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The building sector accounts for more than 130 exajoules (EJ) of global energy consumption, representing
approximately 30% of the total energy demand, with a continuous upward trend. Notably, energy demand in buildings
surged during the COVID-19 crisis and increased by approximately 20% between 2000 and 2007. A significant portion
of this energy consumption is attributed to lighting and air-conditioning systems. The rising electricity demand in
buildings adversely impacts power quality, leading to issues such as harmonic distortion, voltage unbalance, and
current unbalance in electrical distribution systems. This study investigates the application of the Machine Learning-
based Random Forest Regressor model to analyze the causes of current unbalance in a building’s power distribution
system. A case study was conducted using electricity consumption data from a facility at the College of Industrial
Technology and Management, Rajamangala University of Technology. The analysis results indicate that power
features significantly influence current unbalance, with Power Phase A contributing the most at 74.73%, followed by
Power Phase C at 10.98% and Power Phase B at 9.55%. These findings provide valuable insights for optimizing

maintenance strategies and improving the efficiency of building power distribution systems.

© 2025 Karisan, S. and Rojchaya, S. Recent Science and Technology published by Rajamangala University of Technology Srivijaya

1. Introduction

The building sector accounts for more than 130 exajoules
(EJ) of global energy consumption, representing approximately
30% of total energy demand, with a continuously increasing
trend. During the COVID- 19 crisis, energy consumption in this
sector surged beyond typical levels. Historical data from 2000
to 2007 indicate an approximate 20% increase in energy
demand (Santamouris and Vasilakopoulou, 2021). A significant
portion of this energy is utilized for lighting and air- conditioning
systems, including heating, cooling, and ventilation (Melo et al.,
2023). The growing deployment of such systems has significantly
contributed to the increasing electricity demand in buildings.

The rise in electricity demand negatively impacts power
quality, leading to issues such as harmonic distortion, voltage
unbalance, and current unbalance in electrical systems (Drovtar
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et al., 2012). The degradation of power quality can result in
increased energy losses in power transmission, excessive heat
buildup in electrical components, and a reduced lifespan of
connected equipment. Additionally, power quality disturbances
may cause operational errors in industrial control devices such
as Programmable Logic Controllers (PLC) and Variable Frequency
Drives (VFD). To mitigate power quality issues in electrical
distribution systems, previous studies have proposed various
analytical approaches. For instance, Jove et al. (2021) applied
machine learning techniques, including Principal Component
Analysis (PCA), k-nearest neighbor (KNN), and Gaussian
classifiers, to detect harmonic distortions in wind generator
Their results indicate that PCA demonstrated the
highest detection efficiency, particularly for harmonic distortion
variations ranging from 10% to 40% total harmonic distortion

systems.
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(THD) and exceeding 90% THD. In another study, Vinayagam
et al. (2021) analyzed the impact of integrating renewable
energy sources, such as solar power, into the electrical grid.
Their comparison of two models one combining Bayesian
networks with multilayer perceptron classifiers (Model 1) and
another incorporating Bayesian networks, multilayer perceptrons,
and J48 decision tree classifiers (Model 2) revealed that Model
2 achieved a classification accuracy of up to 100% . Furthermore,
Wang and Chen (2019)
network (CNN)-based system for power quality classification
within multi-energy integration systems. Their results demonstrated
that CNN achieved an accuracy of approximately 99.5% on
validation data, with a training time of 191 minutes, outperforming
long short- term memory ( LSTM), ResNet50, and stacked
autoencoder (SAE) models.

introduced a convolutional neural

A review of existing research suggests that most power
quality disturbance classification techniques rely on machine
learning models combined with feature extraction methods
based on signal processing (Chawda et al., 2020). However,
these approaches often focus on classification rather than
identifying the root causes of power quality issues. Therefore,
this study presents the application of the Random Forest
Regressor model, a machine learning technique well- suited for
analyzing nonlinear datasets of medium to large sizes (Schonlau
and Zou, 2020). The proposed approach aims to identify the
key factors contributing to current unbalance in building power
distribution systems. The analysis is conducted using real-world
electricity consumption data from the College of Industrial
Technology and Management, Rajamangala University of
Technology. The findings of this study will contribute to the
development of optimized maintenance strategies for electrical
distribution systems, ultimately improving energy efficiency and
system reliability.

