 0.51 R 0.41
derivative RMSE 0.18 RMSE 0.20
Predicted Predicted
Confusion  Actual Confusion  Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1172 (99.66 %) 4(0.34 %) Healthy 290(98.64 %) 4 (1.36 %)
(Accuracy) (Accuracy)
Spongy 41 (52.56 %) 37 (47.44 %) Spongy  12(63.16 %) 7 (36.84 %)
SNV R 0.22 R’ 0.16
RMSE 0.23 RMSE 0.24
Predicted Predicted
Confusion  Actual Confusion  Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1171 (99.58 %) 5(0.43 %) Healthy 293 (99.66 %) 1(0.34 %)
(Accuracy) (Accuracy)
Spongy 75 (96.15 %) 3(3.85 %) Spongy  19(100.00%)  0(0.00 %)
MSC R 0.38 R 0.43
RMSE 0.21 RMSE 0.21
Predicted Predicted
Confusion ~ Actual Confusion ~ Actual
Healthy Spongy Healthy Spongy
matrix matrix
Healthy 1163 (98.90 %) 13 (1.1 %) Healthy 292(99.32 %) 2 (0.68 %)
(Accuracy) (Accuracy)
Spongy 64 (82.05 %) 14 (17.95 %) Spongy 18 (94.74 %) 1(5.26 %)

Remarks: R® = coefficient of determination, RMSE = root mean square error; SNV = standard normal variate; MSC = multiplicative
scatter correction
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Table 3. Training and validating results of artificial neural network (ANN) using near infrared spectra for

predicting healthy and spongy tissues in '"Namdokmai Sithong' mango

Fre- Training (n = 1254) Validating (n = 313)
treatment
Original 3 0.52 R 0.25
RMSE 0.18 RMSE 0.23
Confusion Actual Predicted Confusion Actual Predicted
matrix Healthy Spongy matrix Healthy Spongy
(Accuracy) Healthy 1172(99.66%)  4(0.34%)  (Accuracy) Healthy 291(98.98%)  3(1.02%)
Spongy 49 (63.64%) 28 (36.36%) Spongy 16 (80.00%) 4 (20.00%)
First R’ 0.46 R’ 052
derivative RMSE 0.19 RMSE 0.17
Confusion Actual Predicted Confusion Actual Predicted
matrix Healthy Spongy matrix Healthy Spongy
(Accuracy) Healthy 1173(99.75%)  3(0.26%)  (Accuracy) Healthy 294 (100.00%) 0 (0.00%)
Spongy 52 (66.67%) 26 (33.33%) Spongy 10 (52.63%) 9 (47.37%)
Second R’ 0.40 R’ 0.37
derivative RMSE 0.21 RMSE 0.21
Confusion Actual Predicted Confusion Actual Predicted
matrix Healthy Spongy matrix Healthy Spongy
(Accuracy) Healthy 1161(98.72%) 15(1.28%) (Accuracy) Healthy 289 (98.30%) 5 (1.70%)
Spongy 52 (66.67%) 26 (33.33%) Spongy 11 (57.90%) 8 (42.11%)
SNV R’ 0.45 R’ 0.54
RMSE 0.20 RMSE 0.18
Confusion Actual Predicted Confusion Actual Predicted
matrix Healthy Spongy matrix Healthy Spongy
(Accuracy) Healthy 1173(99.75%)  3(0.26%)  (Accuracy) Healthy — 293(99.66%)  1(0.34%)
Spongy 57 (73.08%)  21(26.92%) Spongy  13(68.42%)  6(31.58%)
MSC R’ 0.45 R’ 0.38
RMSE 0.19 RMSE 0.19
Confusion Actual Predicted Confusion Actual Predicted
matrix Healthy Spongy matrix Healthy Spongy
(Accuracy) Healthy 1170(99.49%)  6(0.51%)  (Accuracy) Healthy 294 (100.00%) 0 (0.00%)
Spongy  48(61.54%)  30(38.46%) Spongy  10(52.63%)  9(47.37%)
Remarks: R’ = coefficient of determination, RMSE = root mean square error; SNV = standard normal variate; MSC = multiplicative

scatter correction

192



msasragauaInsidalnsslunanzssissnugiinanlldanas

maeilasaunssaaininsalnil

G
N199LATIZUNTAFIILATNARDL L LA AD
Tasvtnetlszaninanandeyailosaunssasnln-
M3alnTlualnasudaaAINENIARLEND LATTY
ANNNENIAALTIINNA ANNN9DATRARLIAINN9 RTINS

