

On Γ -Semi-prime and Quasi Γ -Semi-prime Ideals in Γ -AG-Groupoids

PairoteYiarayong

Faculty of Science and Technology,PibulsongkramRajabhat University,

TambonPhlaichumphon,Muang District, Phitsanuloke 65000, Thailand

E-mail: paireote0027@hotmail.com

PairoteYiarayong

Faculty of Science and Technology,PibulsongkramRajabhat University, 156 Moo 5,

TambonPhlaichumphon,Muang District, Phitsanuloke65000, Thailand

*E-mail: paireote0027@hotmail.com

บทคัดย่อ

งานวิจัยฉบับนี้ได้ศึกษาแกมมา-ไอเดล, แกมมา-เอจี-สมีอนไอเดลกิ่งเฉพาะและแกมมา-เอจี-ไอเดลกิ่งเฉพาะและได้จำแนกลักษณะเฉพาะบางประการของสิ่งที่ได้ก่อร้ามข้างต้น นอกจากนี้ยังได้ศึกษาความสัมพันธ์ระหว่างแกมมา-ไอเดล, แกมมา-เอจี-สมีอนไอเดลกิ่งเฉพาะและแกมมา-เอจี-ไอเดลกิ่งเฉพาะของ $(A:\Gamma:B)$ และ $(A:\gamma:r)$ ในแกมมา-เอจี-กรุปพอยด์ที่มีเอกลักษณ์ทางซ้าย

คำสำคัญ : แกมมา-เอจี-กรุปพอยด์ แกมมา-เอจี-3-แอบ แกมมา-เอจี-สมีอนไอเดลกิ่งเฉพาะ แกมมา-เอจี-ไอเดลกิ่งเฉพาะ แกมมา-สลับที่ทางขวา

Abstract

This study investigated Γ -ideals, Γ -semi-prime, and quasi Γ -semi-prime ideals in Γ -AG-groupoids. Some characterizations of Γ -semi-prime ideals and quasi Γ -semi-prime ideals were obtained. Moreover, the relationships between Γ -semi-prime and quasi Γ -semi-prime ideals of $(A:\Gamma:B)$ and $(A:\gamma:r)$ in Γ -AG-groupoids were investigated. Finally, necessary and sufficient conditions were obtained of Γ -semi-prime ideals to be quasi Γ -semi-prime ideals in Γ -AG-groupoids with left identity.

Keywords: Γ -AG-groupoid, Γ -AG-3-band, quasi Γ -semi-prime ideal, Γ -semi-prime ideal, right Γ -alternative.

Introduction

Abel-Grassmann's groupoid (AG-groupoid) is the generalization of semigroup theory with wide range of usages in theory of flocks [6]. The fundamentals of this non-associative algebraic structure were first discovered by Kazim and Naseeruddin [1]. AG-groupoid is a non-associative algebraic structure mid way between a groupoid and a commutative semigroup. It is interesting to note that an AG-groupoid with right identity becomes a commutative

monoid [4]. This structure is closely related with a commutative semigroup because if an AG-groupoid contains a right identity, then it becomes a commutative monoid [5]. A left identity in an AG-groupoid is unique [5]. It is a mid structure between a groupoid and a commutative semigroup with wide range of applications in theory of flocks [6]. Ideals in AG-groupoids have been discussed in [4] and [5]. In 1981 the notion of Γ -semigroups was

introduced by M. K. Sen [8] and [12]. Let S and Γ be any nonempty sets. If there exists a mapping

$$S \times \Gamma \times S \rightarrow S$$

written (a, γ, b) by $a\gamma b$, S is called a Γ -AG-groupoid if

S satisfies the identity

$$(a\alpha b)\beta c = (c\alpha b)\beta c$$

for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$ (See [2]). This structure is also known as left almost semigroup (LA-semigroup). In this paper, we are going to investigate some interesting properties of newly discovered classes of namely; Γ -AG-groupoid S always satisfies the Γ -medial law:

$$(a\gamma b)\beta(c\delta d) = (a\gamma c)\beta(b\delta d)$$

for all $a, b, c, d \in S$ and $\gamma, \beta, \delta \in \Gamma$ (See [2]), while a Γ -AG-groupoid S with left identity e always satisfies Γ -paramedial law:

$$(a\gamma b)\beta(c\delta d) = (d\gamma c)\beta(b\delta a)$$

for all $a, b, c, d \in S$ and $\gamma, \beta, \delta \in \Gamma$ (See [2]).