2. Theoretical Framework

2.1 Unbalanced Current

In a three- phase power supply system, the system is
considered to be in a balanced current state when the current
magnitudes in all three phases are equal and the phase shift
between them is precisely 120°. However, any deviation from
these conditions results in an unbalanced current state
(Mahmoud, 2021). The degree of current unbalance is typically
quantified by evaluating the ratio of the maximum deviation of
phase currents from the average phase current to the total
average current across all phases. This is commonly expressed
as the Percentage Current Unbalance (PCU) in accordance with
the IEEE 45-2002 standard (Sinuraya et al., 2022). The general
formulation for PCU is defined as follows: (1)

Dev
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PCU = X100
- (1)

From (1), the Percentage Current Unbalance PCU is
defined as the ratio of the maximum current deviation to the
total average current across all phases. The maximum current
deviation | _Dev from the average current in each phase is
determined using (2), while the total average current / — across
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all phases is calculated as shown in (3).
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2.2 Correlation Matrix

The Correlation Matrix serves as a fundamental statistical
tool for analyzing relationships among multiple features or
variables (Wang et al., 2022). The relationship between features
is quantified using the Correlation Coefficient (R), which ranges
from -1 to 1. When R= 1, it indicates a strong positive
correlation, meaning the features change in the same direction.
Conversely, when R =- 1, the features exhibit an inverse
relationship, changing in opposite directions. If R=0, it signifies
no correlation, implying that changes in one feature do not
correspond to changes in another (Hadd and Rodgers, 2020).
The Correlation Coefficient (R) is computed using (4)—(6).

X1.1X1,2 ...X’l.m (4)
X2,1X2,2 ) X2m

X =
Xn,1xn,2 Xnm |

From (4), let X represent the dataset under analysis, where
Observations are denoted as n and Variables as m. Each
data point in the dataset is evaluated to determine the
Correlation Coefficient ( r)
coefficient equation, as defined in (5). In this context, Xi,j

using the Pearson correlation

represents the data at the i" Observation and the jm Feature
within the dataset.

DX X)X, -X) (5)

rx,x =
- \’Z(Xs'z)z '\/Z(Xj 'YJ)Z

From (5), let X, and X, represent the data points within the

dataset at the specified positions, while )7, and 7}. denote their
respective mean values. Since equation (5)

relationship of a single feature within the dataset, the

analyzes the

computation of the Correlation Coefficient (R) for all features
within the dataset follows the matrix representation in equation

(6).
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From equation ( 6) , r

Coefficient between X, and X, indicating the degree of

represents the Correlation

relationship between the respective feature positions within the
dataset.

2.3 Random Forest Regressor (RFR) Algorithm

The Random Forest Regressor (RFR) is a Machine Learning
Model commonly employed for decision-making processes and
target prediction based on independent and uncorrelated
decisions. It operates using the Bagging Technique, incorporating
Boot-strapping and Aggregation principles (Breiman, 2001). In
the context of Feature Importance analysis using the RFR
Algorithm, two primary approaches are utilized: Mean Decrease
in Impurity (MDI) and Permutation Importance. The MDI value,
defined in equation (7), quantifies the extent to which a feature
contributes to reducing the model’ s variance. Meanwhile,
Permutation Importance, as described in equation (9), measures
the effect of randomly shuffling features on model performance
(Hastie et al., 2009).

F|(x1)=li Z Avar, 7)
T

t=1 sis, X, =X,

As presented in equation (7), FI(X,) is defined as the Mean
Decrease in Impurity (MDI), where S, represents the set of
nodes in tree T that utilize the corresponding feature.
Additionally, AVars is defined based on Decision Tree
Regression, which is computed using equation (8).

o
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As presented in equation ( 8), Var(D) represents the
variance of the parent node, while Var(D ) and Var(Dy)
denote the variances of the left and right child nodes,
respectively.

