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บทคัดย่อ 
บทความนี้น าเสนอสมการแสดงพฤติกรรมไม่เป็นเชิงเส้นของพอลิเมอร์เหลว ซึ่งเป็นสมการ

ความสัมพันธ์ระหว่างความเค้นและความเครียดของวัสดุที่เกิดการเสียรูปอย่างถาวร ท าให้อัตราการเสียรูปมี
ผลอย่างมากกับการเสียรูปของวัสดุ โดยกล่าวถึงหลักการหาความเครียดของวัสดุที่มีการเสียรูปอย่างถาวร 
ส าหรับของไหลหนืดยืดหยุ่นที่มีเนื้อเดียว โดยการอ้างอิงรูปทรงที่เวลาปัจจุบันแล้วค านวณหาความเครียด
ของวัสดุย้อนกลับไปในอดีต สมการแสดงพฤติกรรมไม่เป็นเชิงเส้นส าหรับการไหลของพอลิเมอร์เหลวท่ีเขยีน
อยู่ในรูปเชิงอนุพันธ์ (Differential form) สามารถแบ่งได้เป็น 3 จ าพวกหลัก ๆ คือ สมการแสดงพฤติกรรม
เชิงอนุพันธ์ที่เพิ่มเทอมอัตราเครียด สมการแสดงพฤติกรรมเชิงอนุพันธ์ที่เพิ่มเทอมอัตราเค้น และสมการ
แสดงพฤติกรรมเชิงอนุพันธ์ที่เพิ่มทั้งเทอมอัตราเครียดและอัตราเค้นไปพร้อม ๆ กัน ในตอนท้ายของ
บทความได้กล่าวถึงสมการแสดงพฤติกรรมแบบอินทิกรัลและแบบอื่น ๆ ที่ปรับปรุงเพื่อให้สมการสามารถ
ท านายพฤติกรรมการไหลของวัสดุบางชนิดให้ดียิ่งข้ึน 
 
ค าส าคัญ: สมการแสดงพฤติกรรมไม่เปน็เชิงเส้น ความเครียดของวัสดุที่มีการเสียรูปมาก ๆ การไหลของวัสดุที่ซับซ้อน 
สมการแสดงพฤติกรรมแบบอินทิกรัล 

 
Abstract 

 
Polymeric liquids are complex fluids whose shows nonlinear relationship between 

stress and strain or strain rate.  In this article, finite strain are determined in current  
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configuration and used as a reference, then the strain history can be calculated to show 
its previous deformation.  By this way, nonlinear constitutive equations are constructed by 
adding the strain rate terms, stress rate terms or both the strain and stress rate terms at    
the same time.  Later, integral type constitutive equations such as K-BKZ are discussed.  
Finally, some special type constitutive equations are explained. 

 
Keyword: Nonlinear constitutive equations, Finite strain for large deformations, Complex fluid flow, Integral 
type constitutive equations. 

 
1. บทน า 

การไหลของพอลิเมอร์หลอมเหลวและสารละลายพอลิเมอร์ จะมีพฤติกรรมที่แตกต่างจากวัสดุ
นิวทอเนียนท่ัว ๆ ไป คุณลักษณะที่แตกต่างท่ีส าคัญที่สุดของพอลิเมอร์หลอมเหลวและสารละลายพอลิเมอร์
คือความหนืดเปลี่ยนไปตามอัตราเฉือน (Shear rate dependent viscosity) [1] โดยทั่วไปแล้วพอลิเมอรห์
ลอมเหลวและสารละลายพอลิเมอร์จะมีความหนืดที่ลดลงเมื่อมีแรงเฉือนมากระท าให้ เกิดการไหลเราเรียก
คุณลักษณะของความหนืดชนิดนี้ว่าของไหลที่มีความเค้นเฉือนลดลง (Shear thinning fluid) หรือซูโด
พลาสติก (Pseudoplastic) ยกตัวอย่างเช่น พอลิเมอร์หลอมเหลวในเครื่องอัดรีดจะมีลักษณะการไหลแบบ
เฉือน (Shear flow) และความหนืดจะลดลงเมื่อมีอัตราการเฉือน (Shear rate) ที่สูงขึ้น นอกจากนั้นการ
ไหลแบบเฉือนยังก่อให้เกิดความแตกต่างของความเค้นตั้งฉาก (Normal stress difference) ซึ่งมีผลต่อ
พฤติกรรมการไหลด้วย นอกจากนั้นการไหลในทิศทางอื่นที่ ไม่ไช่ทิศทางการไหลหลัก (Secondary flow) 
ของพอลิเมอร์ก็มีความแตกต่างจากของไหลแบบนิวทอเนียน นอกจากนี้พอลิเมอร์ยังมีสมบัติความยืดหยุ่น 
(Elastic) อยู่ซึ่งท าให้เกิดพฤติกรรมการบวมพอง (Extrudate swell or die swell) เมื่อมีการไหลออกมา
จากแม่พิมพ์อัดรีดขณะท าการขึ้นรูป พฤติกรรมที่แปลกประหลาดเหล่านี้เป็นเพียงแค่ตัวอย่างที่จะแสดงให้
เห็นถึงความยากต่อการควบคุมกระบวนการผลิตในอุตสาหกรรมการขึ้นรูป ยังมีพฤติกรรมอื่น ๆ ท่ีน่าสนใจ
อีกมากมายซึ่งสามารถศึกษาเพิ่มเติมได้จาก [2] และรายละเอียดในการทดสอบเพื่อหาฟังก์ชันการไหลแบบ
เฉือนสามารถหาอ่านเพิ่มเติมได้จาก [3] 

กระบวนการขึ้นรูปพอลิเมอร์ส่วนมากจะกระท าในขณะที่พอลิเมอร์มีสถานะเป็นของเหลว เช่น
พลาสติกหลอมเหลวหรือสารละลายพอลิเมอร์ พอลิเมอร์ที่มีสถานะหนืดเหลวให้ตัวได้ดีบางครั้งเรียกว่าของ
ไหลหนืดยืดหยุ่น (Viscoelastic fluids) ซึ่งมาจากค าว่า ความหนืด (Viscous) และ ความยืดหยุ่น (Elastic) 
นั่นคือของไหลประเภทน้ีมีทั้งสมบัติเป็นของไหล (Fluid) ที่มีความยืดหยุ่นให้ตัวได้ โดยทั่วไปแล้วของไหลจะ
เปลี่ยนรูปไปตามภาชนะอย่างถาวร หรือเปลี่ยนรูปไปอย่างถาวรเมื่อถูกแรงเฉือนมากระท า ในขณะที่ความ
ยืดหยุ่นจะหมายถึงความสามารถของวัสดุในการกลับคืนสู่สภาพเดิมก่อนการเสียรูปโดยทั่วไปสมบัติความ
ยืดหยุ่นจะมีในของแข็ง เช่น เหล็ก ทองเหลือง และยางคงรูปเป็นต้น ดังนั้นของไหลยืดหยุ่นจึงเป็นวัสดุที่มี
ความพิเศษท่ีรวมเอาสมบัติของของไหลและของแข็งมารวมกัน สมบัติความยืดหยุ่นของวัสดุจะแสดงให้เห็น
ในสมการแสดงพฤติกรรมของวัสดุ (Constitutive equation) จากการที่ไม่เป็นเชิงเส้นและขึ้นอยู่กับเวลา 
(Nonlinear and time dependent properties) ดังจะเห็นได้ว่าสมบัติความยืดหยุ่นจะท าให้ของไหลคืน
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ตัว (ไหลย้อนกลับ) หลังจากท่ีไม่มีแรงภายนอกมากระท าซึ่งเราจะเรียกว่าของไหลมีความทรงจ า (Memory) 
ในบางครั้งเราเรียกของไหลที่สามารถคืนตัวได้หลังจากเอาแรงภายนอกออกนี้ว่าของไหลที่มีความทรงจ า 
(Memory fluid) 

ความเค้นของพอลิเมอร์เหลวจะขึ้นอยู่กับว่าของไหลสะสมความเครียด  (Strain history) มา
อย่างไรบ้าง นั่นคือความเครียดของพอลิเมอร์เหลวในอดีตจะมีผลต่อเนื่องมาถึงปัจจุบันด้วย ดังนั้นการวัด
ความเครียดในของเหลวจะแตกต่างจากการวัดความเครียดของวัตถุแข็งเกร็ง (Rigid body motion) ที่
ส่วนมากจะวัดโดยใช้เวลาและต าแหน่งในอดีตเป็นเวลาและต าแหน่งอ้างอิง (Configuration in the past 
as a reference configuration) แล้วค านวณหาความเครียดของวัสดุไปข้างหน้า ซึ่งโดยมากจะใช้ใน
กระบวนการที่ไม่ต่อเนื่องและจะทราบขนาดของวัสดุที่เวลาคงที่ 0t t=  ยกตัวอย่างเช่นการดึงช้ินทดสอบ 
(Tensile test) เพื่อหาความเค้นและความเครียดของวัสดุหรือกระบวนการกดอัดยาง (Compression 
molding) เป็นต้น การทดสอบการดึงจะยึดเอาขนาดพื้นที่หน้าตัดและความยาวก่อนยืดของช้ินงานก่อนการ
ทดสอบเป็นขนาดอ้างอิง จึงสามารถท านายความเครียดและความเค้นในการดึงยืดได้ส่วนใหญ่จะยึดเอา
ขนาดที่เวลา 0t =  เป็นขนาดและเวลาอ้างอิง 

