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บทคัดย่อ 

สำหรับจำนวนเต็มบวก 𝑛 >1 ยูนิทารีแอดดิชันเคย์เลย์กราฟ 𝐺𝑛  =   𝐶𝑎𝑦+(ℤ𝑛, 𝑈𝑛) คือกราฟที่มี
ℤ𝑛 เซตของจุดยอด และถ้าให้  𝑈𝑛 = {𝑎 ∈ ℤ𝑛: gcd(𝑎, 𝑛) = 1} , ℤ𝑛 เป็นจำนวนเต็มมอดูโล 𝑛  แล้วจุด
ยอด 𝑎, 𝑏 ประชิดกันก็ต่อเมื่อ 𝑎 + 𝑏 ∈ 𝑈𝑛  ในงานวิจัยนี้ผู ้วิจัยได้ศึกษายูนิทารีแอดดิชันเคย์เลย์กราฟ 
𝐺𝑛  =   𝐶𝑎𝑦

+(ℤ𝑛, 𝑈𝑛)  และหาขอบเขตล่างกับขอบเขตบนของอโครติกอินเด็กซ์ของยูนิทารีแอดดิชันเคย์

กราฟ  เมื ่อ  𝑛  เป็นจำนวนเต็มคู่  อีกทั ้งได้พัฒนาขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ 𝐺𝑛 เมื่อ  
𝑛 =  2𝑘  โดยที่  𝑘  เป็นจำนวนนับ  นอกจากนี้ผู้วิจัยได้พบว่ายูนิทารีแอดดิชันเคย์เลย์กราฟ 𝐺𝑛 เป็นกราฟ1

สองส่วนบริบูรณ์  𝐾2𝑘−1,2𝑘−1 เมื่อ 𝑛 =  2𝑘

คำสำคัญ : ยูนิทารีแอดดิชันเคย์เลย์กราฟ อโครมาติกอินเด็กซ์ การระบายสีสมบูรณ์ 

Abstract 

For a positive integer 𝑛 >1, the unitary addition Cayley Graph 𝐺𝑛 =  𝐶𝑎𝑦+(ℤ𝑛, 𝑈𝑛) 
is the graph whose vertex set is ℤ𝑛 and if 𝑈𝑛 = {𝑎 ∈ ℤ𝑛: gcd(𝑎, 𝑛) = 1}, ℤ𝑛 the integers 
modulo 𝑛 then two vertices  𝑎, 𝑏  are adjacent if and only if  𝑎 + 𝑏 ∈ 𝑈𝑛 . In this research, 
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we study about the unitary addition Cayley graphs, 𝐺𝑛  =   𝐶𝑎𝑦+(ℤ𝑛, 𝑈𝑛),  and to find the 
lower bound and upper bound of achromatic index of unitary addition Cayley graph where  
𝑛  is even and we improve the bound of achromatic index of graph  𝐺𝑛 when 𝑛 =  2𝑘,     
𝑘  is  the positive integer.  Moreover, we found that the unitary addition Cayley graph 𝐺𝑛 is 
the complete bipartite graph  𝐾2𝑘−1,2𝑘−1 for  𝑛 =  2𝑘 . 

 
Keywords: unitary addition Cayley graph, Achromatic index, Complete coloring 

 

1. บทนำ  
ในปัจจุบันมีการศึกษาที่เกี่ยวข้องกับทฤษฎีกราฟกันอย่างแพร่หลายและได้ถูกนำไปประยุกต์ใช้ใน

งานด้านต่าง ๆ เช่น  ปัญหาการเล่นเกม  ปัญหาการจัดสรรทรัพยากร  การหาเส้นทางที่สั้นที่สุด  และการ
ประยุกต์ใช้สำหรับวงจรไฟฟ้า เป็นต้น 