FI(X;) = R(X) = R(X guittea) ©)

From equation ( 9), Permutation Importance FI(X) is
defined as the difference between the model error before
random shuffling R(X) and the model error after random
shuffling of features R(X

shuffled ) .

3. Materials and Methods

3.1 Installation of Electrical Energy Meters in the Building Power
Distribution System

To measure electrical energy consumption within the
building, a Clamp Meter (CM) is installed to monitor the current
in the range of 0.6—120 A (AC) with a measurement resolution
of 0.03 A. The CM supports a maximum alternating current
voltage of 600 V and includes the capability to measure the
temperature of the transmission line. The device is integrated
into the power transmission line within the Main Distribution
Board (MDB) cabinet. The installation layout of the measuring
device within the MDB cabinet is illustrated in Figures 1 and 2,
which depict the experimental setup utilized in this study. Once
the electrical energy measurement system acquires the current
flowing through the power transmission line, the signal undergoes
quality enhancement via a Signal Conditioner. Subsequently, all
recorded electrical energy consumption data are transmitted via
Bluetooth 4. 1, operating in the 2.402 GHz to 2.48 GHz
frequency band, to the Gateway for data logging and further
analysis.

Figure 1 The Main Distrit;ution Board (MDB) used for
analyzing the relationship between features influencing the
occurrence of unbalanced current.
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Figure 2 Diagram illustrating the installation of the Clamp Meter (CM) in the power transmission line
inside the Main Distribution Board (MDB).
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Figure 3 Overview diagram of the electrical energy usage recording system installed in the Main Distribution Board (MDB)

3.2 Electricity Usage Data Recording Process

The recording of electrical energy usage data from the Main
Distribution Board (MDB) involves multiple stages. After the
Clamp Meter (CM) measures the electrical parameters and
undergoes the Signal Conditioning process, the processed data
is transmitted to the Gateway. The Gateway serves as an inter-
mediary, facilitating communication between field devices,
specifically the Clamp Meter ( CM), and the Internet via
Bluetooth 4.1 operating within the 2.402 GHz t0 2.48 GHz
frequency range. The recorded electrical energy usage data is
uploaded to the Data Center at one-minute intervals. The overall
system architecture for data recording is illustrated in Figure 3.
Access to the recorded electrical energy usage data is provided
in CSV format, allowing for direct downloads from the Data
Center. Remote-side equipment connected to the Internet, in
conjunction with a Browser Engine, is utilized to retrieve and

analyze the recorded data. The graphical user interface for data
access and retrieval via the Browser Engine is depicted in
Figure 4. For this study, electrical energy usage data was re-
corded continuously over one month, from December 1, 2024,
to December 31, 2024. This dataset was sub-sequently used to
analyze the relationship between various features influencing
the occurrence of Un-balance Current.

3.3 Feature Extraction

After downloading the electrical power usage data in
CSV format from the Data Center, the data is grouped into
features for model training and analysis to identify relationships
influencing the occurrence of Unbalance Current. The features
used in this study are categorized into two groups. The first

group
measurements inside the Main Distribution Board, as presented

consists of 12 features obtained from direct
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in Table 1. The second group includes a single feature derived
using an analytical equation for Unbalance Current, as defined
in equation (1).

Table 1 Features of Measured Energy Consumption in the MDB

Cabinet
Feature Unit
Power Phase A W
Energy Phase A kWh
Current Phase A A
Temperature Phase A Celsius
Power Phase B W
Energy Phase B kWh
Current Phase B A
Temperature Phase B Celsius
Power Phase C w
Energy Phase C kWh
Current Phase C A
Temperature Phase C Celsius

Eatot =
Data Query [~y . e

Device

Figure 4 lllustrating the electrical energy usage recording system.
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Figure 5 Comparison of relevance score percentages for each
feature analyzed using the Random Forest Regressor.