ในทางกลับกันการทดสอบความเครียดสะสมในของไหลจะใช้เวลาและต าแหน่งของวัสดุในปัจจุบันเป็น
เวลาและต าแหน่งอ้างอิง (Configuration at the current time as reference configuration) แล้ว
สืบค้นประวัติความเค้นและความเครียดสะสมของวัสดุ  (Stress and strain history) กลับไปในอดีต
ยกตัวอย่างเช่นการบวมพอง (Die swell) ของพอลิเมอร์หลอมเหลวในกระบวนการอัดรีด จะเกิดจากการที่
พอลิเมอร์หลอมเหลวสะสมความเครียดในระหว่างที่อยู่ในแม่พิมพ์อัดรีด ดังนั้นเมื่อพอลิเมอร์หลอมเหลว
หลุดออกมาจากแม่พิมพ์อัดรีด จะเกิดการปลดปล่อยความเครียดที่สะสมมาในอดีตท าให้บวมออกด้านข้าง 
การท านายการบวมพองจึงต้องอ้างอิงรูปร่างของวัสดุในเวลาปัจจุบัน (Configuration at the current 
time as a reference) แล้วท านายความเครียดของวัสดุกลับไปในอดีตในขณะที่ยังอยู่ในแม่พิมพ์อัดรีดเป็น
ต้น เวลาที่ใช้อ้างอิงอาจจะคงที่หรือไม่คงที่ก็ได้ การค านวณความเครียดของวัสดุย้อนกลับไปในอดีตนี้
โดยมากจะใช้กับกระบวนการที่ต่อเนื่องเช่นกระบวนการอัดรีด (Extrusion) หรือในกระบวนการผลิตเส้นใย 
(Melt spinning) เป็นต้น 

ในบทความนี้จะอธิบายความสัมพันธ์ระหว่างความเค้นและความเครียดของวัสดุที่มี การเสียรูป
มาก ๆ (Large deformations)  ส าหรับของไหลหนืดยืดหยุ่นที่ มี เนื้อ เดียว ( Isotropic elastic or 
viscoelastic fluid)  ซึ่ งจะอ้ า งอิ งรู ปทรงที่ เ วลาปั จจุบัน  (Current configuration as a reference 
configuration) แล้วค านวณหาความเครียดของวัสดุกลับไปในอดีต 

 
2. การเสียรูปสัมพัทธ์ 

ในที่นี้แกนหลักเป็นแกนสมมุติที่มีสเกลวัดระยะทางไปใน 3 ทิศทางที่ตั้งฉากกันบนพิกัดเชิงพื้นที่ 
(Spatial coordinates) ของผู้สังเกตการณ์แบบออยเลอร์ ( )1 2 3, ,x x x    ถือนาฬิกาจับเวลาบอกเวลา t  

ส่วนแกนเคลื่อนที่จะเป็นแกนสมมุติที่ยึดติดอยู่กับอนุภาคของของไหลที่มีการเลื่อนและหมุนไปกับภาชนะ
ของของไหลนั้น (Translated and rotated frame or convected frame) มีสเกลวัดระยะทางไปใน 3 
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ทิศทางที่ตั้งฉากกันบนพิกัด ( )1 2 3, ,x x x  เช่นเดียวกันรูปที่  แสดงผู้สังเกตการณ์บนจุดก าเนิดของระบบ

แกนหลักที่จุด O  (Inertia frame) บนแกน ( )1 2 3, ,x x x    แสดงทิศทางที่ตั้งฉากกันและมีผู้สังเกตการณ์

อีกคนอยู่ที่จุด P  ของระบบแกนที่ถูกพัดพา (Convected frame) ไปกับอนุภาคของไหล ถือนาฬิกาจับ
เวลาบอกเวลา t  บนแกน ( )1 2 3, ,x x x  ที่ก าลังเลื่อนและหมุนไปอย่างอิสระพร้อม ๆ กัน (Translating 

and corotating) ซึ่งเป็นการสังเกตการณ์แบบลากรานจ์ (ดูหน้า 318-319 ของ [Error! Bookmark not 
defined.]) 

O

( ) ( ),x t x x t=

( ),x x t 

( ),P x t

( ),Q x dx t+

( ),P x t

( ),Q x dx t+

dx

dx
( ),u x dx t +

( ),u x t 

( )1x t

( )2x t

                  
                           t

                  
                             t

2x

1x

( )2x t
( )1x t

               
(Streamlines)

 
รูปที่ 1. แสดงการเสียรูปของวัสดุจากขนาด dx  ที่เวลา t  ในอดีตไปเป็นขนาด dx  ที่เวลา t  ในปัจจุบันซึ่งใช้เป็น
ขนาดและเวลาอ้างอิง 

พิจารณาอนุภาคของไหล P  ในรูปที่  ที่มีเวคเตอร์ x  แสดงต าแหน่งท่ีวัดจากจุด O  ไปหาอนุภาค 
( ),P x t  ที่เวลา t  ในปัจจุบันซึ่งใช้เป็นขนาดและเวลาอ้างอิง ในขณะที่ก่อนหน้านี้อนุภาคของไหล P  

เคยอยู่ที่ต าแหน่ง x  ที่เวลา t  ในอดีตซึ่งเป็นเวลาที่เราต้องการสืบค้นหาความเครียดสะสมของของไหล 
ต าแหน่งของอนุภาคของไหล ( ),P x t  ที่เวลาใด ๆ ในอดีตสามารถหาได้จากเวคเตอร์ ( ),x x t   ซึ่ง

บ่งว่าเป็นต าแหน่งของอนุภาค P  ที่เวลา t  ที่ซึ่งในปัจจุบันอยู่ที่ต าแหน่ง x  ระยะห่างระหว่างอนุภาค 
P  และ Q  มีขนาด dx  ที่เวลา t  ในอดีตและมีขนาด dx  ที่เวลา t  ในปัจจุบันดังแสดงในรูปที่  

ดังนั้นที่เวลา t  ในปัจจุบันเวคเตอร์ x  แสดงต าแหน่งท่ีวัดจากจุด O  ไปหาอนุภาค ( ),P x t  คือ 

1

2

3 123

x

x x

x

 
 

=  
 
 

 (1) 

และ 
 



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 28 ฉบับที่ 1 เดือนมกราคม-มิถุนายน 2562 

 89 

1

2

3 123

dx

dx dx

dx

 
 

=  
 
 

 (2) 

ในขณะที่เวลา t  ในอดีตเวคเตอร์ x  แสดงต าแหน่งท่ีวัดจากจุด O  ไปหาอนุภาค ( ),P x t  คือ 

1

2

3 123

x

x x

x

 
  =  
  

 (3) 

และ 

1

2

3 123

dx

dx dx

dx

 
  =  
  

 (4) 

ถ้าการเสียรูปมีระยะจ ากัด (Finite strain) ท่ีเวลา t  คงที่ใด ๆ เราสามารถคิดได้ว่าเวคเตอร์แสดงต าแหน่ง
ในอดีต x  เป็นฟังก์ชันเชิงเส้นกับเวคเตอร์แสดงต าแหน่งในปัจจุบัน x  นั่นคือ ( )x x =  ดังนั้นจาก

กฎลูกโซ่เราสามารถหาความสัมพันธ์ระหว่างระยะห่างระหว่างอนุภาคต าแหน่ง ( ),P x t  และ 

( ),Q x dx t+  และระยะห่างระหว่างอนุภาคต าแหน่ง ( ),P x t  และ ( ),Q x dx t+ คือ 

1 1 1
1 1 2 3

1 2 3

x x x
dx dx dx dx

x x x

    
 = + +

  
 (5) 

ในท านองเดียวกัน 
2 2 2

2 1 2 3

1 2 3

x x x
dx dx dx dx

x x x

    
 = + +

  
 (6) 

3 3 3
3 1 2 3

1 2 3

x x x
dx dx dx dx

x x x

    
 = + +

  
 (7) 

จากสมการที่ (5) - (7) ท าให้เราสรุปได้ว่า 
Fdx dx =   (8) 

เมื่อเทนเซอร์ ( )F ,t t   คือเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ์ (Relative deformation gradient 

tensor) และ ( )1
F ,t t

−   คืออินเวอร์สของเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ์ (Inverse of relative 

deformation gradient tensor) นิยามโดย 
1

Fdx dx
− =   (9) 
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ซึ่งเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ์ F  และอินเวอร์สของเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ์ 

1
F

−  เป็นฟงัก์ชันตั้งฉาก (Orthogonal tenser) ซึ่งกันและกันกล่าวคือ 

1 1
F F F F 

− −    =  =  (10) 

เมื่อ   คือเทนเซอร์หนึ่งหน่วยนิยามโดย 

123

1 0 0

0 1 0

0 0 1



 
 

=  
 
 

 (11) 

จากสมการที่ (8) จะเห็นได้ว่าเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ์ ( )F ,t t   และอินเวอร์สของเทนเซอร์

เกรเดียนต์การเสียรูปสัมพัทธ์ ( )1
F ,t t

−   เป็นฟังก์ชันเชิงเส้นที่แสดงการเสียรูปในช่วงระยะเวลา t  และ 

t  ดังนั้นเราสามารถใช้เทนเซอร์ทั้งสองนี้สืบหาความเครียดสะสมเนื่องจากการเสียรูปของวัสดุได้ตลอดช่วง
ระยะเวลา t  และ t  และที่เวลาปัจจุบัน t  ซึ่งเป็นเวลาอ้างอิง 

( ) ( )1
F Ft t 

− = =  (12) 
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R
V

F

UR

t t =s t t= −

O

1x

2x

3x 1x
2x

3x

1x
2x

3x

1x
2x

3x

1x
2x

3x

                
(Streamlines)

รูปที่ 2. แสดงการแยกเทนเซอร์เกรเดียนต์การเสียรูปสัมพัทธ ์ F  ออกเป็นการเสียรูปจากการยืดสัมพัทธ์ U  และ V  

