

## Research Article

**Determination of airborne bacteria and fungi in the laboratories of a university**

Noppadon Muangsue, Piyawan Amimanana\*

Department of Medical Technology, School of Allied Health Science, University of Phayao, Phayao Province 56000

\* Correspondence to: amimanap@hotmail.com

**Naresuan Phayao J.** 2018;11(2):52-55.**Abstract**

Air quality of indoor environmental is an important factor affect to health of people. The aim of the study was to determine amount and types of airborne bacteria and fungi in the laboratories of a university. The open plate technique was used to collect samples in the morning and afternoon for 3 weeks. The result showed that the average amounts of bacteria and fungi were 67.6 to 340.5 and 69.6 to 370.8 CFU/dm<sup>2</sup>/h, respectively. The evaluations of the index of microbial air contamination (IMA) were fair to very poor. However, the concentrations of airborne bacteria and fungi were not higher than proposed air quality index. Therefore, air quality of university laboratories had good hygienic standard. Type of bacteria and fungi were found to include *Micrococcus* spp., gram negative bacilli, *Bacillus* spp., *Penicillium* spp., *Curvularia* spp., *Rhizopus* spp. and *Cladosporium* spp., respectively.

**Keywords:** Bacteria, fungi, university's laboratory, air quality**Introduction**

Air quality of indoor environmental is an important factor affect to health of people. [1] One of the factors to effect of indoor air quality is the contamination of microorganism which includes bacteria, fungi and viruses. Moreover, high concentration of microorganisms in the air can be allergenic disease. [2] The isolated airborne bacteria and fungi found the contamination in laboratory rooms, [3] libraries, [1,2] hospitals [4] and schools [5] include *Staphylococcus* spp., *Microccus* spp., *Bacillus* spp., *Serratia* spp., *Penicillium* spp., *Aspergillus* spp., *Rhizopus* spp., *Cladosporium* spp., *Fusarium* spp. and *Curvularia* spp. [1-5] which these microorganisms associate with allergy and asthma. [2,6] The objective of the study was to determine amount and types of bacteria and fungi which contaminate in clinical laboratory rooms of a university, and evaluate the air quality.

**Material and method**

Airborne bacteria and fungi were collected in various laboratory rooms of medical technology department, school of allied health science, Phayao University, including microbiology, chemistry, hematology and immunology laboratory using the open plate technique. The Petri dish 9 cm in diameter that contain plate count agar (PCA) and Sabouraud's dextrose agar (SDA) to collect bacteria and fungi, respectively. The both plate were left open to air and placed at six positions in each laboratory. The sampling height was 1 m above the floor and 1 m away from the wall for 1 h. The samples were collected twice a day at 9 a.m. and 2 p.m. for

3 weeks. After exposure the samples were incubated at 37°C at 48 h for bacteria and at 25°C at 5 to 7 days for fungi.

The amount of bacteria and fungi colonies were counted and calculated the number of colony forming unit (CFU)/plate/h. Bacteria were identified by microscopic examination (gram stain) and biochemical test. Fungi were identified morphological characteristic of the vegetative mycelium under light microscope.

The numbers of CFU/plate/h of bacteria and fungi were calculated the number of CFU/dm<sup>2</sup>/h to compare with the index of microbial air contamination classes (IMA class). [7] (Table 1)

**Table 1** The index of microbial air contamination

| IMA class | CFU/dm <sup>2</sup> /h | performance |
|-----------|------------------------|-------------|
| 0-5       | 0-9                    | very good   |
| 6-25      | 0-39                   | good        |
| 26-50     | 40-84                  | fair        |
| 51-75     | 85-124                 | poor        |
| ≥76       | ≥125                   | very poor   |

Quantitative data was reported as mean. Statistical analyses were performed using the SPSS software (version17.0) (SPSS Corporation; Chicago,

IL). Differences between two groups were determined by t-test, whereas comparisons among more than two groups were performed by ANOVA. The *p*-values of less than 0.05 were considered statistically significant.

## Results

The average amounts of airborne bacteria and fungi were 67.6-340.5 CFU/dm<sup>2</sup>/h (Table 2) and 69.6-370.8 CFU/dm<sup>2</sup>/h (Table 3), respectively. The evaluations of the Index of IMA of airborne bacteria and fungi in all laboratories were fair to very poor. Those concentrations of airborne bacteria and fungi compare with air quality index of Malaysia [8] were not exceed 500 CFU/m<sup>3</sup> for bacteria and 1000 CFU/m<sup>3</sup> for fungi which as the good quality air. The comparison of amount of airborne bacteria and fungi in during time and between the laboratories were no statistically significant difference (*p*>0.05). (Table 2 and 3) The most isolated airborne bacteria were *Micrococcus* spp., Gram negative bacilli (non-pathogenic bacteria) and *Bacillus* spp., respectively. The greatest number of airborne fungi was *Penicillium* spp., followed by *Curvularia* spp., *Rhizopus* spp. and *Cladosporium* spp., respectively.

