

Research Article

Free radical scavenging capacity and modulative effect on antioxidant enzyme activity of *Pluchea indica* Less. tea leaf extract

Naruemon Thoobbucha¹, Chatchawin Petchlert^{2*}

¹ Faculty of Science, Burapha University, Chonburi Province 20131

² Department of Biochemistry, Faculty of Science, Burapha University, Chonburi Province 20131

*Corresponding author, E-mail: catchaw@buu.ac.th

Naresuan Phayao J. 2015;8(2):74-79.

Abstract

The aim of the present study is to investigate the free radical scavenging and modulative effect on the antioxidant enzyme activity of *Pluchea indica* Less. tea leaf extract. Superoxide and hydroxyl radical scavenging activities were measured. The result showed that the percentage of free radical inhibition markedly increased both on superoxide and hydroxyl radicals in concentration-dependent manners. IC₅₀ levels against superoxide and hydroxyl radicals were 265.84 ± 20.55 µg/mL, and 161.91 ± 4.94 µg/mL, respectively. Moreover, the activities of 1 unit/mL of catalase (CAT) and glutathione peroxidase (GPx) were assayed with different concentrations of the extract for 30 minute incubation. The increase of catalase activity in a concentration-dependent profile was observed but it did not alter in case of glutathione peroxidase activity.

Keywords: *Pluchea indica* Less. tea leaf extract, free radical scavenging, antioxidant enzyme

Introduction

Pluchea indica Less. is a widespread medicinal plant that grows naturally in littoral areas of many countries, including Thailand. The leaf of the plant issued to treat dysentery, rheumatism, leucorrhea, bad breath and body odor. The roots are used to treat fever, lumbago, indigestion and headache. [1] A decoction of the leaf has been used to combat fever. A poultice of leaf is applied externally to treat ulcers and soothe sores. [2] *P. indica* leaf is used in the preparation of an herbal tea consumed for promoting good

health. [3] A collection of preliminary data from community enterprise in Khlung district, Chanthaburi province, Thailand have found that the local people make liquid soap, spa body scrub powder and facial scrub. *P. indica* has also been taken as herbal tea product (dried leaf), but they are still lack of scientific evidence to support its benefit.

Therefore, the aim of the study was to demonstrate free radical scavenging and modulative effects on the antioxidant enzyme activity of extract obtained from *P. indica* leaf.

Material and Method

Preparation of extract

P. indica herbal tea (dried leaf) was purchased from community enterprise at Khlung district, Chanthaburi province, Thailand. Then, it was ground to powder using a grinder. Powdered sample (100 g) was added to boiling distilled water (1 L), boiled for 30min. Water extract was filtered by Whatman No.1 with vacuum pump and then centrifuged at 3,000 rpm for 10 min at 25°C. The remaining residues were re-extracted with boiling distilled water as describe above. The collected filtrate was evaporated by rotary evaporator and dried in a freeze-dryer. The extract was weighed, stored at -20°C and protected from light until used.

Superoxide radical (O_2^-) scavenging activity

Superoxide radical scavenging activity assay was measured by the pyrogallol autoxidation according to the method of Wang et al [4] with some modifications. 5.6 mL of 50 mM Tris-HCl buffer pH 8.2 and 0.2 mL of samples with different concentrations (31.25, 62.5, 125, 250 and 500 μ g/mL) were mixed together. The mixture was then incubated for 10 min in water bath at 25°C. Meanwhile, 0.2 mL of 0.95 mM pyrogallol preheated at 25°C was added immediately. The absorbance of sample and control were determined by UV/visible spectrophotometer at 325 nm. The control reaction mixture did not contain extracted sample. Gallic acid (31.25, 62.5, 125, 250 and 500 μ g/mL) was used as a positive control.

Hydroxyl radical (OH^-) scavenging activity

The hydroxyl radical scavenging activity assay was carried out by the deoxyribose

method. The assay was performed as described by Halliwell, Gutteridge and Aruoma [5] with some minor modifications. All solutions were freshly prepared. The reaction mixture contained 100 μ L of 2.8 mM 2-deoxy-D-ribose, 100 μ L of 2.8 mM H_2O_2 , 100 μ L of 25 mM $FeCl_3$, 100 μ L of 100 μ M EDTA and 500 μ L of samples with different concentrations.