และการเสียรูปจากการหมุนสัมพัทธ์ R  แสดงก้อนวัสดุไม่มีการเสียรูปที่เวลาอา้งองิในปัจจุบัน t t =  และเกิดการเสียรูป

ที่เวลา s t t= −  ในอดีต 
 
2.1 ความเครียดสัมพัทธ์ 

เนื่องจากเทนเซอร์เกรเดยีนต์การเสียรูปสัมพัทธ์ ( )F ,t t   และอินเวอร์สของเทนเซอร์เกรเดียนต์

การเสยีรูปสัมพัทธ์ ( )1
F ,t t

−   จะเกิดจากการเสยีรูปแบบเลื่อน (Translation) รวมกับการหมุน

(Rotation) ร่วมกันดังแสดงใน รปูที่ 2. ดังนั้นเพื่อท่ีจะหาเทนเซอร์ความเครยีดที่ปราศจากผลของการหมุน 
(Rotation) เราจ าเป็นที่จะต้องแยกการเสยีรูปเนื่องจากการเลื่อนและการเสียรูปเนื่องจากการหมุนออกจาก
กันด้วยเทคนิคการแยกเป็นสองขั้ว (Polar decomposition technique) (ดูหน้า 313 ของ [4], หน้า 110 
ของ [5] และหน้า 80 ของ [6]) 
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ทฤษฎีการแยกเป็นสองขั้วกล่าวว่าส าหรับเทนเซอร์ F  ใด ๆ ท่ีสามารถหา 
1

F
−  ได้จะสามารถแยก

เทนเซอร์ออกได้เป็นสองแบบคือ (ดูหัวข้อ 5.5.4 หน้า 173 ของ [7]) 
F R U V R    =  =   (13) 

โดย R  เป็นเทนเซอร์การหมุนสัมพัทธ์ (Relative rotation tensor) ที่มีสมบัติความตั้งฉาก (Orthogonal 

tensor) ดังนั้น 

R R R R
T T

    =  =  (14) 

เมื่อ 
1

R R
T − =  และ U  และ V  เป็นเทนเซอรส์มมาตรและมคี่าเป็นบวกเสมอ (Symmetric and 

positive definite) โดย U  มีชื่อเรียกว่าเทนเซอร์การยืดทางขวาสัมพัทธ์ (Relative right stretch   

tensor) และ Vมีชื่อเรียกว่าเทนเซอร์การยดืทางซ้ายสมัพัทธ์ (Relative left stretch tensor) ดังแสดงใน

รูปที่ 2. เมื่อ R  ท าหน้าทีห่มุนก้อนวัสดุ ในขณะที่ U  และ V  ท าหน้าที่ยืดวัสดุ ดังนั้นจากสมการที่ (13) เราจะม ี

V R U R
T   =  (15)                                                 

U R V R
T   =  (16) 

เรานิยามเทนเซอร์ความเครียดควอซี่สัมพัทธ์ (Relative Cauchy strain tensor) ดังนี ้

C F F U U
T    = =  (17) 

และนิยามเทนเซอร์ความเครียดกรีนสัมพัทธ์ (Relative Green strain tensor) ดังนี ้

B F F V V
T    = =  (18) 

และความสัมพันธ์ระหว่าง B  และ C  คือ 

B R C R
T   =  (19) 

และนิยามเทนเซอร์ความเครียดฟินเกอร์สัมพัทธ์ (Relative Finger strain tensor) ดังนี ้

( ) ( )
1

1 1 1
C F F F F

T
T

−
− − −    = = V V =  (20) 

และนิยามเทนเซอร์ความเครียดพิโอล่าสัมพัทธ์ (Relative Piola strain tensor) ดังนี ้

( ) ( )
1

1 1 1
B F F F F

T
T

−
− − −    = = U U =  (21) 

จากสมการที่ (17) และ (21) จะเห็นได้ชัดว่า 
1

C B
− =  (22) 
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และสมการที่ (18) และ (20) 
1

C B
− =  (23) 

จากสมการที่ (12) ที่เวลาปัจจุบัน t  ซึ่งเป็นเวลาอ้างอิง 

( )R t = ( )U t = ( )V t = ( )C t = ( )B t =   (24) 

 
2.2 อนุพันธ์พัดพา 

ในการค านวณหาอัตราในเค้นและอัตราเครียดของวัสดุในกลศาสตร์ของไหลจะต้องไม่ขึ้นอยู่กับผู้
สังเกตการณ์ (Frame indifferent or nonobjective) ดังนั้นอัตราการเสียรูปของวัสดุจะสัมพัทธ์กับ
ความเร็วของอนุภาคของไหล v  และการหมุนวนของอนุภาค   เนื่องจากอนุภาคของวัสดุมีการเคลื่อนที่

อยู่ตลอดเวลาถึงแม้ว่าบางต าแหน่งวัสดุจะไม่มีความเค้นและความเครียดก็ตาม อนุพันธ์ท่ีใช้หาอัตราการเสยี
รูปของวัสดุที่มีการเสียรูปที่ไม่เป็นเชิงเส้น (Nonlinear or finite deformation) ที่นิยมใช้กันมากมีอยู่ 3 
ชนิดด้ วยกันคื ออนุพันธ์พั ดพา  (ลง )  ตามกระแส ( Lower-convected derivative or covariant 
convected derivative)  อ นุ พั น ธ์ พั ด พ า  ( ขึ้ น )  ต้ า น ก ร ะแส  ( Upper-convected derivative or 
contravariant convected derivative) และอนุพันธ์พัดพาร่วม (Corotational derivative) หรือเรียกว่า
อนุพันธ์จูมานส์ (Jaumann derivative) ซึ่งในหัวข้อน้ีจะกล่าวถึงอนุพันธ์ท้ัง 3 ตัวน้ี 

ก าหนดใหอ้นุพันธ์พัดพา (ลง) ตามกระแส A


 (Lower-convected derivative or covariant 

convected derivative) ของเทนเซอร์ A  ใด ๆ เป็นอนุพันธ์ท่ีเวลา t t =  นิยามโดย 

( ) ( ) ( ) 
A

A F A F A A
TT

t t

DD
v v

Dt Dt



=

 =   = +   +  


 (25) 

ในท านองเดียวกันก าหนดให้อนุพันธ์พัดพา (ขึ้น) ต้านกระแส A


 (Upper-convected derivative or 

contravariant convected derivative) ของเทนเซอร์ A  ใด ๆ เป็นอนุพันธ์ที่เวลา t t =  นิยามโดย 

(ดูหน้า 342 ของ [9]) 

( ) ( ) ( ) 1 A
A F A F A A

TT

t t

DD
v v

Dt Dt


− −

=

  =   = −   +  


 (26) 

เมื่อ ( )D

Dt




 เป็นอนุพันธ์รวม (Total or material derivative) นิยามโดย 

( )
( ) ( )

( )
D

v
Dt t

  
= +  


 (27) 
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นอกจากอนุพันธ์พัดพา (ลง) ตามกระแส A


 และอนุพันธ์พัดพา (ขึ้น) ต้านกระแส A


 แล้วการหาอนุพันธ์ของวัสดุที่มีการ

เสียรูปอย่างต่อเนื่องยังสามารถหาได้จากอนุพันธ์พัดพาร่วม (Corotational derivative) หรือเรียกอีกชื่อหนึ่งว่าอนุพันธจ์ู
มานส ์(Jaumann derivative) นิยามโดย (ดูหน้า 496 ของ [9]) 

A

t

D

D
D

Dt
=

 ( )R A R
T

t t=

   ( )
A 1

A A
2

D

Dt
 = +  −   (28) 

หรือเขยีนได้ว่า (ดูหัวขอ้ 1.11 หน้า 12 ของ [8]) 
A 1

A A
2t

 = + 
 

D

D
 (29) 

ซ่ึงเป็นผลเฉลี่ยของอนุพันธ์พัดพา (ลง) ตามกระแส A


 และอนุพันธพ์ัดพา (ขึ้น) ตา้นกระแส A


 โดยเทนเซอร์การหมุนวน 

(Vorticity tensor)   นิยามโดย 

( )
T

v v = −   (30) 

เมื่อ v  คือเวคเตอร์ความเร็วของอนภุาคของไหลและ   คือเวคเตอร์เกรเดียนต์ซ่ึงโดยปกติแลว้จะไม่ขึ้นอยู่กับระบบแกน 
แต่ในที่นี้จะขอยกตัวอยา่งเวคเตอร์เกรเดียนต์   ที่เขียนอยู่ในระบบแกนพิกัดฉากคือ 

1 2 3

1 2 3x x x
  

  
 = + +

  
 (31) 

และ 1 2 3, ,    เป็นเวคเตอร์หนึ่งหน่วยบนพกิัด 1 2 3, ,x x x  ตามล าดับ เทนเซอร์การหมุนวน (Vorticity tensor) 

  มีสมบัติของเทนเซอร์เสมือนสมมาตร (Skew symmetric tensor) กล่าวคือ 
T

 = −  (32) 

 
2.3 ความเครียดและอัตราเครียดลากรานจ์สมัพัทธ ์

เทนเซอร์ความเครียดลากรานจ์สัมพัทธ์ (Relative Lagrange strain tensor) หรือเทนเซอร์
ความเครียดตามกระแส (Covariant strain tensor) ล าดับที่ 0 [0]

  ที่เวลา t  ในอดีตนิยามโดย 

[0]
C = −  (33) 

เมื่อเทนเซอรค์วามเครียดลากรานจ์สัมพัทธ ์(Relative Lagrange strain tensor) หรือเทนเซอร์
ความเครยีดตามกระแส (Covariant strain tensor) (0)

