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A solution to the shortest path problem in communication networks

based on Q-learning
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Abstract
This paper proposes an application of a Q-learning algorithm to solve the shortest path problem in
communication networks, which are widely used in both wireline and wireless communications. The objective is to
minimize the cost occurred in a transmission process. The cost may refer to transmit power and time delay. To bench
mark such a proposed method, Dijkstra’s, Bellman-Ford’s, and Floy-Warshall’s algorithms, which are existing methods,
are taken into a comparison. The research method begins with studying Dijkstra’s, Bellman-Ford’s, and Floy-Warshall’'s

algorithms to obtain some insights of advantages and disadvantages. In applying the Q-learning, the shortest path
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problem is decomposed into Q-learning’s components such as agent, action, state, environment, and reward which

can be completely used in training process. Experimental results show that all methods provide the same solution. For

the Q-learning method, it can be stated that this method requires a small number of episodes in training procedure

e.g., 35 episodes for the interested example. Furthermore, it can also be found that the Q-learning algorithm offers all

paths for any sources to the destination node. This is comparable with the Floy-Warshall’s algorithm. However, the Q-

learning method requires less complexity in calculation. Furthermore, it can be concluded from the study results that

the Q-learning method can be applied in multiple source-destination pairs.
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Figure 1 An example of data transmission routes

a mesh network.
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Figure 2 A graph representing the communication

network.

Algorithm 1 Dikstra algorithm.
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1. define i ; to be budget of path from node K to node [, set V[k] to be budget of the path with minimum

budget from the origin node to node k, set d[k] to be node’s number located before node k in the shortest

path from the origin node to node k

2. assuming that all nodes are temporary node and store all nodes in set T, set the origin node to be starting node S

0; i=s

3. assuming V[i] = {+oo_ otherwise

4. WHILE the number of entries in set T does not equal to 0 DO

5. p < S % change starting node to be permanent node

6. assuming that vector N to be vector of the adjacent node with S

7. FOR i in N DO
V[i] « min{V[i],V[p] + Cp,}

©
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Algorithm 1 Dikstra algorithm (continue).

9. IF V[i] change THEN
10. dlk] «p

11. ENDIF

12. ENDFOR

13. update s = argmingerV

14. update T < T\s % subtract S from set T
15. ENDWHILE

16. RETURN V[k] and d[k]
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Algorithm 2 Bellman-Ford algorithm.
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Feannsnagdle A9 (Aigorithm 2)

1. define K to be the number of all nodes, Ck,1 to be budget of the path from node k to node l, set V[k] to be

the budget of the path with minimum budget from the origin node to node k., V®[k] represents V[k]
obtained from the t iteration, set d[k] to be the node’s number located before node k in the shortest path from

the origin node to node k

2. set the origin node to be starting node S

0; k=s

3. ing VO[k] = { ’ :
assuming [k] +o0; otherwise

© ® N o o

10.
11.

12.

FORt = 1: K DO
VOUk] « min{V(t_l)[i] + Ci_k} % for all nodes I connecting with node k
FVO[k] < VED[k]; Forall k THEN
dlk] « i
ELSEIF VO[k] = VD [k] THEN
BREAK
ENDIF
ENDFOR
RETURN V[k]and d[k]
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Algorithm 3 Floyd-Warshall algorithm.

1.

define K to be the number of all nodes, Cy j to be budget of the path from node k to node 1, set VOIk, ]
to be the budget of the path with minimum budget from node k to node [ by providing nodes along the route

with numbers less than or equal to t, set d[k, [] to be node located before node [ currently located on the

shortest path from node k to node l

2. sort number of nodes in ascending

3. IF k is connected with [ THEN % for all nodes k,l € [1: K]

4. V(O)[k, l] = Ck,l

5. dlk 1] =k
6. ELSE
0: k=1
(0) = ’
7. VOLk1] {+oo; otherwise
8. ENDIF

9. FORt = 1: K DO

10. VO, 1] « min{VE D[k, 1], VED [k, t],
% forallnode k,l € [1:K], k,l #t

1. IFVO[k, 1] < VED[k, 1] THEN

12. dlk, 1] « d[t, 1]

13.  ENDIF

14.  IFV®O[k, k] < 0 THEN
15. BREAK

16.  ENDIF

17. ENDFOR

18. RETURN V [k, 1] and d[k, []
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Table 1 Reword of each node pair for (Figure 2).

node pair 0 1 2 3 4 5
0 -100 -2 -100 -1 -4 -100
1 -2 -100 -6 -100 -5 -2
2 -100 -6 -100 -100 -100 -3
3 -1 -100 -100 -100 -8 -100
4 -4 -5 -100 -8 -100 -1
5 -100 -2 -3 -100 -1 -100
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Algorithm 4 Environment env(-).

N

. define current state S
. choose 1 from 8 actions a;
. go to the next state Sgqq

. calculate reward 1 (s;, ;) from (Table 1)

2

3

4

5. IFr(ss,a;) = —100 THEN
6. terminal = T (true)
7. ELSE

8. terminal = F (false)

9. ENDIF

10. RETURN s;,41,7(S;, a;) and terminal

4 a

WWaia17au (Algorithm 4) wudniledinng
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Table 2 Q-table.

stage-action N NE E SE S SW W NW

0 Q(O,N) Q(0,NE) Q(,E) Q(,SE) Q(,S) Q(0,sw) QO, W) Q(0,Nw)
1 Q(1,N) Q(,NE) Q(1,E) Q@,SE) Q1,8 Q(1,swW) QW) Q(1,Nw)
2 Q(2,N) Q(2,NE) Q@2,E) Q(2,SE) Q2,8 Q(2,8wW) Q(2,W) Q2 ,Nw)
3 Q@B,N)  Q(,NE) Q@,E) Q(,SE) Q3,8 Q(3,sw) Q@B,W) Q3 Nw)
4 Q@4,N)  Q(4,NE) Q@4,E) Q@4,SE) Q4,8 Q@4,8w) Q 4, W) Q4 Nw)
5 Q(,N)  Q(5 NE) Q(,E) Q(,SE) Q(,S) Q5 swW) QW) Q5 Nw)

AN (Table 2) LU Q-table 1451 (Figure 2)
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A4 (Table 2) arunsnagile 6a (Algorithm 5)

1. define N to be the number of training iterations, E to be the number of episodes and probability p

2. FOR episode = 1: E DO

3. initialize state S¢, terminal = F and counter = 0

4. WHILE terminal = F DO

5. counter = counter + 1

6. IF rand () < p THEN % function rand () generates a random number in range 0-1
randomly choose 1 from 8 actions A ¢

8. ELSE

9. choose action from a; = argmax,Q (s, a;)

10. ENDIF
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Algorithm 5 Training process (continue).

1. St+1,1: (S, ap), terminal = Env(ay)
12. update Q-table using equation (1)

13. IF counter = N THEN

14. BREAK

15. ENDIF

16.  ENDWHILE
17. ENDFOR
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Figure 4 A Dijkstra’s solution for the shortest path

problem from node ‘3’ to node ‘5.
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Figure 5 A Bellman-Ford's solution for the shortest

path problem from node ‘3’ to node ‘5.
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Figure 6 An example of Floy-Warshall's solutions

for the shortest path problem.
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Input src node:3
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Figure 8 A Q-learning’s solution for the shortest

path problem from node ‘3’ to node ‘5'.
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