The reaction was activated by adding 100 μ L of 100 μ M ascorbic acid and the reaction mixture was incubated for 1 h at 37°C in an incubator. After that, the color was developed by adding 1 mL of 1% thiobarbituric acid and 1 mL of 2.8% ice-cold trichloroacetic acid and heating in boiling water bath (80°C) for 20 min. The sample was cooled and the absorbance was measured by the microplate reader at 532 nm. The control reaction mixture did not contain the extracted sample. Butylated hydroxytoluene (BHT) was used as the positive control.

Catalase activity assay

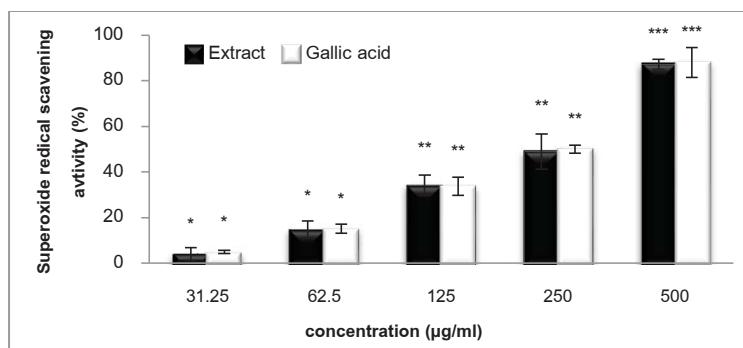
Catalase (CAT) activity was determined using the method of Fossati, Prencipe and Berti. [6] The 1x assay buffer 55 μ L and sample 20 μ L were added to the 1.5 mL microcentrifuge tube. The reaction was started by addition of 25 μ L of 200 mM hydrogen peroxide solution mixed by inversion and incubated for 5 min. 900 μ L of the stop solution was added and inverted the tube. 10 μ L of the solution was then transferred to a new microcentrifuge tube. 1 mL of the color reagent (30 mL of chromogen solution with 30 μ L of peroxidase solution) was added. The reaction was mixed and incubated at room temperature for 15 min. The color development was measured spectrophotometrically at 520 nm. One unit of

catalase activity was defined as the amount of enzyme decomposing 1 μ mol hydrogen peroxide per minute under assayed conditions.

Glutathione peroxidase activity assay

Glutathione peroxidase (GPx) was determined using the method of glutathione peroxidase assay kit (Sigma-Aldrich). 900 μ L of glutathione peroxidase, 50 μ L of NADPH assay reagent and 20 μ L of sample were added to the cuvette and mixed by inversion. The reaction was started by addition of 10 μ L of the 30 mM *t*-butyl hydroperoxide solution. The decrease of NADPH was then monitored by measuring an absorbance at 340 nm. One unit of glutathione peroxidase activity was defined as the amount of enzyme causing the formation of 1 μ mol of NADP⁺ per minute under assayed conditions.

Statistical analysis


All data were expressed as mean values \pm standard deviation (n=3). The statistical analysis of data used the one-way ANOVA. When ANOVA results showed statistically significant differences, post hoc testing was performed for intergroup comparisons using Tukey's HSD test. The inhibitory concentration 50% (IC₅₀) was calculated from concentration/effect regression line. The p value <0.05 was considered as statistically significant for the analyzed data. All statistical calculations were computed by the Statistical Package for Social Science (SPSS) version 17.0.