IARszAUAIMNBLNUABUT AN e UA e T

aunsenglningalnilualnmsugaaniue1nAf

du nuuanaadlasetnalszaninanaaaiia s

funssaadninsaindluaidnmsudaemanuena
panduAatiaoudulUIdlunsiun 14 nsase
aninifeinsslunanzaisoiuginnenli@dnes
Bnaenuided desnunsasiiundunuanialy
miwmmf;ﬁmimqamummwmﬂnmmqmifmm
A | VBINANE mqwuﬁmmﬂimmmim@nmﬂ

naAnssNUsznA

we78uAN AuTuinnssnmaTuladnds

N9 fiuiAee N9ENgIN1gANANET INeAART

AquazUTANIIN ﬁmﬁmwunuﬁ@"ﬂ 18U A
Auisowmalulafudaniaiofes arandefeaon
nipdTRgAtanfuazlgiAans uazieljuin
NNINAN AUZINEAIANEAT NN aenTealun
ﬁlmﬁumuﬁmqﬂmmj wisesiladnenAnans uaz
an i lunainAde

LANAITRN9D

Boonyakiat, D. 2020. Nondestructive examination
of produce quality with near-Infrared
spectroscopy. pp. 1-12. In: D. Boonyakiat

Using NIR

Spectroscopy to Evaluate Agricultural

and P. Theanjumpol (eds.).

Produce Quality. Postharvest Technology
Innovation Center, Bangkok. (in Thai)
N., D.

Noimanee and P. Theanjumpol.

Chaipanwiriyaporn, Boonyakiat, P.

2012.

193

Detection of pineapple fruit internal
browning by near infrared spectroscopy.
Agricultural Science Journal 43(Suppl. 3):
477-480. (in Thai)

de Freitas, S.T. and E.J. Mitcham. 2012. Factors
involved fruit

disorders. pp. 107-146. In J. Janick (ed.).

Horticultural Reviews: Volume 40. John

in calcium deficiency

Wiley & Sons, Inc., Hoboken.
2011.

Application of artificial neural network in

Debska, B. and B. Guzowska-Swider.
food classification.
Acta 705: 283-291.
Gabriéls, S.H.E.J., P. Mishra, M.G.J. Mensink, P.
Spoelstra and E.J. Woltering. 2020. Non-
destructive

Analytica Chimica

measurement of internal

browning in mangoes using visible and

near-infrared spectroscopy supported
by artificial neural network analysis.
Postharvest Biology and Technology

166: 111206, doi: 10.1016/j.postharvbio.
2020.111206.
R.T., B.P. Walimbe, B.P. Lad and V.P.

Limaye.

Gunjate,

1982. Development of internal
breakdown in Alphonso mango by post
harvest exposure of fruits to sunlight.
Science and Culture 48: 188-190.

Joshi, G.D. and V.P. Limaye. 1986. Effects of tree
location and fruit weight on spongy tissue
occurrence in Alphonso mango. Journal
of Maharashtra Agricultural Universities
11: 104-109.

Katrodia, J.S.
causes and control

Horticulturae 231: 814-826.

J.S. |.K. Seth. 1988. Spongy

tissue development in mango fruit of

1988. Spongy tissue in mango-—

measures. Acta

Katrodia, and

cv. Alphonso in relation to temperature and



M5A19NAT 39(2): 183 - 195 (2566)

Maniwara,

its control. Acta Horticulturae 231: 827-
834.

Kittiwachana, S. 2020. Chemometrics for NIR

spectroscopy. pp. 48-100. In: D.
Boonyakiat and P. Theanjumpol (eds.).
Using NIR Spectroscopy to Evaluate
Agricultural Produce Quality. Postharvest
Technology Innovation Center, Bangkok.
(in Thai)

P., K. Nakano, D. Boonyakiat, S.
Ohashi, M. Hiroi and T. Tohyama. 2014.
The use of visible and near infrared
spectroscopy for evaluating passion fruit
postharvest quality. Journal of Food

Engineering 143: 33-43.

Maniwara, P., K. Nakano, S. Ohashi, D. Boonyakiat,

and P.
Poonlarp. 2019. Evaluation of NIRS as

P. Seehanam, P. Theanjumpol

non-destructive test to evaluate quality
traits of purple passion fruit. Scientia
Horticulturae 257: 108712, doi: 10.1016/j.
scienta.2019.108712.

Mogollon, R., C. Contreras, M.L. da Silva Neta,

E.JN. Marques, J.P. Zoffoli and S.T.
de Freitas. 2020. Non-destructive prediction
and detection of internal physiological
disorders in 'Keitt' mango using a hand-
held Vis-NIR spectrometer. Postharvest
Biology and Technology 167: 111251,
doi: 10.1016/j.postharvbio.2020.111251.

