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Abstract

Accuracy in reservoir inflow forecasting is significantly crucial for reservoir operation. This article presents
the application of Genetic Programming ( GP), which relies on genetic evolution and makes computer self-
programming, for reservoir inflow forecasting at Pa Phayom reservoir for 1 day, 1 week, and 1 month ahead,
respectively. Daily, weekly, and monthly data of rainfall and reservoir inflow at Phayom reservoir were collected for
10 years from 2007 to 2016 and then they were used as input data for 4 case studies in each time span of forecasts.
For all study cases, the data sets were divided into two parts, i.e. the first 70% of data sets were for the training
process and the other 30% of data sets were for the testing process. Models’ performance was evaluated using 3
statistical indices: correlation coefficient (r), root mean squared error (RMSE), mean absolute error (MAE), and
combined accuracy (CA). Varying each GP’s parameter for studied data sets was conducted to determine the optimal

parameters. It was found that 1 day ahead reservoir inflow forecasting gave a satisfying performance with values of
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r (0.878 and 0.069), RMSE (0.031 MCM/day and 0.883 MCM/day), MAE (0.058 MCM/day and 0.024 MCM/day), and

CA (0.110 and 0.101) for training and testing processes, respectively. The reservoir inflow forecasting for 1 week and

1 month ahead showed acceptable results with correlation coefficient (r) between 0.5 and 0.7 for training and

testing processes and gave values of RMSE and MAE close to those values of 1 day ahead reservoir inflow forecasting,

However, they could not forecast reservoir inflow during floods optimally. The model should be kept up to date

as more information is added.

Keyword: reservoir inflow, genetic programming, Pa Phayom reservoir
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Figure 1 Location of Pa Phayom reservoir
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Figure 2 Step of the GP method [30]
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Table 1

Table 1 Data Type of rainfall and reservoir inflow at

Pa Phayom reservoir

rainfall (mm) reservoir inflow (MCM)

Data

number
type
max min  Avg. max min  Avg.
Daily 3640 288 0 6.16 2.23 0 007
Week 520 518.2 0 4313 9.22 0 049
Month 130 1240 0 1725 16.23 0.06 1.95
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Table 2
Table 2 Case studies of input and output data

input output
Case study
data data
1 R(t),R(t-1) Q(t+1)
2 R(),Q() Qlt+1)
3 R(1),Q(1),Q(t-1) Qlt+1)
4 R(H),R(t-1),Q(1),Q(t-1) Qlt+1)

Remark: Q(t) = reservoir inflow at the present day, week, or
month
Q(t+1) = reservoir inflow at one day, week, or month
ahead
Q(t-1) = reservoir inflow at the previous 1 day, week,
or month
R(t) = rainfall at the present day, week, or month

R(t-1) = rainfall at the previous 1 day, week, or month

2.5 MINAFaUAINISIEMaTURY GP manzau
TunsnegeuAIsiwesvea GP 9 7 Ws1iwes

Hu Buen nsinual Population size L¥11A1U 500 #1
Crossover Probability 1¥11f1U 0.9 A1 Mutation Probability
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Tree depth tv1f7U 5 ag Function Set tMAU +, -, %,/
Fuduen Default vaalUTLNTU GPOtNET Version 4 18u
A1Asii wazyiin1suladi Generation Number L&uf 500
1,000 1,500 2,000 2,500 Wag 3,000 LagAa15UIAT
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NINAABULUUTIA0Y (testing) Feagflutreiifeouldiu
Tnealy [3], [4], (5], [6), (7], [8], [19] tiumsnefisannms
WivmiuTindeyasyesiaan 10 Y (. 2550 fe w.a. 2559)
fisrurudeyatiedu 3640 520 uaz 130 dmFumaneinsol
Usinmihlvadhenafuiiimeeeuseu s1edUani uas
Fefieu audwu ddeyadmiunsruiumsiieus sedu
eFUAM warTIeeu Wity 2548 364 wag 91 Yateya
MUEIAU kazdtayadmTunseuIuNINAGRULUUIIAY
31871 8FUAY UazTIiaY WU 1092 156 uay
39 Yadayanua1U

2.7 mawIsuiigulseansnm

lumsiSeuieudssansameueswuudnaedldan
n19add 4 an ldun 1) Arduuszansanduius (0 2)
A1snfidedvesAadsvesnnuaainiadouiidians
(RMSE) 3) AraaaLadouduysaliads (MAE) uag Andy
wsiugrsan (CA) 1311, [32) Fadumsiiwesfismiuseming
RMSE MAE uag r* lagilAuviniu 0.33(RMSE + MAE + (1 -
) Tnsfinnsanadulssansanduius () 1dlnd 1 1n
flgn ArmnunaiaLedeusisans waga1 CA faitosiian
dwduuuudaesiiiusyAvsnmia

3. NAN15IPUAZDAUTIINANITNAADY

3.1 HAMSVAFBUATNISIIND TNz

Han1IAFRUAIIITResTivanzaves GP lay
MNILUIAVBINTITNDTANN UAazFD waztdonldal A
FudszAvisanduiug (1) 2) msnfideswesAiadevesnny
AaIALAAEUME AR (RMSE) lunisilSeudioudssansan
U1 A1 Generation number 117U 3000 A1 Population
size LYI1AU 500 A1 Crossover Probability tvi1AU 0.9 #1
Mutation Probability t¥1 17U 0.05 @1 Reproduction
Probability 1%11f1U 0.2 A1 Max Tree depth 11AU 5 kag
Function Set Alda%silaun +-*/ s1wazidoananis
VNAFBUATNTIALMBS YR GP Aalandly Table 3
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Table 3 Testing results for determination of appropriate GP parameters