In this paper we characterize the Γ -AG-groupoid.

We investigate relationships between Γ -semiprime and quasi Γ -semiprime ideals of $(A:\Gamma:B)$ and $(A:\gamma:r)$ in Γ -AG-groupoids with left identity.

Basic results

In this section we refer to [7, 8, 11] for some elementary aspects and quote few definitions and examples which are essential to step up this study. For more details we refer to the papers in the references.

Example 2.1 [11] (1). Let S be an arbitrary AG-groupoid and Γ any non-empty set. Define a mapping

$$S \times \Gamma \times S \rightarrow S ;$$

by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. It is easy to see that S is a Γ -AG-groupoid.

(2). Let $\Gamma = \{1, 2, 3\}$. Define a mapping

$$\mathbb{Z} \times \Gamma \times \mathbb{Z} \rightarrow \mathbb{Z} \text{ by } a\gamma b = b - \gamma - a$$

for all $a, b \in \mathbb{Z}$ and $\gamma \in \Gamma$ where $" - "$ is a usual subtraction of integers. Then \mathbb{Z} is a Γ -AG-groupoid.

Lemma 2.2 [12] Every Γ -AG-groupoid is Γ -medial.

Lemma 2.3 [10, 12] Let S be a Γ -AG-groupoid with a left identity, then

$$a\gamma(b\alpha c) = b\gamma(a\alpha c)$$

for all $a, b, c \in S$ and $\gamma, \alpha \in \Gamma$.

Definition 2.4 [11] Let S be a Γ -AG-groupoid. A nonempty subset A of S is called a sub Γ -AG-groupoid of S if $A\Gamma A \subseteq A$.

Definition 2.5 [11] A sub Γ -AG-groupoid A of S is called a left (right) Γ -ideal of S if $S\Gamma A \subseteq A$ ($A\Gamma S \subseteq A$) and is called a Γ -ideal if it is left as well as right Γ -ideal.

Definition 2.6 [11] An element $e \in S$ is called a left identity of Γ -AG-groupoid if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$.

Lemma 2.7 [11] If a Γ -AG-groupoid S has a left identity, then every right Γ -ideal is a left Γ -ideal.

Proof. Let I be a right Γ -ideal of S . Then for $i \in I, s \in S$ and $\gamma, \alpha \in \Gamma$, consider

$$\begin{aligned} s\gamma i &= (e\alpha s)\gamma i \\ &= (i\alpha s)\gamma e \in I \end{aligned}$$

where $e \in S$ is a left identity. Hence I is a left Γ -ideal. \square

Lemma 2.8 [11] If A is a left Γ -ideal of a Γ -AG-groupoid S with left identity, and if for any $a \in S$, there exists $\gamma \in \Gamma$, then $a\gamma A$ is a left Γ -ideal of S .

Proof. Let A be a left Γ -ideal of S , consider

$$s\gamma(a\gamma i) = (e\gamma s)\gamma(a\gamma i)$$

$$= (e\gamma a)\gamma(s\gamma i) \\ = a\gamma(s\gamma i) \in a\gamma A$$

for all $s \in S, i \in A$. Hence $a\gamma A$ is a left Γ -ideal of S . \square

$$a\gamma b = a\gamma(e\beta b) \\ = e\gamma(a\beta b) \\ = a\beta b.$$

Hence $a\gamma b = a\beta b$. \square

Definition 2.9 [11] A Γ -ideal P is called Γ -semiprime if $A^2 = A\Gamma A \subseteq P$ implies that $A \subseteq P$ for any Γ -ideals A of S .

Definition 2.10 [11] A left Γ -ideal P is called quasi Γ -semiprime if $A^2 = A\Gamma A \subseteq P$ implies that $A \subseteq P$ for any left Γ -ideals A of S .

It is easy to see that every quasi Γ -semiprime ideal is Γ -semiprime.

Lemma 2.11 [11] If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi Γ -semiprime if and only if $a\alpha(S\gamma a) \subseteq P$ implies that $a \in P$, for all $a \in S$ and any $\alpha, \gamma \in \Gamma$.

