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Abstract

In this research, the researcher developed the hybrid model of the SARIMA model and the support vector
regression model in order to forecast the amount of monthly electricity distribution units for residential houses.
The data of 137 values had been collected from the Provincial Electricity Authority from January 2008 to May 2019.
The researcher applied the empirical mode decomposition to reduce the fast oscillation of the data. The creation
of the hybrid model was based on the strengths of each model. The SARIMA model had a strong point in describing
time series data with a linear relationship, and the support vector regression model had a strong point in creating
complex predictive functions and describing time series data with a non-linear relationship. After that, the forecasting
efficiency was compared in 3 models: the naive model, the SARIMA model, and the support vector regression model
using 5 forecasting performance criteria, namely Mean Absolute Error, Root Mean Square Error, Mean Absolute
Percentage Error, Median Absolute Percentage Error and Symmetric Mean Absolute Percentage Error. The results
indicated the hybrid model provided better forecasting performance than the 3 Univariate Time Series models in

all forecasting performance criteria. Therefore, the hybrid model can be used as a suitable tool for forecasting the
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monthly electricity distribution units of the residential houses time series data. It can be used for decision in

electricity generation and supply to served the consumer's demand in the future.

Keywords: hybrid model, naive model, SARIMA model, support vector regression model, Empirical mode decomposition
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Figure 2 Flow chart of Empirical mode decomposition.
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Figure 5 Data formatting for support vector regression model
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Figure 6 The Flowchart of the proposed hybrid EMD — SARIMA — SVR forecasting system.
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Table 1 Basic statistics of the electricity distribution units for residents’ houses

data Number Mean Std. Max. Min. Median
All sample 137 2201.319 440.973 3556.2 1406.59 21655
Training 108 2068.427 370.0976 3233.3 1406.59 2012.37
Testing 29 2696.226 315.0829 3556.2 2069.01 2733.45
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Figure 7 Difference log transform data to make data stationary on both mean and variance.
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Table 2 Examining the basic assumption of the SARIMA model

The mean error

The error value is The errors

value is 0 normal distribution are dependent
model
Ljung — Box
t-value p-value  KS-value p-value o p-value
Q-statistics
SARIMA(1,0,0)(0,1, D12 0.1656 0.6783 0.1148 0.1157 12.16 0.8638

Residuals from ARIMA(1,0,0)(0,1,1)[12] with drift

0.10-

0.05-

0.00-

-0.05-

-0.10-

ACF

0 D D LR T C TR T TR TR

-0.10 -0.05 0.00 0.05 0.10
residuals

Figure 8 Residuals from the fitted SARIMA (1,0,0) (0,1,1)12 model for the electricity distribution units for resident s” houses data.
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Table 3 Comparison of EMD and original data values

Data Mean Std. Min Max
dataset 2201.32 440.97 1406.59 3556.20
Denoise dataset 2188.17 413.17 1434.47 3525.73
IMF1 6.64 91.55 -306.64 245.03
IMF2 -2.20 111.80 -230.24 216.62
IMF3 0.97 168.48 -424.34 383.74
IMF4 5.17 100.98 -218.87 232.76
IMF5 -23.25 254.38 -540.52 306.58
IMF6 25.18 74.37 -77.45 182.97
IMF7 62.72 179.43 -198.02 370.58
IMF8 29.95 227.38 -335.84 424.17
Residue 2096.13 362.85 1275.54 3312.45
alMF 13.15 47.65 -92.25 169.61
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Figure 9 EMD components of electricity distribution units for residents’ houses dataset of experiment.

Table 4 Comparison between different actual and forecasted of hybrid model and univariate model

Months / electricity EMD-SARIMA-
Naive SARIMA SVR(12)

Year distribution units SVR(12)
Jan 2560 2304.37 2276.29 2235.74 2321.288 2166.98
Feb 2560 2069.01 2030.88 2113.55 2281.77 2052.18
Mar 2560 2672.77 2571.12 2720.85 2517.425 2677.53
Apr2560 2777.48 2930.48 2957.86 2602.47 2875.21
May 2560 2985 3233.3 3232.34 2679.595 3160.69
Jun 2560 2737.79 2716.09 2902.34 2712.624 2875.94
Jul 2560 2733.45 2619.76 2844.33 2645.746 2806.95
Aug 2560 2774.81 2685.85 2804.08 2683.271 2720.37
Sep 2560 2715.63 2569.31 2706.45 2646.193 2629.05
Oct 2560 2710.59 2593.34 2753.56 2604.595 2672.59
Nov 2560 244583 2389.31 2602.84 2505.662 2589.40
Dec 2560 2402.64 2311.74 2524.50 2429.432 2511.96
Jan 2561 2222.01 2276.29 2408.65 2419.024 2310.21
Feb 2561 21655 2030.88 2259.46 2324.303 2133.19
Mar 2561 2740.76 2571.12 2895.85 2548.303 2792.82
Apr 2561 2811.77 2930.48 3140.17 2626.356 3034.73
May 2561 2970.28 3233.3 3426.61 2675.539 3345.23
Jun 2561 2812.79 2716.09 3074.24 2620.227 3025.90
Jul 2561 2857.32 2619.76 3011.38 2621.032 2936.02
Aug 2561 2775.3 2685.85 2967.97 2635.667 2860.14
Sep 2561 2640.44 2569.31 2864.19 2618.986 2763.95
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Table 4 Comparison between different actual and forecasted of hybrid model and univariate model

(Continue)
electricity EMD-SARIMA-
Months / Year Naive SARIMA SVR(12)
distribution units SVR(12)

Oct 2561 2858.07 2593.34 2913.79 2582.397 2802.06
Nov 2561 2610.08 2389.31 2754.17 2504.196 2691.40
Dec 2561 2606.71 2311.74 2671.19 2452.368 2607.85
Jan 2562 2519.72 2276.29 2548.57 2408.592 2409.36
Feb 2562 2410.78 2030.88 2390.69 2391.025 2209.73
Mar 2562 3031.67 2571.12 3064.03 2520.025 2903.77
Apr 2562 3271.79 2930.48 3322.52 2546.561 3182.06
May 2562 3556.2 3233.3 3625.60 2498.065 3512.46
MAE 171.316 129.061 203.864 105.443

RMSE 205.090 164.543 299.252 130.400

MAPE 6.187% 4.768% 7.075% 3.899%

MdAPE 5.389% 4.553% 5.921% 3.188%

SMAPE 6.398 4.602% 7.491% 3.850%
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