Ozaki, Y. and C. Huck. 2020. Introduction. pp.

3-10. In: Y. Ozaki, C. Huck, S. Tsuchikawa
and S.B. Engelsen (eds.). Near-Infrared
Spectroscopy: Theory, Spectral Analysis,
and

Instrumentation, Applications.

Springer Nature Singapore Pte. Ltd.,

Singapore.

194

Pohsomboon, M. and T. Radanachaless. 2013.

Commercial Thai mango cultivars. pp.
157-190. T. W.

Kumpoun and T. Jaroenkit (eds.). Mango-

In: Radanachaless,
Production and Postharvest Technology.
Postharvest Technology Innovation Center,
Bangkok. (in Thai)

Raghavendra, A., D.S. Guru and M.K. Rao. 2021.

Mango internal defect detection based on
optimal wavelength selection method
NIR Artificial

Intelligence in Agriculture 5: 43-51.

using spectroscopy.

Ravindra, V. and S. Shivashankar. 2004. Spongy

Rittiron,

tissue in Alphonso mango - significance
of in situ seed germination events.
Current Science 87(8): 1045-1049.

R., L. Aomsin, B. Thongsongsom, S.
Pochanagormn and S. Narongwongwattana.
2014. Worms detection within fresh okra for
exporting by near infrared technique.
Agricultural Science Journal 45(Suppl.

3/1): 309-312. (in Thai)

Shivashankar, S. 2014. Physiological disorders of

Subedi,

mango fruit. pp. 313-347. In: J. Janick
(ed.). Horticultural Reviews: Volume 42.
John Wiley & Sons, Inc., Hoboken.

P.P., K.B. Walsh and G. Owens. 2007.
Prediction of mango eating quality at
harvest using short-wave near infrared
spectrometry. Postharvest Biology and
Technology 43(3): 326-334.

Takizawa, K., K. Nakano, S. Ohashi, H. Yoshizawa,

J. 2014.

Development of nondestructive technique

Wang and Y. Sasaki.
for detecting internal defects in Japanese
radishes. Journal of Food Engineering

126: 43-47.



msasragauaInsidalnsslunanzssissnugiinanlldanas

maeilasaunssaaininsalnil

Theanjumpol, P. 2017. Application of near infrared

spectroscopy for detection of pesticide

residues in agricultural produce.
Postharvest Newsletter 16(3): 5-7. (in Thai)
Theanjumpol, P., G. Self, R. Rittiron, T.

Pankasemsuk and V. Sardsud. 2014.
Quality control of mango fruit during
postharvest by near infrared spectroscopy.
Chiang Mai University Journal of Natural
Sciences 13(2): 141-157.

Theanjumpol, P., R. Suwapanich and V. Sardsud.
2008. Responsibility of chilling injury in

mango cv. Nam Dok Mai Si Thong on

near infrared. Agricultural  Science
Journal 39(Suppl. 3): 58-61. (in Thai)
Vasanthaiah, H.K.N., K.V. Ravishankar, P.

Narayanaswamy and K.S. Shivashankara.
2008. Influence of temperature on spongy
tissue formation in ‘Alphonso’ mango.
International Journal of Fruit Science 8(3):
226-234.
Wongzeewasakun, K., V. N.

Muenmanee and P. Theanjumpol. 2017.

Changrue,

Possibility of using near infrared
spectroscopy technique to detect dry
juice sac of mandarin cv. Sai Nam Pueng.
Agricultural Science Journal 48(Suppl. 3):

295-298. (in Thai)

Workman, J.J. and D.A. Burns. 2001. Commercial
NIR pp. 53-70.
D.A. Burns and E.W. Ciurczak (eds.).

Handbook of Near-Infrared Analysis. 2"

instrumentation. In:

ed. Marcel Dekker, Inc., New York.
Yahia, E.M. 2011. Mango (Mangifera indica L.).
pp. 492-567. E.M. Yahia (ed.).

Postharvest Biology and Technology of

In:

Tropical and Subtropical Fruits.
Woodhead Publishing, Cambridge.

Yahia, E.M., A. Carrillo-Lopez and A. Safiudo.
2019. Physiological disorders and their
control. pp. 499-527. In: E.M. Yahia (ed.).
Postharvest Technology of Perishable
Horticultural Commodities. Woodhead
Publishing, Cambridge.

Zhou, Z., S. Zeng, X. Li and J. Zheng. 2015.
Nondestructive detection of blackheart in

by

transmittance spectroscopy. Journal of

Spectroscopy doi: 10.1155/2015/786709.

potato visible/near infrared

195