Lemma 2.12 [11] If A is a proper right (left) Γ -ideal of a Γ -AG-groupoid S with left identity e , then $e \notin A$.

Proof. Assume on contrary that and let $e \in A$ and $\gamma \in \Gamma$. Then

$$S = e\gamma S \subseteq A\Gamma S \subseteq A.$$

A contradiction. Hence $e \notin A$. \square

Γ -ideals in Γ -AG-Groupoids

The results of the following lemmas seem to be at the heart of the theory of Γ -AG-groupoids; these facts will be used very frequently that normally we shall make no reference to this lemma.

Lemma 3.1 If S is a Γ -AG-groupoid with left identity, then $a\gamma b = a\beta b$, for all $a, b \in S$ and $\gamma, \beta \in \Gamma$

Proof. Let S be a Γ -AG-groupoid and e be the left identity of S , $a, b \in S$ and let $\gamma, \beta \in \Gamma$ therefore we have

$$A\Gamma B = \{a\gamma b : a \in A, b \in B, \gamma \in \Gamma\}$$

is a left Γ -ideal in S , where $\emptyset \neq A \subseteq S$.

Proof. Suppose that S is a Γ -AG-groupoid with left identity. Let B be a left Γ -ideal of S . Then

$$S\Gamma(A\Gamma B) = A\Gamma(S\Gamma B) \subseteq A\Gamma B.$$

By definition of left Γ -ideal, we get $A\Gamma B$ is a left Γ -ideal in S . \square

Lemma 3.3 Let S be a Γ -AG-groupoid with left identity and let $a \in S$. Then $a^2\gamma S$ is a Γ -ideal in S , where $\gamma \in \Gamma$.

Proof. By Lemma 2.8, we have $a^2\gamma S$ is a left Γ -ideal of S . Now consider

$$(a^2\gamma r)\alpha s = (s\gamma r)\alpha a^2 \\ = a^2\alpha(r\gamma s) \\ = a^2\gamma(r\gamma s) \in a^2\gamma S$$

for all $r, s \in S$ and $\gamma, \alpha \in \Gamma$. Therefore $a^2\gamma S$ is a Γ -ideal in S . \square

Lemma 3.4 Let S be a Γ -AG-groupoid with left identity, and let A be a left Γ -ideal of S . Then $(A:\gamma:r)$ is a left Γ -ideal in S , where

$$(A:\gamma:r) = \{a \in S : r\gamma a \in A\}.$$

and $r \in S, \gamma \in \Gamma$.

Proof. Suppose that S is a Γ -AG-groupoid. Let

$s \in S$ and let $a \in (A:\gamma:r)$. Then $r\gamma a \in A$ and so that

$$r\gamma(s\alpha a) = s\gamma(r\alpha a) \in s\gamma A \subseteq S\Gamma A \subseteq A$$

for all $\gamma \in \Gamma$. Therefore $s\alpha a \in (A:\gamma:r)$ so that

$$s\Gamma(A:\gamma:r) \subseteq (A:\gamma:r).$$

Hence $(A:\gamma:r)$ is a left Γ -ideal in S . \square

Remark Let S be a Γ -AG-groupoid and let A be a left Γ -ideal of S . It is easy to verify that $A \subseteq (A:\gamma:r)$.

Definition 3.5 A Γ -AG-groupoid S is called Γ -AG-3-band if

$$a\alpha(a\beta a) = (a\alpha a)\beta a = a$$

for all $a \in S$ and $\alpha, \beta \in \Gamma$.

Proposition 3.6 Every left identity in a Γ -AG-3-band is a right identity.

Proof. Let e be a left identity and a be any element in a Γ -AG-3-band S . Then

$$\begin{aligned} a\gamma e &= (a\alpha(a\beta a))\gamma e \\ &= (e\alpha(a\beta a))\gamma a \\ &= (a\beta a)\gamma a \\ &= a \end{aligned}$$

for all $a \in S$ and $\gamma, \alpha, \beta \in \Gamma$. Hence e is right identity. \square

Lemma 3.7 If a Γ -AG-3-band S has a left identity, then every left Γ -ideal is a Γ -ideal.