  ล าดับที่ 0 เปน็ความเครยีดที่เวลา t  ใน

ปัจจุบันนิยามโดย (ดูหน้า 493 ของ [9]) 

( )(0) [0]
, 0

t t

x t 
=

= =  (34) 

เนื่องจากท่ีเวลา t t =  จะไม่เกิดการเสียรูปและไม่มีความเร็วสัมพัทธ์และในขณะเดียวกันก าหนดให ้
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[0]

(1) [1]

t t

t t

t


 

=

=


 =


( )

T

v v= = +   (35) 

[0]2

(2) [2]

2
t t

t t

t


 

=

=


 =


( ) ( ) 

(1)

(1) (1) TD
v v

Dt


 = +   +    (36) 

และมเีทนเซอร์ความเครียดลากรานจ์สัมพัทธ์เทอมที่ n  คือ 
[0]

( ) [ ]

n

n n

n
t t

t t

t


 

=

=


 =


( ) ( ) 

( 1)

( 1) ( 1)

n

Tn n
D

v v
Dt


 

−

− −
= +   +    (37) 

เมื่อ 0,1, 2,3,...,n =  สังเกตุว่าตัวยกที่อยู่ในเครื่องหมาย [-] แสดงว่าเป็นเหตุการณ์ที่เกิดขึ้นท่ีเวลา t  
ในอดีต ส่วนตัวยกที่อยู่ในเครื่องหมาย (-) แสดงถึงเหตุการณ์ในเวลาอ้างอิง t  ในปัจจุบัน เทนเซอร์ ( )n

  

ในสมการที่ (37) มีชื่อเรียกวา่เทนเซอร์ความเครียดลากรานจส์ัมพัทธ์หรือเทนเซอรร์ิฟสล์ิน-อีริคสันล าดับที่ 
n * (Rivlin-Ericksen tensor) ([10] หรือดูหน้า 911 ของ [11]) จะเห็นได้ว่าเทนเซอร์ความเครยีดลา-
กรานจ์สมัพัทธ์ล าดับท่ี n  เป็นอนุพันธ์พัดพาตามกระแส (Covariant convected derivative) ของเทน
เซอร์ความเครียดลากรานจส์ัมพัทธ์ล าดับท่ี 1n−  ซึ่งเป็นอัตราเครยีดสัมพทัธ์ตามกระแส (Covariant 
convected components of relative strains) ตราบใดที่ความเครียดของวัสดุ ( )[0]

,x t   เป็น

ฟังก์ชันท่ีมีความต่อเนื่อง (Continuous function) เราสามารถใช้เทนเซอร์ความเครียดลากรานจส์ัมพัทธ์ใน
การหาค่าอัตราเครียดของวัสดุได้ แต่ถ้าความเครียดของวัสดุไม่ต่อเนื่อง เช่นการทดสอบความเค้นผ่อนคลาย 
(Stress relaxation test) ที่มีการกระโดดของค่าความเค้นและความเครียด (Stress and strain jump) ก็
จะไมส่ามารถหาอัตราเครียดสัมพทัธ์นี้ได ้
 
2.4 ความเครียดและอัตราเครียดออยเลอร์สัมพัทธ ์

เทนเซอร์ความเครียดออยเลอร์สัมพัทธ์  (Relative Euler strain tensor) หรือเทนเซอร์
ความเครียดต้านกระแส (Contravariant strain tensor) ล าดับที่ 0 

[0]
  ที่เวลา t  ในอดีตนิยามโดย 

[0]
 =

1
C

−−  (38) 

เมื่อเทนเซอร์ความเครียดออยเลอร์สัมพัทธ์ (Relative Euler strain tensor) หรือเทนเซอร์ความเครียดต้านกระแส 
(Contravariant strain tensor) 

(0)
  ล าดับที่ 0 เป็นความเครียดที่เวลา t  ในปัจจุบัน 

                                                      
* หนังสือบางเล่มเช่น [Error! Bookmark not defined.] ใช้สัญลักษณ์ A

n
 แต่ในที่นี้ใช้ ( )n

  ตาม Bird et al. [Error! 

Bookmark not defined., Error! Bookmark not defined.] 
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( )
(0) [0]

, 0
t t

x t 
=

 = =  (39) 

เนื่องจากท่ีเวลา t t =  จะไม่เกิดการเสียรูปและไม่มีความเร็วสัมพัทธ์และก าหนดให้ 

( ) [0]

(1) [1]
,

t t
t t

x t
t


 

=
=


 = =


( )

T

v v= = +         (40) 

( )

2

[0]

2
(2) [2]

,
t t

t t

x t
t


 

=

=


 = =


( ) ( ) (1)

(1) (1)

T
D

v v
Dt


 = −   +    (41) 

และมเีทนเซอร์อัตราเครียดสัมพัทธ์ต้านกระแสล าดับที่ n  คือ 

( ) [0]

( ) [ ]
,

n

n
n n t t

t t

x t
t


 

=

=


 = =


( ) ( ) ( 1)

( 1) ( 1)

Tn

n n

D
v v

Dt


 

−

− −
= −   +    (42) 

เมื่อ 0,1, 2,3,...,n =  จะเห็นได้ว่าเทนเซอร์อัตราเครียดสัมพัทธ์ต้านกระแสล าดับที่ n  เป็นอนุพันธ์พัด
พาต้านกระแส (Contravariant convected derivative) ของเทนเซอร์อัตราเครียดสัมพัทธ์ต้านกระแส
ล าดับที ่ 1n−  
 
3. สมการแสดงพฤติกรรม 

สมการแสดงพฤติกรรมของวัสดุเหลวสามารถปรับปรุงให้มีความสามารถในการแสดงพฤติกรรม
วัสดุที่ซับซ้อน (Complex fluid) ได้ด้วยการเพิ่มอัตราเครียด เช่นสมการแสดงพฤติกรรมริฟส์ลิน-อีริคสัน 
หรือเพิ่มอัตราเค้น เช่นแบบจ าลองแมกซ์เวล และการเพิ่มทั้งอัตราเครียดและอัตราเค้นไปพร้อม ๆ กันเช่น 
แบบจ าลองเจ็ฟฟรีส์และแบบจ าลองโอล์ดรอย (Oldroyd model) นอกจากนี้ในตอนท้ายของบทความได้
กล่าวถึงแบบจ าลองแบบอินทิกรัลซึ่งได้จากผลเฉลยของแบบจ าลองแมกซ์เวลและเจ็ฟฟรีส์ และยังได้แนะน า
แบบจ าลองวิสโคอิลาสติกไม่เป็นเชิงเส้นอื่น ๆ ที่นิยมใช้กันมากอีกสองสมการคือแบบจ าลองของไหลไวท์
เมทซ์เนอร์ (White – Metzner model) ที่ให้ค่าความหนืดเป็นฟังก์ชันของค่าสเกลาร์คงตัวของอัตรา
ความเครียดเฉือน   และแบบจ าลองพานเที๋ยนแทนเนอร์ (Phan Thien Tanner model, PTT) จะแสดง
พฤติกรรมแบบของไหลซูโดพลาสติกของวัสดุวิสโคอีลาสติกที่ไม่เป็นเชิงเส้นในกรณีที่อัตราเฉือนสูง ๆ ได้เป็น
อย่างดี  

 
3.1 แบบเพ่ิมอัตราเครียด 

การเพิ่มเทอมอัตราเครียดเพิ่มจากเทอมนิวทอเนียนเป็นการปรับปรุงสมการแสดงพฤติกรรมนิวทอเนียนให้มี
ขอบเขตการใช้งานกว้างขวางยิ่งขึ้น ในที่นี้ริฟส์ลิน-อีริคสันสร้างสมการแสดงพฤติกรรมจากการขยายอนุกรม (Series 
expansion) ของเทนเซอร์อัตราเครียดเฉือนให้เพิ่มขึ้นเร่ือย ๆ กล่าวคือ (ดูหัวข้อ 6.2 ของ [9] หรือดูหัวข้อ 8.18 ของ [5]) 

( )
(1) (2) ( )

, ,...,
n

f   =  (43) 
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โดยเริ่มจากเทนเซอร์อัตราเครียดล าดับที่หนึ่ง สอง สามไปเรื่อย ๆ โดยเทอมที่มีล าดับเดียวกันจะน ามาเขียน
รวมกันเป็นโพลินอเมียล (Polynomial) ที่มีล าดับสูงขึ้นเรื่อย ๆ ดังนั้นสมการแสดงพฤติกรรมริฟส์ลินอีริค-
สันจะอยู่ในรูป 

( ) ( ) ( ) ( ) 1 2 11
1 2 1 1

b b b    = − − −   

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( )
3 12 1:11

3 1 2 2 1 1 1 1
:b b b        

− −  +  − + 
 

 (44) 

โดย ,,, 1121 bbb 3,b  เป็นค่าคงที่ของวัสดุ สมการที่ (44) เราเรียกว่าของไหลอัดตัวไม่ได้ล าดับที่สาม 

(Incompressible third-order fluid) [i, ii] ถ้า =1b  และ 2 3 11 12 1:11 0b b b b b= = = = =  จะท าให้
สมการ (44) ลดรูปเป็นสมการแสดงพฤติกรรมของไหลนิวทอเนียน ถ้าคิดแค่เทนเซอร์อัตราเครียดล าดับที่
สอง (บรรทัดบนของสมการ (44) โดยไม่คิดเทอมที่มีความเครียดรวมกันตั้งแต่ล าดับที่สามขึ้นไปเราเรียกว่า
ของไหลอัดตัวไม่ได้ล าดับที่สอง (Incompressible second-order fluid) [12,13] 

( ) ( ) ( ) ( ) 1 2 11
1 2 1 1

b b b    = − − −   (45) 