4. Results and Discussion

4.1 Power

As shown in Figure 5, the power feature exerts the most
significant influence on unbalanced current compared to other
parameters. Phase A power alone accounts for approximately
74.73% of the observed unbalance, while Phases C and B
contribute only 10.98% and 9.55%, respectively. Interestingly,
the average power of Phase A is 1.56 kW, which is considerably
lower than the values of Phase B (3.76 kW) and Phase C (1.80
kW), as depicted in Figure 6. This suggests that unbalanced
current is not merely a function of absolute power magnitude
but is strongly associated with the disproportionate loading
conditions in Phase A. Further analysis of the unbalanced
current distribution using histogram plots Figure 7 highlights this
difference. The Phase A data exhibit a broader spread,
indicating greater variability, while Phases B and C follow
narrower, near- normal distributions with similar statistical
characteristics. The estimated mean unbalance current in Phase
A is 52.58%, significantly exceeding the 36.87% observed for
Phases B and C. This wider distribution combined with the
higher mean value confirms that the load imbalance in Phase A
dominates the overall system unbalance. Therefore, the results
demonstrate that although Phase A operates with lower average
power than the other two phases, its disproportionate loading
condition drives the highest unbalanced current. This finding
emphasizes the importance of phase balancing in power
distribution networks, as the concentration of load in a single
phase can introduce substantial current imbalance, even when
the overall system power is relatively low.

Power Feature Comparison

power_phase_C_W 4

power_phase_B_W 4

Feature

power_phase_A_W +

0.0 0.5 10 15 2.0 2.5 3.0 35
Power kw

Figure 6 Comparison of power across each phase.
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Figure 7 Histogram of unbalance current in the power distribution system

4.2 Current

Figure 5 illustrates the contribution of electric current to the
unbalance current, with Phases A, B, and C contributing 0.58%,
1.37%, and 1.21%, respectively. These results demonstrate that
electric current has a minimal impact on the unbalance current
compared to electric power. However, changes in electric
current directly influence changes in electric power, as
evidenced by the correlation matrix in Figure 8.

Correlation Matrix Power and Current

power_phase_A_W

current_phase_A_A

power_phase_B_W

current_phase_B_A

r—0.25

power_phase_C_W r—0.50

=0.75
current_phase_C_A

-1.00

Figure 8 Correlation matrix of power and current.

The correlation matrix in Figure 8 demonstrates a perfect
positive correlation (correlation coefficient = 1) between power
and current across all three phases, indicating that changes in
these features are directly proportional. Analysis of the current
data reveals that Phase A contributes 75.17% to the unbalance
current, significantly higher than Phase B (12.10%) and Phase
C (12.72%). Figure 8 illustrates the percentage relevance
scores of the current feature in influencing the unbalance current
state.

Relevance Current Feature

current_phase_A_A -

current_phase_B_A

Current Feature

current_phase_C_A 4

0 10 20 30 40 50 60 70
Percentage Relevance %

Figure 9 Comparison of relevance score percentages for the
current feature analyzed using the Random Forest Regressor.

Phase A current has the highest impact on the unbalance
current in the power distribution system, with an average current
consumption of 4.12 A, lower than Phase C (4.74 A) and Phase
B (9.89 A). Consequently, Phase A contributes the most to the
unbalance current, as reflected in its higher weight in the three-
phase current feature analysis. These results align with the
histogram presented in Figure 7.

4.3 Energy

Analysis of the energy feature using the Random Forest
Regressor indicates contributions to the unbalance current of
0.23%, 1.02%, and 0.39% for Phases A, B, and C, respectively.
These values are significantly lower than those of the power and
electric current features. The relationships between these
features are further explored using the correlation matrix, as
shown in Figure 10.

