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Monthly PM2.5 Concentration Trends by Province (2018-2024)
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Figure 1 Monthly Trends of PM2.5 Concentrations by Province (2018-2024)
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Figure 2 PM2.5 Concentration Distribution by Province (Boxplot, 2018-2024)
Table 1 Descriptive Statistics of PM2.5 Concentrations by Province (ug/m?)
Province Mean PM2.5 Min. PM2.5 Max. PM2.5 Std. Dev. PM2.5
Bangkok 38.79 18 68 13.88
Chiang Mai 30.30 7 106 21.96
Khon Kaen 31.36 11 69 12.93
Songkhla 17.68 11 39 4.23
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Figure 3 Monthly PM2.5 Forecast Comparison by Province Using Holt-Winters and ARIMA Models
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Table 2 RMSE of Holt-Winters and ARIMA Models for Monthly PM 2.5 Forecasts by Province

Holt-Winters ARIMA
Province
RMSE MAE RMSE MAE
Bangkok 18.31 14.81 18.00 14.12
Chiangmai 24.14 17.41 32.19 24.53
Khon Kaen 8.83 6.52 10.42 8.52
Songkhla 4.23 3.14 3.24 2.28
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Figure 4 Workflow for Applying Machine Learning Techniques in PM 2.5 Prediction
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Table 3 Prediction Error Comparison between Random Forest and SVR Models by Province

Province Model RMSE MAE
Random Forest 9.22 6.38
Bangkok
SVR 10.94 8.45
Random Forest 19.78 14.71
Chiangmai
SVR 29.18 21.48
Random Forest 6.51 4.98
Khon Kaen
SVR 7.78 6.11
Random Forest 2.40 1.63
Songkhla
SVR 2.50 151

Table 3 WAAIAIAINLARINLAG DU RMSE waz MAE 289
UUT1899 Random Forest Wag Support Vector Regression
(SVR) dmsunisnennsalanduazess PM2.5 Tuudazdsnin wa
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RMSE = 9.22 waz MAE = 6.38 § 4/ n31 SVR 71 A1 RMSE =
10.94 uag MAE = 8.45 druluidoslud auunnm195ning
Tumadsdmau Tng Random Forest 1ien RMSE shndneenaun

Table 4 Summary of the Best-Performing Model by Province

(19.78 wiguniyu 29.18) agvouaduaiu1savesluinaluns
Fannsteyadidanufuniugs luveunnulazaswal Random
Forest fansliinadnsindn SVR lnslamzluvouunudsiivoya
wwilduiidanu vnsiluaaudimanueainedeuvesiians
TuiaaazlndlABaiu wi Random Forest daadlyiAn RMSE fnin
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Province Best-Performing Model Explanation
Bangkok Random Forest Effectively handles complex and non-linear data patterns.
Chiang Mai Random Forest Excels in managing highly fluctuating PM2.5 patterns.
Khon Kaen Random Forest Accurately captures seasonal variations in the data.
Songkhla ARIMA / Random Forest Stable data structure enables ARIMA to perform well, though Random
Forest still shows a slight advantage.

agUlsiin Random Forest Wulunaffinuuiugrganiaaluninsy
warinuEn uYey ad JwInd ouvl d A1 ud ey
fINBBERRnaRLIvhelFRanzuuIIm
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fiufiiatios — Time Series Models (ARIMA) ¥ine1ui
Figure 5 wa@nan15ne1nsalAH uazead PM2.5 lag
\Wisuileuasaiuineansallag Random Forest waz SVR
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Figure 5 Monthly PM 2.5 Forecasts in Four Provinces Using Random Forest and SVR Compared to Actual Observations
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Figure 6 Feature Importance in the Random Forest Model
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leatmap of RMSE Comparison between Random Forest and SVR
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Figure 7 Heatmap of RMSE Values for Random Forest and SVR Models
Figure 8: Actual vs Predicted PM2.5 by Random Forest (All Provinces)
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Figure 8 Correlation between Actual Values and Predictions by the Random Forest Model
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Received: 30 July 2025 Fine particulate matter smaller than 2.5 micrometers (PM2.5) poses a persistent threat
Revised: 17 October 2025 to public health, environmental quality, and agricultural productivity in Thailand, particularly
Accepted: 12 December 2025 during the dry season, when concentrations frequently exceed national standards. This study aims
Online published: 30 January 2026 to develop a PM2.5 forecasting model by comparing two time-series forecasting approaches—
Keyword Holt—Winters exponential smoothing and the ARIMA model—with machine learning techniques,
PM2.5 namely Random Forest and Support Vector Regression (SVR). Monthly PM2.5 data from
machine learning Bangkok, Chiang Mai, Khon Kaen, and Songkhla for the period 2018-2024 were utilized. The
intelligent model dataset was chronologically divided into an 80% training set and a 20% test set, and model

performance was evaluated using the Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). The findings indicate that the Random Forest model consistently achieved the lowest
prediction errors across all provinces, particularly in areas with highly volatile PM2.5 patterns,
such as Chiang Mai and Khon Kaen. In contrast, SVR yielded relatively low predictive accuracy.
Traditional time-series models performed well in provinces with more stable air quality patterns,
such as Songkhla. Lag variables and moving averages were identified as key predictors
contributing to model accuracy. Overall, the Random Forest model demonstrates strong potential
for application in air quality alert systems and for supporting evidence-based environmental and
agricultural policy planning toward long-term sustainability.
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