จากสมการที่ (45) ถ้าก าหนดให ้
( ) =1b  (46) 

( )12
2

1
−=b  (47) 

และ 
( )11 2b =   (48) 

โดย   คือความหนืดนอนนิวทอเนียน 
1  และ 

2  เป็นค่าสมัประสิทธ์ิของผลต่างความเค้นตั้งฉากล าดับที่ 
1 และ 2 ตามล าดับ โดยที่  , 

1  และ 
2  เป็นฟังก์ชันของสเกลาร์คงตัวของอัตราเครยีดเฉือน   


= =

=
3

1

3

12

1

i j

jiij   (49) 

เมื่อ ij  คือพจน์ในแถวท่ี i  และคอลัมนท่ี j  ของเทนเซอร์อัตราเครยีดเฉือน   นิยามในสมการที่ (40) 

สังเกตว่าค่าสเกลาร์ฟังก์ชันของอัตราความเครียดเฉือน   จะไม่ขึ้นอยูก่ับระบบแกน ดังนั้นสมการที่ (45) 
สามารถเขียนใหม่ให้มคีวามสัมพันธ์ระหว่างความเค้นและความเครียดไดด้ังนี ้

( ) ( ) ( ) ( )
 

11
2

2
1

1 2

1
 −+−=  (50) 

โดยสมการที่ (50) เรียกว่าสมการไคลมิเนล-อิริคสัน-ฟิลเบย์ (Criminale-Ericksen-Filbey equation or 
CEF equation) (ดูตัวอย่างท่ี 6.2-1 หน้า 299 และตัวอย่างที่ 9.6-3 หน้า 503 ของ [9]) สมการไคลมิเนล-
อิริคสันฟิลเบย์ในการไหลของพอลิเมอร์สามารถประยุกต์ใช้งานของในอุตสาหกรรมขึ้นรูปพลาสติกได้เป็น
อย่างดี ตัวอย่างของการประยกต์ใช้งานได้แก่ การค านวณหาแรงผลักเข้าสู่ศูนย์กลางบนลวดในขณะที่ลวดมี
ต าแหน่งเยื้องศูนย์ในกระบวนการเคลือบพลาสติกบนลวดในงานวิจัยของแทดมอร์ (Tadmor) [16] เป็นต้น 
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3.2 แบบเพ่ิมอัตราเค้น 
การเพิ่มเทอมความเค้นเพื่อให้สมการแสดงพฤติกรรมหนืดยืดหยุ่นไม่เป็นเชิงเส้นท าได้หลายวิธี ซ่ึงทั้งหมดนี้เป็น

ของไหลวิสโคอีลาสติกแบบสมการเชิงอนุพันธ์ (Differential viscoelastic model) โดยแบบจ าลองในรูปแบบของ
สมการอนุพันธ์ที่เป็นพื้นฐานมากที่สุดคือแบบจ าลองแมกซ์เวล (Maxwell model) ซ่ึงในยุคแรก ๆ แบบจ าลองแมกซ์เวล
เป็นแบบจ าลองที่แทนพฤติกรรมของไหลวิสโคอิลาสติกเชิงเส้น (Linear viscoelastic constitutive equation) 
ต่อมานักวิจัยได้ท าการปรับปรุงแบบจ าลองแมกซ์เวล ให้แทนพฤติกรรมวิสโคอิลาสติกให้สมบูรณ์ยิ่งขึ้นโดยปรับปรุงการ
ค านวณทางคณิตศาสตร์ที่เทอมของความเค้นให้เป็นแบบจ าลองที่แทนพฤติกรรมของไหลวิสโคอิลาสติกไม่เป็นเชิงเส้น (Non-
Linear viscoelastic constitutive equation) เรียกว่าแบบจ าลองแมกซ์เวลพัดพา และอาจจะเพิ่มทั้งเทอมอัตรา
เค้นและอัตราเครียด เช่นแบบจ าลองเจ็ฟฟรีส์พัดพา และแบบจ าลองโอล์ดรอย (Oldroyd model) ก็ได้ 

 
3.2.1 แบบจ าลองแมกซ์เวลพัดพา 

แบบจ าลองแมกซ์เวลสามารถจ าแนกได้เป็น 3 แบบคือแบบจ าลองแมกซ์เวลพัดพา  (ลง) ตาม
กระแส (Upper convected Maxwell model, UCM) และแบบจ าลองแมกซ์เวลพัดพา (ขึ้น) ต้านกระแส 
(Lower convected Maxwell model, LCM) และแบบจ าลองแมกซ์เวลพัดพาร่วม (Corotational 
Maxwell model, CMM) โดยแบบจ าลองแมกซ์เวลพัดพาทั้ง 3 นี้ใช้ส าหรับอธิบายพฤติกรรมทั้งที่เป็นเชิง
เส้นและไม่เป็นเชิงเส้นของวัสดุวิสโคอีลาสติกได้ เป็นอย่างดี โดยแบบจ าลองแมกซ์เวลพัดพา (ลง) ตาม
กระแสสามารถแสดงได้ดังสมการที่ (51) 

0   


+ = −  (51) 

และแบบจ าลองแมกซ์เวลพัดพา (ขึ้น) ต้านกระแสสามารถแสดงได้ดังสมการที่ (52) 

0   


+ = −  (52) 

และแบบจ าลองแมกซ์เวลพัดพาร่วม (Corotational Maxwell model, CMM) คือ [17] 

0
t


   + = −

D

D
 (53) 

เมื่อ   คือเทนเซอร์ความเค้นเฉือน, 


 คืออนุพันธ์พัดพา (ลง) ตามกระแสของ   และ 


 คืออนุพันธ์พัดพา 

(ขึ้น) ต้านกระแสของ   ตามล าดับ, t  คือเวลา, v  คือเวคเตอร์ความเร็ว,   คือเวลาผ่อนคลาย, 0  คือ

ความหนืดตั้งต้นที่อัตราเครียดเป็นศูนย์และ  คือเวคเตอร์เกรเดียนต์ (Vector gradient) และ 
( )

t

D
D

 

คืออนุพัดพาร่วมนิยามในสมการที่ (28) และ   คือเทนเซอร์อัตราเครียดเฉือนนิยามในสมการที่ (35) 

ส าหรับอนุพันธพ์ัดพา (ลง) ตามกระแส หรือนิยามในสมการที่ (40) ส าหรับอนุพันธ์พัดพา (ขึน้) ต้านกระแส 
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3.2.2 แบบจ าลองเจ็ฟฟรีส์พัดพา 
แบบจ าลองเจ็ฟฟรีส์พัดพาสามารถจ าแนกได้เป็น 3 แบบเช่นกันคือแบบจ าลองเจ็ฟฟรีส์พัดพา  

(ลง) ตามกระแส (Lower convected Jeffreys model, LCJ) แบบจ าลองเจ็ฟฟรีส์พัดพา (ข้ึน) ต้านกระแส 
(Upper convected Jeffreys model, UCJ) และแบบจ าลองเจ็ฟฟรีส์พัดพาร่วม (Corotational Jeffreys 
model, CJM) โดยแบบจ าลองเจ็ฟฟรีส์พัดพา(ลง) ตามกระแสหรือเรียกอีกช่ือหนึ่งว่าของไหลโอล์ดรอย A 
(Oldroyd fluid A) คือ 

1 0 2      
  

+ = − + 
 

 (54) 

และแบบจ าลองเจ็ฟฟรีส์พัดพา (ขึ้น) ต้านกระแสหรือเรียกอีกช่ือหนึ่งว่าของไหลโอล์ดรอย B (Oldroyd 
fluid B) 

1 0 2      
  

+ = − + 
 

 (55) 

และแบบจ าลองเจ็ฟฟรสี์พัดพาร่วม (Corotational Jeffreys model, CJM) คือ [18] 

1 0 2
t t


    

 
+ = − + 

 
 

DD

D D
 (56) 

โดย 1  คือเวลาผ่อนคลาย (Relaxation time) และ 2  คือเวลาหน่วง (Retardation time) ของ

แบบจ าลองของเจ็ฟฟรีส์ 


 คืออนุพันธ์พัดพา (ลง) ตามกระแสของ   ซึ่งเป็นเทนเซอร์อัตราเครียดลา-

กรานจ์สัมพัทธ์ล าดับที่ 2 (2)
  แสดงในสมการที่ (36) และ 



 คืออนุพันธ์พัดพา (ขึ้น) ต้านกระแสของ   

ซึ่งเป็นเทนเซอร์อัตราเครียดออยเลอร์สัมพัทธ์ล าดับท่ี 2 
(2)

  แสดงในสมการที่ (41) ตามล าดับ 

 
3.2.3 แบบจ าลองโอล์ดรอย 

แบบจ าลองโอล์ดรอย (Oldroyd model) สามารถจ าแนกได้เป็น 3 แบบเช่นกันคือแบบจ าลอง
โอล์ดรอยพัดพา (ลง) ตามกระแส (Lower convected Oldroyd model, LCJ) แบบจ าลองโอล์ดรอยพัด
พา (ขึ้น) ต้านกระแส (Upper convected Oldroyd model, UCJ) และแบบจ าลองโอล์ดรอยพัดพาร่วม 
(Corotational Oldroyd model, CJM) โดยแบบจ าลองโอล์ดรอยพัดพา (ลง) ตามกระแสคือ  

( ) ( )  ( )(1) (1) (1) (1) (1)

1 0 1 1 1

1 1 1
:

2 2 2
tr               + + + −  +  +  

( )  ( )(1) (2) (1) (1) (1) (1)

0 2 2 2 2

1
:

2
           

 
= − + + −  + 

 
 (57) 