**Table 2** Amount of airborne bacteria of clinical laboratory rooms

|              | Sampling time | Airborne bacteria |                        |           |                                                  |                                   |                                     |
|--------------|---------------|-------------------|------------------------|-----------|--------------------------------------------------|-----------------------------------|-------------------------------------|
|              |               | Mean<br>(colony)  | CFU/dm <sup>2</sup> /h | IMA       | Air quality index<br>(≤500 CFU/m <sup>3</sup> )* | During time<br>( <i>p</i> -value) | Between rooms<br>( <i>p</i> -value) |
| Microbiology | 9 to 10 a.m.  | 57.7              | 90.7                   | poor      | Pass                                             | 0.667                             | 0.290                               |
|              | 2 to 3 p.m.   | 43.3              | 68.0                   | fair      | Pass                                             |                                   | 0.217                               |
| Chemistry    | 9 to 10 a.m.  | 216.7             | 340.5                  | very poor | Pass                                             | 0.499                             | 0.290                               |
|              | 2 to 3 p.m.   | 123.7             | 194.4                  | very poor | Pass                                             |                                   | 0.217                               |
| Hematology   | 9 to 10 a.m.  | 43.0              | 67.6                   | fair      | Pass                                             | 0.655                             | 0.290                               |
|              | 2 to 3 p.m.   | 73.0              | 114.7                  | poor      | Pass                                             |                                   | 0.217                               |
| Immunology   | 9 to 10 a.m.  | 175.7             | 276.1                  | very poor | Pass                                             | 0.926                             | 0.290                               |
|              | 2 to 3 p.m.   | 184.3             | 289.6                  | very poor | Pass                                             |                                   | 0.217                               |

\* air pollution index of Malaysia (industry code of practice on indoor air quality 2010)

**Table 3** Amount of airborne fungi of clinical laboratory rooms

|              | Sampling time | Airborne fungi   |                        |           |                                                    |                          |                            |
|--------------|---------------|------------------|------------------------|-----------|----------------------------------------------------|--------------------------|----------------------------|
|              |               | Mean<br>(colony) | CFU/dm <sup>3</sup> /h | IMA       | Air quality index<br>(≤1,000 CFU/m <sup>3</sup> )* | During time<br>(p-value) | Between rooms<br>(p-value) |
| Microbiology | 9 to 10 a.m.  | 236.0            | 370.8                  | very poor | pass                                               | 0.232                    | 0.721                      |
|              | 2 to 3 p.m.   | 44.3             | 69.6                   | fair      | pass                                               |                          | 0.410                      |
| Chemistry    | 9 to 10 a.m.  | 151.7            | 238.4                  | very poor | pass                                               | 0.635                    | 0.721                      |
|              | 2 to 3 p.m.   | 118.3            | 185.9                  | very poor | pass                                               |                          | 0.410                      |
| Hematology   | 9 to 10 a.m.  | 179.0            | 281.3                  | very poor | pass                                               | 0.121                    | 0.721                      |
|              | 2 to 3 p.m.   | 62.3             | 97.9                   | poor      | pass                                               |                          | 0.410                      |
| Immunology   | 9 to 10 a.m.  | 125.7            | 197.5                  | very poor | pass                                               | 0.377                    | 0.721                      |
|              | 2 to 3 p.m.   | 60.3             | 94.8                   | poor      | pass                                               |                          | 0.410                      |

\* air pollution index of Malaysia (industry code of practice on indoor air quality 2010)

## Discussion

The concentrations of airborne bacteria and fungi measured in the laboratories were not higher than proposed air quality index ( $\leq 500$  CFU/m<sup>3</sup> for bacteria and  $\leq 1000$  CFU/m<sup>3</sup> for fungi). [8] The result showed that all rooms had good hygienic standard. Moreover, the amount of airborne bacteria and fungi were not depending on the period of time and type of clinical laboratory rooms. The microbial isolates included three bacteria (*Micrococcus* spp., Gram negative bacilli (non-pathogenic bacteria) and *Bacillus* spp.) and four fungi (*Penicillium* spp., *Curvularia* spp., *Rhizopus* spp. and *Cladosporium* spp.). The data were according to several reports that demonstrated these microbial were isolated in laboratory and indoor environment. [1-4,9] The most isolated bacteria were *Micrococcus* spp. that found human skin and mucosa. [1] Thus, bacterial contamination in airborne derived from human presence. [1] The *Penicillium* spp., and *Cladosporium* spp. were recognized as opportunistic pathogens for humans and often associated with allergy and asthma. [1,3]

## Acknowledgements

The authors would like to thank Mr. Jakkrawud Tuiprom and Mr. Ratthapong Sompakdee for their participation and assistance in the study.

## References

1. Hayleeyesus SF, Manaye AM. Microbiological quality of indoor air in University Libraries. Asian Pacific J Trop Biomed. 2014;4(Suppl 1): S312-7.
2. Stryjakowska-Sekulska M, Piotraszewska-Pajak A, Szyszka A, Nowicki M, Filipiak M. Microbiological quality of indoor air in university rooms. Polish J Enviro Stud. 2007;16(4):623-32.
3. Jakkapong N, Sirilak C, Waralee B. Microbial air contamination in laboratory rooms, faculty of science, Payap University. KKU Sci J. 2014;42(2):341-9.
4. Siriporn S, Ganjana N. Ambient microbial contamination in different hospital scales. KKU Res J. 2012;12(1):92-101.
5. Madureira J, Paciencia I, Rufo JC, Pereira C, Teixeira JP, de Oliveira Fernandes E. Assessment and determinants of airborne

bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. *Atmos Environ.* 2015;109:139-46.

6. Monireh MA, Nemat Allah MA, Iman EM, Farahzad JA, Mohammad TS. Alternaria in patients with allergic rhinitis. *Iran Allergy Asthm.* 2010;10(3):221-6.
7. Pasquarella C, Pitzurra O, Savino A. The index of microbial air contamination. *J Hosp Infect.* 2000;46:241-56.
8. Department of Occupational Safety and Health, Ministry of Human Resources, Malaysia. Industry Code of Practice on Indoor Air Quality 2010.
9. Krisaneey S. Airborne bacteria and fungi in the hospital and the sampling method comparison. *Thai J Health Promot Environ.* 2005;29(4):113-224.