Proof. Let S be a Γ -AG-3-band and let A be a left Γ -ideal. Then

$$\begin{aligned} a\gamma s &= ((a\alpha a)\beta a)\gamma s \\ &= (s\beta a)\gamma(a\alpha a) \\ &\in (S\Gamma A)\Gamma(A\Gamma A) \\ &\subseteq A\Gamma A \\ &\subseteq A \end{aligned}$$

for all $\gamma, \alpha, \beta \in \Gamma$, $a \in A$ and $s \in S$. Hence A is a Γ -ideal. \square

Corollary 3.8 Let S be a Γ -AG-3-band with left identity, and let A be a left Γ -ideal of S . Then $(A:\gamma:r)$ is a Γ -ideal in S .

Proof. This follows from Lemma 3.7. \square

Lemma 3.9 Let S be a Γ -AG-groupoid with left identity, and let A, B be left ideals of S . Then $(A:\Gamma:B)$ is a left Γ -ideal in S , where

$$(A:\Gamma:B) = \{r \in S : B\Gamma r \subseteq A\}.$$

Proof. Suppose that S is a Γ -AG-groupoid. Let

$s \in S$ and let $a \in (A:\Gamma:B)$. Then $B\Gamma a \subseteq A$ so that

$$B\Gamma(s\gamma a) = s\Gamma(B\gamma a) \subseteq s\Gamma A \subseteq A$$

for all $s \in S$ and $\gamma \in \Gamma$. Therefore $s\gamma a \in (A:\Gamma:B)$ so that

$$S\Gamma(A:\Gamma:B) \subseteq (A:\Gamma:B).$$

Hence $(A:\Gamma:B)$ is a left Γ -ideal in S . \square

Remark Let S be a Γ -AG-groupoid with left identity and let A, B, C be left Γ -ideals of S . It is easy to verify that $(A:\Gamma:C) \subseteq (A:\Gamma:B)$, where $B \subseteq C$.

Corollary 3.10 Let S be a Γ -AG-3-band with left identity, and let A, B be left Γ -ideals of S . Then $(A:\Gamma:B)$ is a Γ -ideal in S .

Proof. The proof is easy. \square

Properties of Γ -Semiprime Ideals in Γ -AG-Groupoids.

We start with the following theorem that gives a relation between Γ -semiprime and quasi Γ -semiprime ideal in Γ -AG-groupoid. Our starting points is the following lemma:

Lemma 4.1 If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi Γ -semiprime if and

only if $(S\gamma a)^2 \subseteq P$ implies that $a \in P$, where $a \in S$ and $\gamma \in \Gamma$.

Proof. Let P be a quasi Γ -semiprime ideal of a Γ -AG-groupoid S with left identity and let $\gamma, \beta \in \Gamma$. Now suppose that $(S\gamma a)^2 \subseteq P$. Then by Definition of left Γ -ideal, we obtain

$$\begin{aligned} (S\gamma a)^2 &= (S\gamma a)\beta(S\gamma a) \\ &= (S\gamma S)\beta(aya) \\ &= S\beta(aya) \\ &= a\beta(S\gamma a) \end{aligned}$$

that is $a\beta(S\gamma a) = (S\gamma a)^2 \subseteq P$. By Lemma 2.11, we have $a \in P$.

Conversely, assume that if $(S\gamma a)^2 \subseteq P$, then $a \in P$ for all $a \in S$ and $\gamma, \alpha \in \Gamma$. Let $a\alpha(S\gamma a) \subseteq P$. Now consider

$$a\alpha(S\gamma a) = (S\gamma a)^2 \subseteq P.$$

By using given assumption, if $a\alpha(S\gamma a) \subseteq P$, then $a \in P$. Then by Lemma 2.11, we have P is quasi Γ -semiprime ideal in S . \square

Theorem 4.2 If S is a Γ -AG-groupoid with left identity, then a left Γ -ideal P of S is quasi Γ -semiprime if and only if $a^2 \in P$ implies that $a \in P$, where $a \in S$.

Proof. Let P be a left Γ -ideal of a Γ -AG-groupoid S with left identity and let $\gamma, \beta \in \Gamma$. Now suppose that $a^2 \in P$. Then by definition of left Γ -ideal, we get

$$\begin{aligned} (S\gamma a)^2 &= (S\gamma a)\beta(S\gamma a) \\ &= (S\gamma S)\beta(aya) \\ &= S\beta(aya) \\ &= S\beta a^2 \\ &\subseteq S\beta P \\ &\subseteq P \end{aligned}$$

for all $\beta \in \Gamma$. By Lemma 4.1, we have $a \in P$.