Results

The study was to examine the free radical scavenging and modulative effect on the antioxidant enzyme activity of *Pluchea indica* Less. tea leaf extract *in vitro*. Superoxide and hydroxyl radical scavenging activities were measured. Superoxide radical is known to be a very harmful species to cellular components as a precursor of more reactive oxygen species. The


superoxide radical is known to be produced *in vivo* and can result in the formation of H₂O₂ via dismutation reaction. [4] Superoxide radical plays an important role in the formation of other reactive oxygen species, such as hydrogen peroxide, or singlet oxygen in living systems. [7] In the experiment, the scavenging activity assay was measured by the pyrogallol autoxidation on superoxide radical as shown in Figure 1. The percentage of free radical inhibition markedly increased by both the extract and gallic acid in concentration-dependent manner (p<0.05). There was a slight difference in the percentage of free radical inhibition found between extract and gallic acid treatment groups. The IC₅₀ levels of the extract and gallic acid were calculated to be 265.84 \pm 20.55 μ g/mL, and 262.43 \pm 1.51 μ g/mL, respectively.

Hydroxyl radical is the most reactive free radical and can be formed from superoxide anion and hydrogen peroxide, in the presence of metal ions, such as copper or iron. [4] Hydroxyl radicals, generated by reaction of an iron-EDTA complex with H₂O₂ in the presence of ascorbic acid, attack deoxyribose to form products that, upon heating with thiobarbituric acid at low pH, yield a pink chromogen. [5] The hydroxyl radical scavenging activity assay was measured by the deoxyribose assay. 2-Deoxyribose is attacked by hydroxyl radical to yield a mixture of products. [8] The scavenging ability of the extract on hydroxyl radical inhibition was shown in Figure 2, the percentage of free radical inhibition markedly increased both by the extract and BHT in concentration-dependent manner (p<0.05) at various concentrations. The percentage of free radical inhibition by BHT was higher than extract in the higher concentration (from 250 to 500 μ g/mL).

* ** *** p<0.05, significant difference in comparison to each concentration for the same sample

Figure 1 Percent of inhibition on superoxide radical scavenging activity of *P. indica* Less. tea extract (black bar) and gallic acid (white bar). Each bar is expressed as mean \pm standard deviation from triplicate independent experiments

* ** *** p<0.05, significant difference in comparison to each concentration for the same sample

Figure 2 Percent of inhibition on hydroxyl radical scavenging activity of *P. indica* Less. tea extract (black bar) and BHT (white bar). Each bar is expressed as mean \pm standard deviation from triplicate independent experiments

Table 1 The modulative effect on the antioxidant enzyme activity of *P. indica* Less. tea leaf extract

Concentration of extract ($\mu\text{g/mL}$)	CAT (unit/mL)	GPx (unit/mL)
0	2.75 \pm 0.43 ^a	1.77 \pm 0.03 ^c
31.25	3.5 \pm 0.00 ^a	1.45 \pm 0.01 ^b
62.5	4.75 \pm 0.43 ^b	1.48 \pm 0.03 ^b
125	4.75 \pm 0.43 ^b	1.53 \pm 0.05 ^b
250	6 \pm 0.00 ^c	1.45 \pm 0.03 ^b
500	6.5 \pm 0.00 ^c	1.25 \pm 0.01 ^a

All data are expressed as mean \pm standard deviation from triplicates independent experiments

a, b, c p<0.05, significant difference in comparison to each concentration for the same enzyme treatment

The IC_{50} levels of the extract and BHT were $161.91 \pm 4.94 \mu\text{g/mL}$, and $185.26 \pm 5.77 \mu\text{g/mL}$, respectively. Moreover, the changes of antioxidant enzyme activities such as catalase and glutathione peroxidase were measured. The various methods used to determine antioxidant activity can give more information on the specific free radical scavenging activity. The results of modulative effect on the antioxidant enzyme activity were shown in Table 1. The increase of catalase activity in a concentration-dependent profile was observed significantly ($p<0.05$) whereas it was not significantly altered ($p<0.05$) in the case of glutathione peroxidase activity. The results concerned about the detoxification mechanism of free radical particularly H_2O_2 to H_2O that was non-toxic.