Figure 10 demonstrates that the energy feature directly
influences changes in the power and current features, which are
the primary drivers of the unbalance current in the power
distribution system. The correlation coefficient between energy,
power, and current is 1 for all phases (A, B, and C), reflecting
a perfect positive relationship. This relationship arises because
energy is a function of power and time, causing its variation to
align directly with changes in power and current. Thus, while
the energy feature does not directly impact the unbalance
current, it indirectly affects it by influencing the power and
current features.
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Correlation Matrix Feature
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Figure 10 Correlation matrix of power, current, and energy features.
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Figure 11 Histogram of temperature, current, and power for Phase A.
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4.4 Temperature

Temperature was identified as the feature with the least
contribution to unbalanced current in the power distribution
system when analyzed using the Random Forest Regressor
model. As shown in Figure 5, the effect of temperature was
quantified at approximately 0.07% in Phases A and C, and only
0.02% in Phase B. Compared to electrical power and current,
which exhibited significantly higher contributions, temperature
was determined to be a secondary factor in the development of
unbalanced current conditions.
histogram data provides further insight into this observation. For
Phase B Figure 12, the system recorded a maximum power
demand of 24.78 kW and a maximum current of 65.20 A. These
operating conditions resulted in a peak conductor temperature
of approximately 31 °C, which was higher than in the other
phases. In contrast, Phase A Figure 11 reached a maximum
power demand of 17.93 kW and a maximum current of 47.20
A, corresponding to a maximum temperature of about 27 °C.
Phase C showed similar behavior, with a maximum power

A closer inspection of the

demand of 16.30 kW, a maximum current of 42.90 A, and a
peak temperature of 27 °C, as illustrated in Figure 13. These
results are consistent with findings reported in BeNa et al. (2021),
which emphasize that conductor temperature is primarily driven
by current loading. Although temperature had the smallest
statistical contribution to unbalance prediction, it remains a
valuable diagnostic parameter. Thermal variation across phases
reflects differences in electrical loading and provides indirect
information about conductor losses and efficiency. For example,
elevated temperatures in Phase B suggest that this phase
experiences higher energy stress, which may accelerate
insulation aging and reduce equipment lifespan. Furthermore,
localized heating can increase resistive losses, contributing to
overall system inefficiency. This interpretation is supported by
Moon and Lee (2019), who demonstrated that temperature rise
in large electrical machines is strongly correlated with
electromagnetic and copper losses. Therefore, while temperature
by itself is not a dominant predictor of unbalanced current, its
monitoring enhances the understanding of phase imbalance
from a thermal perspective. Integrating temperature data with
electrical features allows for improved condition monitoring, better
prediction of component degradation, and more effective energy
management strategies. From a system-level perspective, these
insights contribute to optimizing load distribution, reducing technical
losses, and enhancing the long-term reliability of power distribution
networks.

5. Conclusion

The case study on the analysis of factors influencing
Unbalance Current in the power distribution system at the
College of Industrial Technology and Management, Rajamangala
University of Technology, utilized a dataset comprising four key
features: Power, Current, Energy, and Temperature. The Machine

Learning Model Random Forest Regressor was employed to
examine the relationship between these features and Unbalance
Current. The analysis results indicate that electrical power has
the highest impact on the occurrence of Unbalance Current, with
Phase A Power contributing 74.73% , followed by Phase C
Power (10.98% ) and Phase B Power (9.55%). The primary
cause of this imbalance is the significantly lower power
consumption in Phase A, where small loads, such as lighting
systems, are connected. In contrast, Phase B and Phase C are
linked to large loads, including motors and air conditioning
systems, leading to higher power demand in Phases B and C
and contributing to the unbalance in Phase A. Other features,
such as Current and Energy, have a relatively lower impact,
contributing less than 1.5% in all cases, but show a direct
correlation with the Power feature. The Temperature feature has
the least impact, with values of 0.07% in Phases A and C and
0.02% in Phase B. The study concludes that Power is the most
influential factor in Unbalance Current, and the application of
Machine Learning for predictive analysis can support maintenance
planning to mitigate power quality issues in building power
systems, as highlighted by Popa et al. (2020). However, this
approach has limitations due to the small dataset used for model
training and testing, which may lead to miscalculations in
practical applications. Additionally, the need to download data
from Cloud systems for analysis adds complexity to the data
processing workflow. To address these limitations, future research
should focus on developing real-time Machine Learning models
capable of running on embedded control devices or Cloud
Computing systems. This would enable real-time anomaly detection,
improve the accuracy of predictive models by increasing the
training dataset size, and enhance the efficiency of power
quality management in building and industrial applications.
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