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Abstract
We extend the notions of Hadamard product, Hadamard sum, and block Hadamard product for matrices over
a field to matrices over an arbitrary commutative semiring. We investigate their properties involving the addition, the
scalar multiplication, the usual multiplication, the transposition, and traces. Moreover, we show that the Hadamard
product and the block Hadamard product are submatrices of the Kronecker product and the block Kronecker

product, respectively.
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Tuflwadadadu s Anvuanindiaudnunain wazdinsuszgndldluausng 9 laun maamuuulsnid
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3. (A+B)e C=(Ae C)+(Be C)
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b, b, L b ] lb, b, L b, ] b, b, L
M M o M
[b, b, L b [b, b, L b, [b, b, L
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Aau nngeun 4.4 agleinaundnsuniad (i, j) Tu
vdendesil kI wes A* B quivihduandnsumvied

(. ;) Tuvdendosil kI vesA) B e a =1,
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o =0 +m+l Tngdt i=12..muaz B =1,
By =i, +n+1 Tefl j=12,..,n
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