และแบบจ าลองโอล์ดรอยพัดพา (ข้ึน) ต้านกระแส (ดูหน้า 352 ของ [9] หรือหน้า 363 ของ [4]) 
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( ) ( )  ( )1 0 1 1 1(1) (1) (1) (1) (1)

1 1 1
:

2 2 2
tr               + + + −  +  +  

( )  ( )0 2 2 2 2
(1) (2) (1) (1) (1) (1)

1
:

2
           

 
= − + + −  + 

 
 (58) 

และแบบจ าลองโอล์ดรอยพัดพาร่วม (Corotational Jeffreys model, CJM) คือ (ดูสมการที่ 8.1-2 หน้า 
366 ของ [2]) 

( )   ( )1 0 1 1

1 1 1
:

2 2 2
tr

t


             + + −  +  +

D

D
 

  ( )0 2 2 2

1
:

2t


         

 
= − + −  + 

  

D

D
 (59) 

เมื่อ 
tr

iii
= 11 22 33  = + +  (60) 

: 
ij jii j
 =   (61) 

 

   ( )i l ij jli l j
   =    (62) 

โดย 0 , 1 , 2 , 0 , 1 , 2 , 1  และ 2  เป็นค่าคงที่ของโอล์ดรอย เนื่องจากมีค่าคงที่ถึง 8 ตัว
แบบจ าลองโอล์ดรอย (Oldroyd model) จึงเป็นแบบจ าลองที่ครอบคลุมทั้งแบบจ าลองแมกซ์เวลพัดพา
และแบบจ าลองของเจ็ฟฟรีส์พัดพา การเลือกใช้ค่าคงที่ของโอล์ดรอยทั้ง 8 เพื่อให้สอดคล้องกับการทดลอง
และข้อจ ากัดในการใช้งานสามารถหาอ่านเพิ่มเติมได้จากหัวข้อ 8.1 ของ [2] หรือ [19,20] 
 
3.3 แบบอินทิกรัล 

ผลเฉลยของแบบจ าลองแมกซ์เวลและเจ็ฟฟรีส์พัดพา (ลง) ตามกระแสในสมการที่ (51) และ (54) 
สามารถเขียนได้คือ (ดูหัวข้อ 8.16 ของ [5] หรือหน้า 426 ของ [2]) 

( ) ( ) [1]t

t G t t dt 
−

 = − −  (63) 

หรือ 

( ) ( ) [0]t

t M t t dt 
−

 = + −   (64) 

โดย [0]
  และ [1]

  คือเทนเซอร์ความเครยีดตามกระแส (Covariant strain tensor) ล าดับที่ 0 นิยาม

ในสมการที่ (33) และล าดับที่ 1 นิยามในสมการที่ (35) ตามล าดับ ( )ttG −  คือมอดูลสัผ่อนคลาย 
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(Relaxation modulus) และ ( )ttM −  คือฟังก์ชันความทรงจ า (Memory function) มีความสัมพันธ์
กันดังนี ้

( )
( )
t

ttG
ttM



−
=−    (65) 

สังเกตว่าผลเฉลยของแบบจ าลองแมกซ์เวลและเจ็ฟฟรีส์พดัพา (ลง) ตามกระแสจะแตกต่างกันไปตาม
มอดูลสัผ่อนคลาย ( )ttG −  และฟังก์ชันความทรงจ า ( )ttM −  ซึ่งแสดงในสมการที่ (71) – (76) ใน
ท านองเดียวกันผลเฉลยของแบบจ าลองแมกซ์เวลและเจ็ฟฟรสี์พัดพา (ขึ้น) ต้านกระแสในสมการที่ (52) และ 
(55) สามารถเขียนได้คือ 

( ) ( )
[1]

t

t G t t dt 
−

 = − −  (66) 

หรือ 

( ) ( )
[0]

t

t M t t dt 
−

 = + −   (67) 

เมื่อ 
[0]

  และ 
[1]

  คือความเครียดต้านกระแส (Contravariant strain tensor) ล าดับที่ 0 นิยามใน

สมการที่ (38) และความเครียดต้านกระแส (Contravariant strain tensor) ในสมการที่ (40) ตามล าดับ
และผลเฉลยของแบบจ าลองแมกซ์เวลและเจ็ฟฟรีส์พัดพาร่วมในสมการที่ (53) และ (56) สามารถเขียนได้
คือ 

( ) ( )
t

t G t t dt
−

 = − −    (68) 

เมื่อ ( ),x t  คือเทนเซอร์ความเครียดพัดพาร่วม (Corotating strain tensor) ที่มีแกนหมุนไปตาม

อนุภาค (Lagrange description) นิยามโดย (ดูหัวข้อ 8.4 หน้า 384 ของ [2]) 

( ),x t D

Dt
=

 ( )[0]
R R

T
    (69) 

เมื่อเทนเซอรค์วามเครียดลากรานจ์สัมพัทธ์ (Relative Lagrange strain tensor) [0]
  นิยามในสมการที่ 

(33) ส าหรับการเสียรูปน้อย ๆ (Small deformation flow) 
( ) ( ),x t t  = ( ) ( )

T

v v =  +   (70) 

ส าหรับแบบจ าลองของแม็กซ์เวล มอดูลัสผ่อนคลาย (Relaxation modulus) ( )ttG −  และ 
ฟังก์ชันความทรงจ า (Memory function) ( )ttM −  คือ 

( )G t t− ( )/0 t t
e





− −
=   (71) 

( )M t t− ( )/0

2

t t
e





− −
=   (72) 

และถ้าขยายสเปคตรัมให้เป็นแบบจ าลองทั่วไปของแม็กซ์เวล มอดูลัสผ่อนคลาย (Relaxation modulus) 
( )ttG −  และ ฟังก์ชันความทรงจ า (Memory function) ( )ttM −  คือ 
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( )G t t− ( )/

1

kt tk

k k

e





− −

=

=  (73) 

( )M t t− ( )/
2

1

kt tk

k k

e





− −

=

=   (74) 

ส าหรับแบบจ าลองทั่วไปของเจ็ฟฟรีส์ จะมีค่ามอดูลัสผ่อนคลาย (Relaxation modulus) ( )ttG −  และ 
ฟังก์ชันความทรงจ า (Memory function) ( )ttM −  คือ 

( )G t t− ( ) ( )1/0 0 22

1 1 1

1 2
t t

e t t
  


  

− − 
= − + − 

 
  (75) 

( )M t t− ( ) ( )1/0 0 22

2

1 1 1

1 2
t t

e t t
t

  


  

− −  
= − + − 

 
  (76) 

สมการที่(64) ที่ใช้ฟังก์ชันความทรงจ า (Memory function) ( )ttM −  ในสมการที่(74) มีช่ือเรียกว่า-
ควอซี่แม็กส์เวล (Cauchy-Maxwell model) (ดูหัวข้อ 9.2.3 หน้า 337 ของ [4]) ในขณะที่สมการที่ (66) มี
ช่ือเรียกว่าโอล์ดรอย-วอลเทอร์-เฟรดดริกสันท์ (Oldroyd-Walter-Fredrickson) และสมการที่ (67) มีช่ือ
เรียกว่าของไหลคล้ายยางของลอดจ์ (Lodge’s rubberlike liquid) (ดูตารางที่ 9.4-1 หน้า 444 ของ [2]) 
ส่วนสมการที่ (68) มีช่ือเรียกว่าแบบจ าลองก็อดดาร์ท-มิลเลอร์ (Goddard-Miller model) (ดูหัวข้อ 7.5 
ของ [2]) และถ้าใช้มอดูลัสผ่อนคลาย (Relaxation modulus) ( )ttG −  ในสมการที่ (73) จะเรียกว่า
แบบจ าลอง ZFD† ทั่วไป (Generalized ZFD model) (ดูหัวข้อ 7.4 ของ [2]) 

จากรูปแบบของแบบจ าลองหนืดยืดหยุ่นไม่เป็นเชิงเส้นในสมการที่ (63) - (67) ซึ่งแบ่งออกเป็น
สองชนิดตามรูปแบบการได้มาของผลเฉลยคือหาได้จากผลเฉลยของอนุพันธ์พัดพา (ลง) ตามกระแสใน

สมการที่ (63) และ (64) เมื่อ [0]
C = −  แสดงในสมการที่ (33) ในขณะที่สมการที่ (66) และ (67) 

ได้จากผลเฉลยของอนุพันธ์พัดพา (ขึ้น) ต้านกระแส 
[0]

 = 1
C

−−  แสดงในสมการที่ (38) ตามล าดับ 

ดังนั้นริฟลินและซอว์เยอรส์ (Rivlin and Sawyers) ได้น าเสนอสมการแสดงพฤติกรรมแบบอินทริเกรตรูป
ทั่วไปคือ‡ 

( )  tdttIIttIIttM

t

−−= 
−

−

 −− ),(C),(),(C),(
1

CC1CC2 11   (77) 

                                                      
† ZFD ย่อมาจาก Zaremba, S, Fromm, H และ DeWitt ซ่ึงทั้ง 3 คนได้น าเสนอต่างช่วงเวลากันในวธิีการที่คล้าย ๆ กัน (ดู
หน้า 328 ของ [Error! Bookmark not defined.]) 
‡ สมการที่น าเสนอนี้อยู่ในรูปแบบทีแ่ยกฟังก์ชันความทรงจ า (Memory function) ( )ttM −  ออกมาแล้วเรียกว่า 
Factorized Rivlin-Sawyers equation 
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เมื่อ 
C

I

 และ 1

C
I −


 คือสเกลาร์คงตัวล าดับที่หนึ่ง (First invariants) ของ C  และ 

1
C

−  และ CII  

และ 1
C

−
II  คือสเกลาร์คงตัวล าดับที่สอง (Second invariants) ของ C  และ 

1
C

−  นิยามโดย 

1
C C

II I−
 
=

3

1

Cii

i=

=  (78) 

