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The building sector accounts for more than 130 exajoules (EJ) of global energy consumption, representing 

approximately 30% of the total energy demand, with a continuous upward trend. Notably, energy demand in buildings 
surged during the COVID-19 crisis and increased by approximately 20% between 2000 and 2007. A significant portion 
of this energy consumption is attributed to lighting and air-conditioning systems. The rising electricity demand in 
buildings adversely impacts power quality, leading to issues such as harmonic distortion, voltage unbalance, and 
current unbalance in electrical distribution systems. This study investigates the application of the Machine Learning-
based Random Forest Regressor model to analyze the causes of current unbalance in a building’s power distribution 
system. A case study was conducted using electricity consumption data from a facility at the College of Industrial 
Technology and Management, Rajamangala University of Technology. The analysis results indicate that power 
features significantly influence current unbalance, with Power Phase A contributing the most at 74.73%, followed by 
Power Phase C at 10.98% and Power Phase B at 9.55%. These findings provide valuable insights for optimizing 
maintenance strategies and improving the efficiency of building power distribution systems. 
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1. Introduction 

The building sector accounts for more than 130 exajoules 
(EJ) of global energy consumption, representing approximately 
30%  of total energy demand, with a continuously increasing 
trend.  During the COVID-19 crisis, energy consumption in this 
sector surged beyond typical levels.  Historical data from 2000 
to 2007 indicate an approximate 20%  increase in energy 
demand (Santamouris and Vasilakopoulou, 2021). A significant 
portion of this energy is utilized for lighting and air- conditioning 
systems, including heating, cooling, and ventilation (Melo et al., 
2023) .  The growing deployment of such systems has significantly 
contributed to the increasing electricity demand in buildings. 

The rise in electricity demand negatively impacts power 
quality, leading to issues such as harmonic distortion, voltage 
unbalance, and current unbalance in electrical systems (Drovtar 

et al. , 2012) .  The degradation of power quality can result in 
increased energy losses in power transmission, excessive heat 
buildup in electrical components, and a reduced lifespan of 
connected equipment.  Additionally, power quality disturbances 
may cause operational errors in industrial control devices such 
as Programmable Logic Controllers (PLC) and Variable Frequency 
Drives ( VFD) .  To mitigate power quality issues in electrical 
distribution systems, previous studies have proposed various 
analytical approaches. For instance, Jove et al. (2021) applied 
machine learning techniques, including Principal Component 
Analysis ( PCA) , k- nearest neighbor ( KNN) , and Gaussian 
classifiers, to detect harmonic distortions in wind generator 
systems.  Their results indicate that PCA demonstrated the 
highest detection efficiency, particularly for harmonic distortion 
variations ranging from 10%  to 40%  total harmonic distortion 
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(THD) and exceeding 90% THD. In another study, Vinayagam 
et al.  ( 2021)  analyzed the impact of integrating renewable 
energy sources, such as solar power, into the electrical grid. 
Their comparison of two models one combining Bayesian 
networks with multilayer perceptron classifiers (Model 1)  and 
another incorporating Bayesian networks, multilayer perceptrons, 
and J48 decision tree classifiers (Model 2) revealed that Model 
2 achieved a classification accuracy of up to 100%. Furthermore, 
Wang and Chen ( 2019)  introduced a convolutional neural 
network (CNN) -based system for power quality classification 
within multi-energy integration systems. Their results demonstrated 
that CNN achieved an accuracy of approximately 99. 5%  on 
validation data, with a training time of 191 minutes, outperforming 
long short- term memory ( LSTM) , ResNet50, and stacked 
autoencoder (SAE) models. 

A review of existing research suggests that most power 
quality disturbance classification techniques rely on machine 
learning models combined with feature extraction methods 
based on signal processing (Chawda et al. , 2020) .  However, 
these approaches often focus on classification rather than 
identifying the root causes of power quality issues.  Therefore, 
this study presents the application of the Random Forest 
Regressor model, a machine learning technique well- suited for 
analyzing nonlinear datasets of medium to large sizes (Schonlau 
and Zou, 2020) .  The proposed approach aims to identify the 
key factors contributing to current unbalance in building power 
distribution systems. The analysis is conducted using real-world 
electricity consumption data from the College of Industrial 
Technology and Management, Rajamangala University of 
Technology.  The findings of this study will contribute to the 
development of optimized maintenance strategies for electrical 
distribution systems, ultimately improving energy efficiency and 
system reliability. 

