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Integration of InceptionResNetV2 with VGG19 for sugarcane leaf disease recognition
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Abstract

The development of sugarcane leaf disease recognition techniques is challenging due to the diversity of disease
characteristics expressed through variations in leaf color, shape, texture, and spatial distribution patterns, which are complex and
influenced by environmental conditions. Therefore, advanced image processing and machine learning techniques are essential
for accurately recognizing the sugarcane leaf disease. This study presented an integration of InceptionResNetV2 with VGG19
networks using convolutional layers as the main components of the architecture, due to the advantages of the inception module
for diverse feature analysis combined with residual connections to address the issue of data loss in deep networks. The proposed
model was trained and tested on sugarcane leaf disease dataset and compared with the previous results. Experimental results
showed that the model achieved an accuracy of 99.25%, a loss of 0.0263, and a training time of 24.55 minutes. The results of this
study not only demonstrated the model's effectiveness in recognizing sugarcane leaf disease but also provided important guidelines
for developing plant disease technologies on an industrial scale.
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Figure 1 VGG19 with InceptionResNetV2 integration for sugarcane leaf disease recognition.
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(b) mosaic c) red rot

Figure 2 Sample representation of some sugarcane leaf disease.
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Table 1 Parameter for training model.

hyper parameter value

learning rate 10%,10°, 10" and 10
optimization Adam

loss function categorical cross entropy
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Figure 3 Result of training model.
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Figure 4 Precision and recall of training model.
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Figure 5 Sample image results of recognition performance.
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