1
C C

II I −
 
=

3
1

1

Cii

i

−

=

=   (79) 

1  และ 
2  เป็นฟังก์ชันพลังงานศักย์ใด ๆ ที่ขึ้นอยู่กับ 

C
I


 และ 1

C
I −


 ซึ่งขึ้นอยู่กับชนิดของวัสดุและ

ส าหรับวัสดุอัดตัวไม่ได้ 1
det C det C 1

−
 = =  สมการแบบจ าลองเคบีเคซี (K-BKZ Model) ที่เป็นท่ีรู้จัก

กันเป็นอย่างดีของนักรีโอโลยีก็เป็นสมการย่อยของสมการริฟลินและซอว์เยอรส์ (Rivlin and Sawyers) 
โดยแบบจ าลองเคบีเคซีสามารถอธิบายได้ดังสมการที่ (80) (ดูหน้า 364-365 ของ [4] หรือดูจากหัวข้อ 8.3 
ของ [9]) 

1

1

CC

( ) 2 C ( , ) 2 C ( , )

t
W W

M t t t t t t dt
I I


−


−

− 

 
      = − −
  

 
  (80) 

เมื่อ W  คือฟังก์ชันพลังงานศักย์ (Potential Function) t  คือเวลาปัจจุบันและ t  คือเวลาในอดีต   คือ

เทนเซอร์ความเค้นเฉือน ส าหรับวัสดุอัดตัวไม่ได้ ( Incompressible fluid) ส่วนฟังก์ชันความทรงจ า 
(Memory Function) ( )ttM −  นิยามโดยสมการที่  (65) และสามารถเลือกใช้ตามความเหมาะสมได้
จากสมการที่ (72), (74) หรือ (76) ส าหรับฟังก์ชันความทรงจ า (Memory function) ของแบบจ าลอง
แม็กซ์เวล แม็กซ์เวลทั่วไปและแบบจ าลองเจ็ฟฟรีส์ตามล าดับ แบบจ าลองเคบีเคซีเป็นแบบจ าลองที่มี
ความสามารถในการอธิบายพฤติกรรมการไหลของวัสดุหนืดยืดหยุ่นได้อย่างกว้างขวางขึ้นอยู่กับการเลือก
ฟังก์ชันพลังงานศักย์ (Potential Function, W ) ที่เหมาะสมกับปัญหา ฟังก์ชันพลังงานศักย์เป็นพลังงาน
จากความยื ดหยุ่ นของวั สดุ ที่ ขึ้ นกั บ เ วลา  ( Time dependent elastic energy kernel function) 
รายละเอียดของฟังก์ชันพลังงานศักย์สามารถหาอ่านได้เพิ่มเติมจากหัวข้อ 8.3 ของ [9] 

จากแบบจ าลองเคบีเคซีในสมการที่ (80) ลูและแทนเนอร์ [21] (Luo and Tanner) ได้ท าการ
ปรับปรุงเพื่อน าไปอธิบายพฤติกรรมของพอลิเมอร์หลอมเหลวซึ่งเป็นไปดังสมการที่ (81) 

( ) ( ) ( )1

11
( ) ,

1

t

C C
M t t h I I C t C t dt 


−

−

 

−

     = − +
  −   (81) 

โดยค่าคงท่ีของวัสดุ ( ) หาได้จากสมการที่ (82) 
2

1 2

N

N N
 =

+
 (82) 
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เมื่อ 
C

I

 คือสเกลาร์คงตัวล าดับที่หนึ่งของเคาช่ีกรีนเทนเซอร์ , 

1
C

I
−  คือสเกลาร์คงตัวล าดับที่หนึ่งของฟิง

เกอร์เทนเซอร์, ( )ttM −  คือฟังก์ชันความทรงจ า (Memory function) นิยามโดยสมการที่  (65), 1N  
คือค่าความแตกต่างของความเค้นตั้งฉากล าดับที่หนึ่ง (First normal stress differences) ในการไหลแบบ
เฉือนนิยามโดย 

1N = ( ) 2

11 22 1 21   − = −  (83) 

2N  คือค่าความแตกต่างความเค้นตั้งฉากล าดับที่สอง (Second normal stress differences) ในการไหล
แบบเฉือนนิยามโดย 

2N = ( ) 2

22 33 2 21   − = −  (84) 

( )1
,

C C
h I I

− 
 คือค่าฟังก์ชันการหน่วง (Damping function) โดยค่าฟังก์ชันการหน่วงนั้นได้ถูกน าเสนอไว้

หลายรูปแบบดังตารางที่ 1 [22] โดยสเกลาร์คงตัวของความเครียดทั่วไป (Generalized strain invariant, 

hI ) หาได้จากสมการที่ (85) [23] 

( )1
1h C C

I I I 
− 

= + −
 

(85)
 

เมื่อ 1 2, ,k k k ,  , 1 , 2 , 3 ,   คือค่าคงที่ของวัสดุที่หาได้จากการทดลองและต่อมานักวิจัยได้มี
การทดสอบสมการที่ (81) ด้วยการค านวณเชิงตัวเลขท านายการบวมพองของพอลิเมอร์ [22, 24,25] และ
มิทซ์โซลิซ (Mitsoulis) ได้สรุปการใช้งานของแบบจ าลองเคบีเคซีเนื่องในโอกาสครบรอบ 50 ปีในการ
ประชุมทางวิชาการของสถาบันฟิสิกส์แห่งประเทศสหรัฐอเมริกา (American Institute of Physics, AIP) 
เมื่อปี ค.ศ. 2014 ท่ีผ่านมา [26] 
 
ตารางที่ 1. แบบจ าลองฟังก์ชันการหน่วง (Damping function) 

แบบจ าลอง สมการ 
Wagner ( ) 3hk I

hh I e
− −

=  

PSM§ [iii] ( )
( )3

h

h

h I
I




=

+ −
 

Osaki ( ) ( )1 23 3
1h hk I k I

hh I fe f e
− − − −

= + −  

Huang S.X. and Jing L.C. ( )
( ) ( ) ( )

1/2 3/2

1 2 3

1

1 3 3 3
h

h h h

h I
I I I  

=
+ − + − + −

 

 

                                                      
§ PSM ยอ่มาจาก Papanastasiou, Scriven and Macosko ซ่ึงทั้ง 3 คนได้น าเสนอฟังก์ชันการหนว่ง (Damping function) 
ด้วยกัน 
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3.4 แบบจ าลองอ่ืน ๆ 
 

3.4.1 แบบจ าลองไวท์เมทซ์เนอร์ 
จากการสร้างสมการแสดงพฤติกรรมของไหลคล้ายนิวทอเนียนท่ีให้ค่าความหนืดเป็นฟังก์ชันของ

ค่าสเกลาร์คงตัวของอัตราความเครียดเฉือน   ในท านองเดียวกันไวท์และเมทซ์เนอร์ (White and 
Metzner) ได้น าเสนอแบบจ าลองของไหลไวท์เมทซ์เนอร์ (White – Metzner model) โดยเลียนแบบ
แบบจ าลองแมกซ์เวลพัดพา (ลง) ต้านกระแสในสมการที่ (52) ดังนี ้

( )
( )

0G

 
    



+ = −  (86) 

โดย 0G  คือค่ามอดูลัสยืดหยุ่น (Elastic modulus) เป็นค่าคงท่ีและ ( )   คือค่าความหนืดที่เป็นฟังก์ชัน

ของค่าสเกลาร์คงตัวของอัตราความเครียดเฉือน   ในสมการที่ (49) มีเวลาผ่อนคลาย (Relaxation time) 
คือ 

( )
( )

0G

 
  =  (87) 

โดยจะเห็นได้ว่าเวลาผ่อนคลาย ( )   จะเป็นฟังก์ชันของค่าสเกลาร์คงตัวของอัตราความเครียดเฉือน   

ด้วย (ดูหน้า 351 ของ [9] หรือหน้า 360-361 ของ [4]) โดยถ้า   เป็นค่าคงท่ีสมการที่ (86) จะลดรูปเปน็
สมการของแทนเนอร์ (Tanner model) (ดูตารางที่ 9.4-1 ของ [2]) 
 
3.4.2 แบบจ าลองพานเท๋ียนแทนเนอร์ 

แบบจ าลองพานเที๋ยนแทนเนอร์  (Phan Thien Tanner model, PTT) เป็นแบบจ าลองใน
รูปแบบสมการเชิงอนุพันธ์ที่นิยมใช้กันอย่างแพร่หลายในการอธิบายพฤติกรรมของวัสดุวิสโคอีลาสติกที่ไม่
เป็นเชิงเส้น ซึ่งแบบจ าลองพานเที๋ยนแทนเนอร์ จะแสดงพฤติกรรมแบบของไหลซูโดพลาสติกของวัสดุวิสโค
อีลาสติกที่ไม่เป็นเชิงเส้นในกรณีที่อัตราเฉือนสูง ๆ ได้เป็นอย่างดี โดยแบบจ าลองพานเที๋ยนแทนเนอร์
สามารถแสดงได้ดังสมการที่ (88) [28] 

( )
2 2

T

v v v Y G
t

 
    


   

    
 +  −  − −  − + =   

         

 (88) 

โดย Y  สามารถเขยีนอยู่ในรูปแบบเชิงเส้นกับ   

( )1Y tr
G


= +  (89) 

หรือ Y  สามารถเขียนรูปแบบเอ็กซ์โพเนลเชียล 

( )expY tr
G




 
=  

 
 (90) 
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เมื่อ   คือเทนเซอร์ความเค้นเฉือน, v  คือเวคเตอร์ความเร็ว,   คือเทนเซอร์อัตราเฉือน, G  คือโมดูลัส