2. Theoretical Framework 
2.1 Unbalanced Current 

In a three- phase power supply system, the system is 
considered to be in a balanced current state when the current 
magnitudes in all three phases are equal and the phase shift 
between them is precisely 120°.  However, any deviation from 
these conditions results in an unbalanced current state 
(Mahmoud, 2021). The degree of current unbalance is typically 
quantified by evaluating the ratio of the maximum deviation of 
phase currents from the average phase current to the total 
average current across all phases. This is commonly expressed 
as the Percentage Current Unbalance (PCU) in accordance with 
the IEEE 45-2002 standard (Sinuraya et al., 2022). The general 
formulation for PCU is defined as follows: (1) 

= 100Max

avg

I Dev
PCU

I
          

(1) 

From ( 1) , the Percentage Current Unbalance PCU  is 
defined as the ratio of the maximum current deviation to the 
total average current across all phases.  The maximum current 
deviation MaxI Dev  from the average current in each phase is 
determined using (2), while the total average current avgI  across 
all phases is calculated as shown in (3). 

I Dev = max I - I , I - I , I - I
Max A avg B avg C avg

 
 
 

 (2) 

A B CI + I + I
I =
avg 3
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2.2 Correlation Matrix 

The Correlation Matrix serves as a fundamental statistical 
tool for analyzing relationships among multiple features or 
variables (Wang et al., 2022). The relationship between features 
is quantified using the Correlation Coefficient (R), which ranges 
from - 1 to 1.  When R  1, it indicates a strong positive 
correlation, meaning the features change in the same direction. 
Conversely, when R  - 1, the features exhibit an inverse 
relationship, changing in opposite directions. If R=0, it signifies 
no correlation, implying that changes in one feature do not 
correspond to changes in another (Hadd and Rodgers, 2020) . 
The Correlation Coefficient (R) is computed using (4)–(6). 
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X X X

X X X
X =

X X X

 
 
 
 
 
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(4) 

 
From (4), let X  represent the dataset under analysis, where 

Observations are denoted as n  and Variables as m .  Each 
data point in the dataset is evaluated to determine the 
Correlation Coefficient ( r)  using the Pearson correlation 
coefficient equation, as defined in ( 5) .  In this context, i, jX
represents the data at the thi Observation and the thj Feature 
within the dataset. 

i j

i i j j
X ,X 2 2

i i j j

(X - X )(X - X )
r =

(X - X ) • (X - X )



 
 (5) 

 
From (5), let iX  and jX represent the data points within the 

dataset at the specified positions, while iX and jX denote their 
respective mean values.  Since equation ( 5)  analyzes the 
relationship of a single feature within the dataset, the 
computation of the Correlation Coefficient (R)  for all features 
within the dataset follows the matrix representation in equation 
(6). 
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From equation ( 6) , 
i jX ,Xr represents the Correlation 

Coefficient between iX  and jX indicating the degree of 
relationship between the respective feature positions within the 
dataset. 

2.3 Random Forest Regressor (RFR) Algorithm 
The Random Forest Regressor (RFR) is a Machine Learning 

Model commonly employed for decision-making processes and 
target prediction based on independent and uncorrelated 
decisions.  It operates using the Bagging Technique, incorporating 
Boot-strapping and Aggregation principles (Breiman, 2001) .  In 
the context of Feature Importance analysis using the RFR 
Algorithm, two primary approaches are utilized: Mean Decrease 
in Impurity (MDI) and Permutation Importance. The MDI value, 
defined in equation (7), quantifies the extent to which a feature 
contributes to reducing the model’ s variance.  Meanwhile, 
Permutation Importance, as described in equation (9), measures 
the effect of randomly shuffling features on model performance 
(Hastie et al., 2009). 

t a j

T

j s
t=1 s ÎS ,X =X

1
FI(X ) = Var

T
   

(7) 

As presented in equation (7), jFI(X )  is defined as the Mean 
Decrease in Impurity (MDI) , where tS  represents the set of 
nodes in tree T that utilize the corresponding feature. 
Additionally, sVar  is defined based on Decision Tree 
Regression, which is computed using equation (8). 