Parameters varying r RMSE (MCM) Optimal Value
parameters training  testing  training testing
Population 500 0.72 0.694 0.069 0.058 500
size 1000 0.707 0.613 0.103 0.099
1500 0.706 0.598 0.107 0.11
Crossover 0.6 0.697 0.586 0.107 0.107 0.9
Probability 0.7 0.71 0.623 0.103 0.1
0.8 0.703 0.582 0.11 0.115
0.9 0.72 0.694 0.069 0.058
0.95 0.71 0.619 0.104 0.102
Mutation 0.05 0.72 0.694 0.069 0.058 0.05
Probability 0.1 0.707 0.589 0.108 0.114
0.15 0.705 0.586 0.108 0.113
0.2 0.706 0.648 0.104 0.098
0.25 0.705 0.582 0.11 0.117
0.3 0.702 0.593 0.108 0.108
Reproduction 0.2 0.72 0.694 0.069 0.058 0.2
Probability 0.3 0.704 0.607 0.105 0.103
0.4 0.706 0.65 0.103 0.096
0.5 0.695 0.656 0.105 0.096
Max Tree 3 0.705 0.573 0.108 0.122 Initialize depth = 5
depth 5 0.72 0.694 0.069 0.058
7 0.704 0.602 0.108 0.109 Operation depth = 6
Function Set +- %/ 0.72 0.694 0.069 0.058 +,-%/
+,-,%./,sin,cos,tan 0.704 0.62 0.107 0.104
+-%/,log 0.708 0.594 0.105 0.108
+- 0.689 0.667 0.106 0.092
Generation 500 0.703 0.601 0.105 0.104 3000
number 1000 0.697 0.672 0.106 0.094
1500 0.691 0.647 0.108 0.098
2000 0.663 0.671 0.113 0.094
2500 0.696 0.656 0.107 0.098
3000 0.878 0.883 0.069 0.058

3.2 Han1sNaaauUsZaNS AN
lunsnageuyszdnsainnisussendldisnis
TUsunsudeiugnssy dmsunisweinsaivsunailnadi
gafAu anunsanansmanisanwdu 3 dw leun 1) n1s
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¢ 1a - P < 9 o ¢ %
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0.878 0.069 a1uau.al./u 0.031 d1uau.u./3u way 0.110
AUSFU Waz A1 r RMSE MAE uay CA dmdutunaunis
NAADU LAY 0.883 0.058 a1uaU.u./3u 0.024 awaud./
U waz 0.101 auasu 1aeds GP Traun1staundslunis
wensaiilvadnenafuthanamth 1 Su fedl

Q(t+1) = (((0.432*(((1.946%1.946)/(9.484+R(1)))
+(R(1)*4.545))*Q0))/(Q(t)/(2.206-
(RE*R(1)))*0.396))+(0.396*0.432))) (1)
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((((R(1)*(1.264/2.346))/((1.264*0.098)
-2.346))+(Q(t)/1.264))+0.098)) (2)
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1@ 0.088 aruavu.u./7u wag 0.039 a1uav.u./7u
ANAPIU ﬁm%’u%y’umaumiﬁaui uaz 0.063 d1uAU.L./Tu
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Table 4 Statistical indices of reservoir inflow forecasting for 1 day, 1 week, and 1 month ahead

Daily

Cases RMSE (MCM) MAE (MCM) CA
training testing training testing training testing training testing
1 0.723 0.784 0.103 0.080 0.051 0.040 0.210 0.168
2 0.878 0.883 0.069 0.058 0.031 0.024 0.110 0.101
3 0.857 0.814 0.075 0.072 0.032 0.028 0.124 0.145
4 0.877 0.844 0.071 0.066 0.031 0.026 0.111 0.126
Max 0.878 0.883 0.103 0.080 0.051 0.040 0.210 0.168
Min 0.723 0.784 0.069 0.058 0.031 0.024 0.110 0.101
Average 0.834 0.831 0.080 0.069 0.036 0.030 0.139 0.135

Weekly

Cases RMSE (MCM) MAE (MCM) CA
training testing training testing training testing training testing
1 0.533 0.590 0.712 0.497 0.336 0.258 0.588 0.469
2 0.659 0.679 0.618 0.442 0.270 0.200 0.485 0.394
3 0.551 0.619 0.699 0.480 0.285 0.213 0.560 0.436
4 0.581 0.636 0.680 0.473 0.286 0.214 0.543 0.427
Max 0.659 0.679 0.712 0.497 0.336 0.258 0.588 0.469
Min 0.533 0.590 0.618 0.442 0.270 0.200 0.485 0.394
Average 0.581 0.631 0.677 0.473 0.294 0.221 0.544 0.431

Monthly

Cases RMSE (MCM) MAE (MCM) CA
training testing training testing training testing training testing
1 0.494 0.466 2.285 1.792 1.156 1.099 1.399 1.225
2 0.560 0.524 2.148 1.636 1.063 1.003 1.299 1.121
3 0.418 0.369 2.713 1.924 1.345 1.197 1.628 1.328
4 0.511 0.419 2.227 1.770 1.100 1.071 1.355 1.222
Max 0.560 0.524 2.713 1.924 1.345 1.197 1.628 1.328
Min 0.418 0.369 2.148 1.636 1.063 1.003 1.299 1.121
Average 0.496 0.445 2.343 1.780 1.166 1.093 1.420 1.224
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Figure 3 Statistical indice based on daily average value of reservoir inflow

forecasting for 1 day, 1 week and 1 month ahead
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