เฉือน,   คือเวลาผ่อนคลาย,   คือค่าคงที่ท่ีเป็นผลจากการดึง (Elongation) และ   คือค่าคงที่ท่ีเป็นผล
จากการไหลแบบเฉือน (Shear Flow) 
 
4. บทสรุป 

ในบทความนี้ได้กล่าวถึงวิธีหาความเครียดและอัตราเครียดของวัสดุที่ใช้ขนาดและเวลาปัจจุบัน t  
เป็นขนาดและเวลาอ้างอิง แล้วค านวณย้อนกลับไปในอดีตเพื่อหาความเครียดและอัตราเครียดของวัสดุที่
เวลา t  หลักการนี้ใช้ได้ดีกับกระบวนการเสียรูปของวัสดุที่เกิดขึ้นอย่างต่อเนื่องซึ่งมักจะเกิดขึ้นในของไหล 
อัตราเครียดของวัสดุที่เกิดการเสียรูปสูง ๆ จะสัมพันธ์กับเกรเดียนต์ความเร็ว v  และเทนเซอร์การ
ไหลวน   ภายในวัสดุด้วย ท าให้การหาอัตราเครียดจะต้องใช้อนุพันธ์พัดพา (Convected derivative) 

ในการท านายอัตราเครียดที่แท้จริงของวัสดุซึ่งจะต้องไม่ขึ้นอยู่กับผู้สังเกตการณ์ 
ในช่วงแรกของบทความได้กล่าวถึงสมการแสดงพฤติกรรมไม่เป็นเชิงเส้นของพอลิเมอร์เหลวซึ่ง

เป็นสมการความสัมพันธ์ระหว่างความเค้นและความเครียดของวัสดุที่เกิดการเสียรูปสูง ๆ (Finite strain) 
ท าให้อัตราการเสียรูปหรืออัตราเครียดมีผลอย่างมากกับการเสียรูปของวัสดุ สมการแสดงพฤติกรรมไม่เป็น
เชิงเส้นของพอลิเมอร์เหลวสามารถปรับปรุงให้มีความสามารถท านายพฤติกรรมของวัสดุได้หลากหลายวิธี 
เช่นการเพิ่มเทอมอัตราเครียดของริฟส์ลิน-อีริคสัน ท าให้เกิดสมการไคลมิเนล-อิริคสัน-ฟิลเบย์ (Criminale-
Ericksen-Filbey equation or CEF equation) ซึ่ งเป็นแบบจ าลองของไหลอัดตัวไม่ได้ล าดับที่สอง 
(Incompressible second-order fluid) ที่สามารถใช้ท านายพฤติกรรมของไหลที่มีพฤติกรรมการไหลที่ 
ซับซ้อน (Complex fluid) ได้ดีในระดับหนึ่ง ในขณะที่ของไหลที่มีพฤติกรรมการไหลที่ซับซ้อน (Complex 
fluid) มากขึ้นก็อาจจะต้องเพิ่มเทอมอัตราเค้นและอัตราเครียดเข้าไปดังเช่นแบบจ าลองแมกซ์เวลพัดพา 
แบบจ าลองเจ็ฟฟรีส์พัดพาและแบบจ าลองโอล์ดรอย เป็นต้น  

ในช่วงท้ายของบทความได้รวบรวมสมการแสดงพฤติกรรมไม่เป็นเชิงเส้นแบบอินทิกรัลรูปแบบ
ต่าง ๆ ที่นิยมใช้กับพอลิเมอร์เหลว และได้กล่าวถึงแบบจ าลองเคบีเคซี (K-BKZ model) ซึ่งเป็นแบบจ าลอง
ที่สามารถท านายพฤติกรรมของวัสดุได้ครอบคลุมในระดับหนึ่ง และเป็นที่นิยมใช้มากเนื่องจากสามารถใช้
งานกับการค านวณเชิงตัวเลข (Numerical calculation) ได้ ง่าย ท้ายสุดของบทความได้กล่าวถึง
แบบจ าลองของไหลไวท์เมทซ์เนอร์ (White – Metzner model) ที่ให้ค่าความหนืดเป็นฟังก์ชันของค่าสเก
ลาร์คงตัวของอัตราความเครียดเฉือน   และยังได้กล่าวถึงแบบจ าลองพานเที๋ยนแทนเนอร์ (Phan Thien 
Tanner model, PTT) ซึ่งสามารถท านายพฤติกรรมของไหลซูโดพลาสติกของวัสดุวิสโคอีลาสติกที่ไม่เป็น
เชิงเส้นในกรณีที่อัตราเฉือนสูง ๆ ได้เป็นอย่างดีด้วย 

 
 

กิตติกรรมประกาศ 
ผู้เขียนขอขอบคุณ นายพงศ์เทพ พ่วงทอง นักศึกษาระดับปริญญาเอก ภาควิชาวิศวกรรมเครื่องกล

และการบิน-อวกาศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ที่ช่วยอ่านตรวจทานต้นฉบับชุดนี้ 



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 28 ฉบับที่ 1 เดือนมกราคม-มิถุนายน 2562 

 107 

เอกสารอ้างอิง (References) 
[1] ชาญยุทธ โกลิตะวงษ์. 2562. รีโอโลยีของไหลคล้ายนิวโตเนียน. วารสารวิทยาศาสตร์ มข., 47(2), ตอบ 
     รับเมื่อ 16 มกราคม 2562 [Chanyut Kolitawong. 2019. Rheology of Generalized Newtonian  
     Fluids. KKU Science Journal, 47(2), Accepted Jan 16, 2019. (in Thai)] 
[2] Bird, R.B., Armstrong, R.C. and Hassager, O. 1977. Dynamics of Polymeric Liquids: Volume  
    1 Fluid Mechanics. 1st ed., John Wiley and Sons, New York, USA. 
[3] ชาญยุทธ โกลิตะวงษ์. 2561. สมบัติรีโอโลยีในการทดสอบการไหลแบบเฉือน. วารสารวิทยาศาสตร์ 
     ลาดกระบัง, 27(2), 44-64. [Chanyut Kolitawong. 2018. Rheology Property Testing of Shear  
     Flows, Journal of Science Ladkrabang, 27(2), 44-64. (in Thai)] 
[4] Morrison, F. A. 2001. Understanding Rheology. Oxford University Press, New York, USA. 
[5] Lai, W.M., Rubin, D. and Krempl, E. 2010. Introduction to Continuum Mechanics. 4th ed.,  
     Butterworth-Heinemann, New York, USA. 
[6] Morozov, A. and Spagnolie, S.E. 2015. Complex Fluids in Biological Systems: Experiment,  
    Theory, and Computation. Edited by S.E. Spagnolie, Springer. 
[7] Irgens, F. 2008. Continuum Mechanics. Springer-Verlag Berlin Heidelberg, ISBN: 978-3-540- 
    74297-5. 
[8] Joseph, D.D. 1990. Fluid Dynamics of Viscoelastic Liquids, Applied Mathematical Sciences 
     84, Springer-Verlag Berlin Heidelberg GmbH. ISBN 978-1-4612-8785-8. 
[9] Bird, R.B., Armstrong, R.C. and Hassager, O. 1987. Dynamics of Polymeric Liquids: Volume  
     1 Fluid Mechanics. 2nd ed., John Wiley and Sons, New York, USA. 
[10] Rivlin, R.S. and Ericksen, J.L. 1955. Stress-Deformation Relations for Isotropic Materials.  
      Journal of Rational Mechanics and Analysis. 4(2), 323-425. 
[11] Rivlin, R.S. and Ericksen, J.L. 1997. Stress-Deformation Relations for Isotropic Materials.  
      Collected papers of R.S. Rivlin, Edited by Barenblatt, G.I. and Joseph, D.D. Springer, New  
       York, USA. 
[12] Patel, V.V. and Pandya, J.U. 2017. An approximate solution of boundary layer  
      equations for third order grade non-Newtonian fluid. Global Journal of Pure and  
      Applied Mathematics, 13(1), 33-39. 
[13] Siddiqui, A.M., Azim, Q.A., Ashraf, A. and Ghori, Q.K. 2008. Hometopy perturbation  
      solution for peristaltic flow of a third order fluid. Journal of the Juliusz Schauder, 31,  
      331-339. 
[14] Fosdick, R.L., and Rajagopal, K.R. 1980. Thermodynamics and Stability of Fluids of  
      Third Grade. Proceedings of the Royal Society of London. Series A, Mathematical and  
      Physical Sciences, Vol. 369, No. 1738, Jan. 28, 1980, 351-377. 
[15] Ozer, S. and Sengul, T. 2016. Stability and transitions of the second grade Poiseuille  



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 28 ฉบับที่ 1 เดือนมกราคม-มิถุนายน 2562 

 108 

      flow. Physica D: Nonlinear Phenomena, 331, 71-80. arXiv:1509.03606v1 [math.AP] 
[16] Tadmor, Z and Bird, R.B. 1974. Rheological analysis of stability forces in wire coating  
      dies. Polymer Engineering & Science, 14(2), 124. 
[22] Huang, S.X. and Jing, L.C., 2006. Stress relaxation characteristics and extrudate swell of  
      the IUPAC-LDPE melt. Journal of Non-Newtonian Fluid Mechanics, 136, 147–156. 
[27] Papanastasiou, A.C., Scriven, L.E. and Macosko, C.W. 1983. An integral constitutive  
      equation for mixed flows: viscoelastic characterization. J. Rheol., 27, 387–410. 
[28] Tanner R.I. 2002. Engineering rheology. 2nd ed., Oxford University Press Inc., New York,  
       USA. 

  