L R
s L R

D D
Var = Var(D) - Var(D ) + Var(D )

D D

 
  

 

 (8) 

As presented in equation ( 8) , Var(D)  represents the 
variance of the parent node, while Var(D )L  and Var(D )R  
denote the variances of the left and right child nodes, 
respectively. 

( ) ( ) ( )i shuffledFI X R X R X= −  (9) 

From equation ( 9) , Permutation Importance iFI(X )  is 
defined as the difference between the model error before 
random shuffling R(X)  and the model error after random 
shuffling of features shuffledR(X ) . 

3. Materials and Methods 
3.1 Installation of Electrical Energy Meters in the Building Power 
Distribution System 

To measure electrical energy consumption within the 
building, a Clamp Meter (CM) is installed to monitor the current 
in the range of 0.6–120 A (AC) with a measurement resolution 
of 0. 03 A.  The CM supports a maximum alternating current 
voltage of 600 V and includes the capability to measure the 
temperature of the transmission line.  The device is integrated 
into the power transmission line within the Main Distribution 
Board (MDB)  cabinet.  The installation layout of the measuring 
device within the MDB cabinet is illustrated in Figures 1 and 2, 
which depict the experimental setup utilized in this study. Once 
the electrical energy measurement system acquires the current 
flowing through the power transmission line, the signal undergoes 
quality enhancement via a Signal Conditioner. Subsequently, all 
recorded electrical energy consumption data are transmitted via 
Bluetooth 4. 1, operating in the 2. 402 GHz to 2. 48 GHz 
frequency band, to the Gateway for data logging and further 
analysis. 
 

 
Figure 1  The Main Distribution Board (MDB) used for 

analyzing the relationship between features influencing the 
occurrence of unbalanced current. 
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Figure 2  Diagram illustrating the installation of the Clamp Meter (CM) in the power transmission line  

inside the Main Distribution Board (MDB). 
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Figure 3  Overview diagram of the electrical energy usage recording system installed in the Main Distribution Board (MDB) 

 
3.2 Electricity Usage Data Recording Process 

The recording of electrical energy usage data from the Main 
Distribution Board (MDB)  involves multiple stages.  After the 
Clamp Meter ( CM)  measures the electrical parameters and 
undergoes the Signal Conditioning process, the processed data 
is transmitted to the Gateway. The Gateway serves as an inter-
mediary, facilitating communication between field devices, 
specifically the Clamp Meter ( CM) , and the Internet via 
Bluetooth 4 . 1  operating within the 2 . 4 0 2  GHz to 2 . 4 8  GHz 
frequency range.  The recorded electrical energy usage data is 
uploaded to the Data Center at one-minute intervals. The overall 
system architecture for data recording is illustrated in Figure 3 . 
Access to the recorded electrical energy usage data is provided 
in CSV format, allowing for direct downloads from the Data 
Center.  Remote- side equipment connected to the Internet, in 
conjunction with a Browser Engine, is utilized to retrieve and 

analyze the recorded data. The graphical user interface for data 
access and retrieval via the Browser Engine is depicted in 
Figure 4 .  For this study, electrical energy usage data was re-
corded continuously over one month, from December 1 , 2024, 
to December 31, 2024. This dataset was sub-sequently used to 
analyze the relationship between various features influencing 
the occurrence of Un-balance Current. 

3.3 Feature Extraction 
After downloading the electrical power usage data in 

CSV format from the Data Center, the data is grouped into 
features for model training and analysis to identify relationships 
influencing the occurrence of Unbalance Current.  The features 
used in this study are categorized into two groups.  The first 
group consists of 12 features obtained from direct 
measurements inside the Main Distribution Board, as presented 
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in Table 1. The second group includes a single feature derived 
using an analytical equation for Unbalance Current, as defined 
in equation (1). 
 
Table 1  Features of Measured Energy Consumption in the MDB  
           Cabinet 

Feature Unit 
Power Phase A W 
Energy Phase A kWh 
Current Phase A A 

Temperature Phase A Celsius 
Power Phase B W 
Energy Phase B kWh 
Current Phase B A 

Temperature Phase B Celsius 
Power Phase C W 
Energy Phase C kWh 
Current Phase C A 

Temperature Phase C Celsius 
 

 
Figure 4  Illustrating the electrical energy usage recording system. 
 

 
Figure 5  Comparison of relevance score percentages for each 

feature analyzed using the Random Forest Regressor. 
 
