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The Estimation of Bayes Estimator with WinBUGS Program
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Abstract
WinBUGS is statistical software to estimate Bayes estimator using Markov Chain Monte
Carlo (MCMC) method. For parameter estimation, the Bayesian estimator is one method to use over
a wide range because there is a prior distribution to evaluate parameter. However this method is rather
complicated to be proved in form of distribution function but WinBUGS program can help to calculate
Bayes estimator from posterior distribution. Therefore the user can estimate parameter without

proving in order to know the distribution function.
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