Conversely, the proof is easy. \square

Definition 4.3 A Γ -AG-groupoid S is called right Γ -alternative if it satisfies the identity,

$$a\gamma(b\alpha b) = (a\gamma b)\alpha b$$

for all $a, b \in S$ and $\alpha, \beta \in \Gamma$.

Theorem 4.4 Let S be a right Γ -alternative, and let A be a quasi Γ -semiprime ideal of S . Then $(A:\gamma:r^2)$ is a quasi Γ -semiprime ideal in S , where $r \in S, \gamma \in \Gamma$.

Proof. Assume that A is a quasi Γ -semiprime ideal of S and $\gamma, \beta \in \Gamma$. By Lemma 3.4, we have $(A:\gamma:r^2)$ is a left Γ -ideal in S . Let $a^2 \in (A:\gamma:r^2)$. Then $r^2\gamma a^2 \in A$ so that

$$\begin{aligned} (r\gamma a)^2 &= (r\gamma a)\beta(r\gamma a) \\ &= (r\gamma r)\beta(aya) \\ &= r^2\beta a^2 \\ &= r^2\gamma a^2 \in A. \end{aligned}$$

By Theorem 4.2, we have $r\gamma a \in A$. Then consider

$$\begin{aligned} r^2\gamma a &= r^2\beta a \\ &= (r\gamma r)\beta a \\ &= r\gamma(r\beta a) \in A. \end{aligned}$$

Therefore $a \in (A:\gamma:r^2)$ and hence $(A:\gamma:r^2)$ is a quasi Γ -semiprime ideal in S . \square

Theorem 4.5 Let S be a right Γ -alternative, and let A be a quasi Γ -semiprime ideal of S . Then $(A:\gamma:r)$ is a quasi Γ -semiprime ideal in S , where $r \in S$ and $\gamma \in \Gamma$.

Proof. Assume that A is a quasi Γ -semiprime ideal of S and let $r \in S, \gamma, \beta \in \Gamma$. By Lemma 3.4, we have

$(A:\gamma:r)$ is a left Γ -ideal in S . Let $a^2 \in (A:\gamma:r)$. Then

$r\gamma a^2 \in A$ so that

$$\begin{aligned} (r\gamma a)^2 &= (r\gamma a)\beta(r\gamma a) \\ &= r\beta((r\gamma a)\gamma a) \\ &= r\beta(r\gamma(a\gamma a)) \\ &= r\beta(r\gamma a^2) \in r\beta A \subseteq A. \end{aligned}$$

By Theorem 4.2, we have $r\gamma a \in A$. Therefore

$$a \in (A:\gamma:r)$$

and hence $(A:\gamma:r)$ is a quasi Γ -semiprime ideal in S . \square

Theorem 4.6 Let S be a Γ -AG-3-band with left identity. Then P is a quasi Γ -semiprime ideal in S if and only if P is a Γ -semiprime ideal in S .

Proof. The proof is easy. \square

Theorem 4.7 Let S be a Γ -AG-groupoid with left identity, and let P be a Γ -semiprime ideal of S . If $(S\gamma a^2)^2 \subseteq P$, then $a^2 \in P$, where $a \in S$ and $\gamma \in \Gamma$.

Proof. Let P be a Γ -semiprime ideal of a Γ -AG-groupoid S with left identity and let $\gamma, \beta \in \Gamma$. Now suppose that

$$(S\gamma a^2)^2 \subseteq P.$$

Then by Definition of left Γ -ideal, we get

$$\begin{aligned} (S\gamma a^2)^2 &= (S\gamma a^2)\beta(S\gamma a^2) \\ &= ((S\gamma a^2)\gamma a^2)\beta S \\ &= ((a^2\gamma a^2)\gamma S)\beta S \\ &= (S\gamma S)\beta(a^2\gamma a^2) \\ &= a^2\beta((S\gamma S)\gamma a^2) \\ &= a^2\beta((a^2\gamma S)\gamma S) \end{aligned}$$

$$\begin{aligned} &= (a^2\gamma S)\beta(a^2\gamma S) \\ &= (a^2\gamma S)^2 \end{aligned}$$

that is $(a^2\gamma S)^2 \subseteq P$. By Lemma 3.3, we have $a^2\gamma S$ is a Γ -ideal in S . Therefore

$$\begin{aligned} a^2 &= a\gamma a \\ &= (e\beta a)\gamma a \\ &= (a\beta a)\gamma e \\ &= a^2\gamma e \in a^2\gamma S \subseteq P. \end{aligned}$$