 
 
 

4. Results and Discussion 
4.1 Power 

As shown in Figure 5, the power feature exerts the most 
significant influence on unbalanced current compared to other 
parameters.  Phase A power alone accounts for approximately 
74. 73%  of the observed unbalance, while Phases C and B 
contribute only 10.98% and 9.55% , respectively.  Interestingly, 
the average power of Phase A is 1.56 kW, which is considerably 
lower than the values of Phase B (3.76 kW) and Phase C (1.80 
kW) , as depicted in Figure 6.  This suggests that unbalanced 
current is not merely a function of absolute power magnitude 
but is strongly associated with the disproportionate loading 
conditions in Phase A.  Further analysis of the unbalanced 
current distribution using histogram plots Figure 7 highlights this 
difference.  The Phase A data exhibit a broader spread, 
indicating greater variability, while Phases B and C follow 
narrower, near- normal distributions with similar statistical 
characteristics. The estimated mean unbalance current in Phase 
A is 52.58% , significantly exceeding the 36.87% observed for 
Phases B and C.  This wider distribution combined with the 
higher mean value confirms that the load imbalance in Phase A 
dominates the overall system unbalance. Therefore, the results 
demonstrate that although Phase A operates with lower average 
power than the other two phases, its disproportionate loading 
condition drives the highest unbalanced current.  This finding 
emphasizes the importance of phase balancing in power 
distribution networks, as the concentration of load in a single 
phase can introduce substantial current imbalance, even when 
the overall system power is relatively low. 
 

 
Figure 6  Comparison of power across each phase. 
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A) Unbalance current Phase A    B) Unbalance current Phase B  C) Unbalance current Phase C 

Figure 7  Histogram of unbalance current in the power distribution system 
 
4.2 Current 

Figure 5 illustrates the contribution of electric current to the 
unbalance current, with Phases A, B, and C contributing 0.58%, 
1.37%, and 1.21%, respectively. These results demonstrate that 
electric current has a minimal impact on the unbalance current 
compared to electric power.  However, changes in electric 
current directly influence changes in electric power, as 
evidenced by the correlation matrix in Figure 8. 
 

 
Figure 8  Correlation matrix of power and current. 

 
The correlation matrix in Figure 8 demonstrates a perfect 

positive correlation (correlation coefficient = 1) between power 
and current across all three phases, indicating that changes in 
these features are directly proportional.  Analysis of the current 
data reveals that Phase A contributes 75.17% to the unbalance 
current, significantly higher than Phase B (12.10%) and Phase 
C ( 12. 72% ) .  Figure 8 illustrates the percentage relevance 
scores of the current feature in influencing the unbalance current 
state. 
 

 
Figure 9 Comparison of relevance score percentages for the 
current feature analyzed using the Random Forest Regressor. 
 

Phase A current has the highest impact on the unbalance 
current in the power distribution system, with an average current 
consumption of 4.12 A, lower than Phase C (4.74 A) and Phase 
B (9.89 A). Consequently, Phase A contributes the most to the 
unbalance current, as reflected in its higher weight in the three-
phase current feature analysis.  These results align with the 
histogram presented in Figure 7. 

4.3 Energy 
Analysis of the energy feature using the Random Forest 

Regressor indicates contributions to the unbalance current of 
0.23%, 1.02%, and 0.39% for Phases A, B, and C, respectively. 
These values are significantly lower than those of the power and 
electric current features.  The relationships between these 
features are further explored using the correlation matrix, as 
shown in Figure 10. 

Figure 10 demonstrates that the energy feature directly 
influences changes in the power and current features, which are 
the primary drivers of the unbalance current in the power 
distribution system. The correlation coefficient between energy, 
power, and current is 1 for all phases (A, B, and C) , reflecting 
a perfect positive relationship. This relationship arises because 
energy is a function of power and time, causing its variation to 
align directly with changes in power and current.  Thus, while 
the energy feature does not directly impact the unbalance 
current, it indirectly affects it by influencing the power and 
current features.
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Figure 10  Correlation matrix of power, current, and energy features. 

 

 

A) Temperature Phase A   B) Current Phase A   C) Power Phase A 
Figure 11  Histogram of temperature, current, and power for Phase A. 

 

 

A) Temperature Phase B   B) Current Phase B   C) Power Phase B 
Figure 12  Histogram of temperature, current, and power for Phase B. 