Discussion

The current study is consistent with previous studies of *P. indica* extracts. The methanolic fraction of *P. indica* extracts was found to possess antioxidant activity. [3] In addition, the hot water extract from *P. indica* Less. (HWEP) herbal tea was also found to express the antioxidant. [9] HWEP has potent inhibitory effects against lipopolysaccharide-induced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in RAW 264.7 macrophages and has potential beneficial effects in preventing various chronic inflammatory diseases, including cancers. [9] Furthermore, phytochemical compounds of *P. indica* have been reported such as kaempferol, myricetin, luteolin, apigenin, tannins, saponins, flavonoids, proanthocyanidins, quercetin and chlorogenic acid. [10-12] Interestingly, quercetin and chlorogenic acid have also been reported to possess antioxidant and anti-inflammatory activities. [12,13]. Moreover, beta-sitosterol and stigmasterol isolated from *P. indica* root

methanolic extract was found to be able to neutralize viper and cobra venom and antagonize cobra venom induced lethality, cardiotoxicity, neurotoxicity, and respiratory changes. [14] Further experiments are required to study the modulative effect on the antioxidant enzyme activity of *P. indica* Less. tea leaf extract *in vivo*.

In conclusion, the results of the present study demonstrated that *P. indica* Less. tea leaf extract exhibited a good antioxidant activity significantly ($p<0.05$), and may contain potential beneficial effects to prevent or treat various chronic degenerative diseases. In addition, *P. indica* Less. tea leaf extract may be used as dietary supplements and developed as a prototype herbal medicine in the future.

Acknowledgements

The study was financially supported by Burapha University (government supporting research grant in 2012).

References

1. Roslida AH, Erazuliana AK, Zuraini A. Anti-inflammatory and antinociceptive activated of the ethanolic extract of *Pluchea indica* (L) Less leaf. Pharmacol.2008;2:349-60.
2. Wiart C. Medicinal plants of the Asia-Pacific: Drugs for the future? New Jersey: World Science Publishing: 2006. p. 629-30.
3. Sen T, Dhara AK, Bhattacharjee S, Pal S, NagChaudhuri AK. Antioxidant activity of the methanol fraction of *Pluchea indica* root extract. Phytother Res. 2002;16(4):331-5.
4. Wang BS, Li BS, Zeng QX, Liu HX. Antioxidant and free radical scavenging activities of pigment extracted from molasses alcohol waste water. Food Chem. 2008;107(3):1198-204.

5. Halliwell B, Gutteridge J, Aruoma OI. The deoxyribose method: a simple 'test tube' assay for determination of rate constants for reaction of hydroxyl radicals. *Anal Biochem*. 1987;165(1):215-9.
6. Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxylbenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. *Clin Chem*. 1980;26(2):227-31.
7. Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (*Zingiber officinale*). *Food Chem*. 2007;102(3):764-70.
8. Gutteridge JM, Halliwell B. The deoxyribose assay: an assay both for 'free' hydroxyl radical and for site-specific hydroxyl radical production. *Biochem J*. 1988;253(3):932-3.
9. Srisook K, Buapool D, Boonbai R, Simmasut P, Charoensuk Y, Srisook E. Antioxidant and anti-inflammatory activities of hot water extract from *Pluchea indica* Less. herbal tea. *J Med Plants Res*. 2012; 6(23):4077-81.
10. Andarwulan N, Batari R, Sandrasari DA, Bolling B, Wijaya H. Flavonoid content and antioxidant activity of vegetables from Indonesia. *Food Chem*. 2010;121(4):1231-5.
11. Cho JJ, Cho CL, Kao CL, Chen CM, Tseng CN, Lee YZ, et al. Crude aqueous extracts of *Pluchea indica* (L.) Less. inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death. *BMC Complement Altern Med*. 2012;12:265.doi: 10.1186/1472-6882-12-265.
12. MohdShukri MA, Alan C, Site Noorzuraini AR. Polyphenols and antioxidant activities of selected traditional vegetables. *J Trop Agric Food Sci*. 2011;39(1):69-83.
13. Gusdinar T, Herowati R, Kartasasmita RE, Adnyana IK. Anti-inflammatory and antioxidant activity of quercetin-3,3',4'-triacetate. *J Pharm Toxicol*. 2011;6(2):182-8.
14. Gomes A, Saha A, Chatterjee I, Chakravarty AK, Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of *Pluchea indica* Less. (Asteraceae). *Phytomedicine*. 2007;14(9):637-43.