\square

Corollary 4.8 Let S be a Γ -AG-groupoid with left identity,

and let P be a Γ -semiprime ideal of S . If $(a^2)^2 \in P$, then $a^2 \in P$, where $a \in S$.

Proof. Let P be a Γ -semiprime ideal of a Γ -AG-groupoid S with left identity and let $\gamma, \beta \in \Gamma$. Now suppose that

$$(a^2)^2 \in P.$$

Then by Definition of left ideal, we get

$$\begin{aligned} (a^2\gamma S)^2 &= (a^2\gamma S)\beta(a^2\gamma S) \\ &= a^2\beta((a^2\gamma S)\gamma S) \\ &= a^2\beta((S\gamma S)\gamma a^2) \\ &= (S\gamma S)\beta(a^2\gamma a^2) \\ &= S\beta(a^2)^2 \end{aligned}$$

$\subseteq S\Gamma P$
 $\subseteq P$
 that is $(a^2\gamma S)^2 \subseteq P$. It is easy to see that $a^2 \in P$. \square

Conclusions

Many new classes of Γ -AG-groupoids have been discovered recently. All this has attracted researchers of the field to investigate these newly discovered classes in detail.

This current article investigates the Γ -ideals, Γ -semiprime and quasi Γ -semiprime ideals in Γ -AG-groupoids. Some characterizations of Γ -semiprime and quasi Γ -semiprime ideals are obtained. Moreover, we investigate relationships between Γ -semiprime and quasi Γ -semiprime ideals of $(A:\Gamma:B)$ and $(A:\gamma:r)$ in Γ -AG-groupoids.

Acknowledgements

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

References

- [1] Kazim M.A. and Naseeruddin M. 1972. "On Almost Semigroups". **The Alig. Bull. Math.**, 2, 1-7.
- [2] Khan M, Amjid V and Faisal. 2010. **Characterizations of Intra-Regular Γ -AG-Groupoids by the Properties of Their Γ -Ideals**. <http://arxiv.org/abs/1011.2845>. 4 September 2013.
- [3] Khan M and Naveed Ahmad. 2010. "Characterizations of Left Almost Semigroups by their Ideals". **Journal of Advanced Research in Pure Mathematics**, 2(3), 61-73.
- [4] Mushtaq Q and Yousuf SM. 1988. "On LA-Semigroup Defined by a Commutative Inverse Semigroup". **Math.Bech.**, 40, 59 - 62.
- [5] Mushtaq Q and Yousuf SM. 1978. "On LA-Semigroups". **The Alig. Bull. Math.**, 8, 65 - 70.
- [6] Naseeruddin M. 1970. **Some Studies in Almost Semigroups and Flocks**. Ph.D. thesis: Aligarh Muslim University: Aligarh, India.
- [7] Protic PV and Stevanovic N. 1995. "AG-Test and Some general Properties of Abel-Grassmann's Groupoids". **PU. M. A.**, 4(6), 371 - 383.
- [8] Sen MK and Saha NK. 1986. "On Γ -Semigroups". **Bull. Cal. Math. Soc**, 78, 180-186.
- [9] Sen MK. 1981. On Γ -Semigroups. **Proceeding of International Symposium on Algebra and Its Applications**. New York: Decker Publication. 301-308.
- [10] Shah T and Rehman I. 2010. "On M-Systems in Γ -AG-Groupoids". **Proc. Pakistan Acad.Sci.**, 47(1), 33-39.
- [11] Shah T and Rehman I. 2010. "On Γ -Ideals and Γ -Bi-Ideals in Γ -AG-Groupoids". **International Journal of Algebra**, 4(6), 267 - 276.
- [12] Shah T and Rehman I. 2013. "Decomposition of Locally Associative Γ -AG-Groupoids". **Novi Sad J. Math.**, 43(1), 1-8.