 

 

A) Temperature Phase C   B) Current Phase C   C) Power Phase C 
Figure 13  Histogram of temperature, current, and power for Phase c. 
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4.4 Temperature 
Temperature was identified as the feature with the least 

contribution to unbalanced current in the power distribution 
system when analyzed using the Random Forest Regressor 
model.  As shown in Figure 5, the effect of temperature was 
quantified at approximately 0.07% in Phases A and C, and only 
0.02% in Phase B.  Compared to electrical power and current, 
which exhibited significantly higher contributions, temperature 
was determined to be a secondary factor in the development of 
unbalanced current conditions.  A closer inspection of the 
histogram data provides further insight into this observation. For 
Phase B Figure 12, the system recorded a maximum power 
demand of 24.78 kW and a maximum current of 65.20 A. These 
operating conditions resulted in a peak conductor temperature 
of approximately 31 °C, which was higher than in the other 
phases.  In contrast, Phase A Figure 11 reached a maximum 
power demand of 17. 93 kW and a maximum current of 47.20 
A, corresponding to a maximum temperature of about 27 °C. 
Phase C showed similar behavior, with a maximum power 
demand of 16. 30 kW, a maximum current of 42. 90 A, and a 
peak temperature of 27 °C, as illustrated in Figure 13.  These 
results are consistent with findings reported in Beňa et al. (2021), 
which emphasize that conductor temperature is primarily driven 
by current loading.  Although temperature had the smallest 
statistical contribution to unbalance prediction, it remains a 
valuable diagnostic parameter. Thermal variation across phases 
reflects differences in electrical loading and provides indirect 
information about conductor losses and efficiency. For example, 
elevated temperatures in Phase B suggest that this phase 
experiences higher energy stress, which may accelerate 
insulation aging and reduce equipment lifespan.  Furthermore, 
localized heating can increase resistive losses, contributing to 
overall system inefficiency.  This interpretation is supported by 
Moon and Lee (2019), who demonstrated that temperature rise 
in large electrical machines is strongly correlated with 
electromagnetic and copper losses.  Therefore, while temperature 
by itself is not a dominant predictor of unbalanced current, its 
monitoring enhances the understanding of phase imbalance 
from a thermal perspective.  Integrating temperature data with 
electrical features allows for improved condition monitoring, better 
prediction of component degradation, and more effective energy 
management strategies. From a system-level perspective, these 
insights contribute to optimizing load distribution, reducing technical 
losses, and enhancing the long-term reliability of power distribution 
networks. 

5. Conclusion  
The case study on the analysis of factors influencing 

Unbalance Current in the power distribution system at the 
College of Industrial Technology and Management, Rajamangala 
University of Technology, utilized a dataset comprising four key 
features: Power, Current, Energy, and Temperature. The Machine 

Learning Model Random Forest Regressor was employed to 
examine the relationship between these features and Unbalance 
Current.  The analysis results indicate that electrical power has 
the highest impact on the occurrence of Unbalance Current, with 
Phase A Power contributing 74. 73% , followed by Phase C 
Power (10. 98%)  and Phase B Power (9. 55%) .  The primary 
cause of this imbalance is the significantly lower power 
consumption in Phase A, where small loads, such as lighting 
systems, are connected. In contrast, Phase B and Phase C are 
linked to large loads, including motors and air conditioning 
systems, leading to higher power demand in Phases B and C 
and contributing to the unbalance in Phase A.  Other features, 
such as Current and Energy, have a relatively lower impact, 
contributing less than 1. 5%  in all cases, but show a direct 
correlation with the Power feature. The Temperature feature has 
the least impact, with values of 0.07% in Phases A and C and 
0.02% in Phase B. The study concludes that Power is the most 
influential factor in Unbalance Current, and the application of 
Machine Learning for predictive analysis can support maintenance 
planning to mitigate power quality issues in building power 
systems, as highlighted by Popa et al.  (2020) .  However, this 
approach has limitations due to the small dataset used for model 
training and testing, which may lead to miscalculations in 
practical applications.  Additionally, the need to download data 
from Cloud systems for analysis adds complexity to the data 
processing workflow. To address these limitations, future research 
should focus on developing real-time Machine Learning models 
capable of running on embedded control devices or Cloud 
Computing systems. This would enable real-time anomaly detection, 
improve the accuracy of predictive models by increasing the 
training dataset size, and enhance the efficiency of power 
quality management in building and industrial applications. 
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