จุดเริ่มต้นของการตั้งปัญหาสี่สี (Four color problem) [1-3] เริ่มขึ้นในปี ค.ศ.1852 Francis 
Guthrie [4]  ได้ตั้งและเสนอปัญหาเพื่อหาความเป็นไปได้ที่สามารถใช้สีเพียง 4 สีในการใช้ระบายแผนที่  
โดยทีป่ระเทศที่มีชายแดนติดกันจะต้องมีสีที่แตกต่างกัน กับ Augustus De Morgan ทำให้ปัญหานี้ได้ขยาย
ไปสู่กลุ่มคนทั่วไปท่ีสนใจและนักคณิตศาสตร์ ซึ่งต่อในปี ค.ศ. 1878 Cayley [5] ได้เขียนเกี่ยวกับปัญหานี้
และได้ส่งเผยแพร่ในหัวข้อ “on the colouring of maps” จนกระทั่งในปี ค.ศ.1976 Appel และ Haken 
[6] ได้ค้นพบคำตอบของปัญหา 4 สีนี้ ซึ่งทั้งสองได้แสดงให้เห็นว่าสามารถแบ่งปัญหานี้ออกได้เป็นเกือบ 
2,000 กรณี ซึ่งได้แบ่งตามจำนวนของการจัดเรียงประเทศในแผนที่และการระบายสีของการจัดเรียงนั้น   
ถูกพบวิธีที่เป็นไปได้หลายแบบ พวกเขาได้นำคอมพิวเตอร์เข้ามาช่วยและหลังจากคอมพิวเตอร์ใช้เวลา
คำนวณไปกว่า 1,200 ชั่วโมง จึงสรุปได้ว่าคำตอบที่ได้นั้นเป็นจริง แต่ทว่ามีนักคณิตศาสตร์อีกหลายคนที่ยัง
ไม่ยอมรับและยังมีข้อสงสัยในวิธีการพิสูจน์นี้อยู่ ดังนั้นจึงได้กำเนิดปัญหาใหม่ขึ้นมาว่าจะสามารถใช้ในการ
พิสูจน์ทางคณิตศาสตร์เพียงอย่างเดียว โดยจะไม่มีการใช้คอมพิวเตอร์ได้หรือไม่  และเพราะเหตุนี้ถึงได้มีบท
นิยามของจำนวนโครมาติกขึ้น นั่นคือจำนวนสีที่น้อยที่สุดที่สามารถระบายจุดยอดของกราฟ 𝐺 โดยที่จุด
ยอดที่ประชิดกันจะระบายสีแตกต่างกัน และใช้สัญลักษณ์ 𝑋(𝐺) 

ในปี ค.ศ.1965 Vizing [7] ได้นิยามเกี่ยวกับการระบายสีเส้นเชื่อม โครมาติกอินเด็กซ์ของกราฟ 𝐺 
และใช้สัญลักษณ์ 𝑋′(𝐺) แทนโครมาติกอินเด็กซ์ โดยได้พบว่า ∆ ≤ 𝑋′(𝐺) ≤  ∆ + 1 ต่อมาในปี ค.ศ.1973 
Beineke และ Wilson [8] ได้ศึกษาวิธีต่าง ๆ ในการสร้างกราฟ 𝐺 ที่มโีครมาติกอินเด็กซ์ 𝑋′(𝐺) = ∆+ 1  

ในเวลาต่อมาปี ค.ศ.1967 Harary และคณะ [9] ได้กำหนดนิยาม 𝑘-การระบายสีสมบูรณ์ 
(Complete 𝑘-coloring) และนิยามจำนวนเต็ม 𝑘 ที่มากที่สุดที่สามารถระบายสี 𝑘-สมบูรณ์ให้กับจุดยอด



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 33 ฉบับที่ 2 เดือนกรกฎาคม - ธันวาคม 2567 
Journal of Science Ladkrabang Vol. 33 No. 2 July – December 2024 

 
 

 

3 

ของกราฟ 𝐺 ว่า จำนวนอโครมาติก (Achromatic number) โดยใช้สัญลักษณ์ 𝜓(𝐺) และได้ศึกษาขอบเขต
ของจำนวนอโครมาติกบนความสัมพันธ์ของพารามิเตอร์ของกราฟ 𝐺 ได้แก่ จำนวนเส้น จำนวนโครมาติก 
จำนวนอิสระ (Independence number) จำนวนปก (Covering number)  และจำนวนอโครมาติกของ
ส่วนเติมเต็มของกราฟ 𝐺 โดยทางผู้วิจัยมีความสนใจทั้งการระบายสีสมบูรณ์ จำนวนอโครมาติก จำนวน 
อโครมาติกอินเด็กซ์ และลักษณะเชิงกราฟของยูนิทารีแอดดิชันเคย์เลย์กราฟ จึงได้ศึกษาและค้นคว้าเพิ่ม
พบว่า ในปี ค.ศ.1878 Cayley [10] ได้นิยามและนำเสนอกราฟที่สร้างจากเซตก่อกำเนิด (Generating set) 
และความสัมพันธ์บนกรุป จากนั้นได้มีนักวิจัยอีกหลายท่านได้ขยายแนวคิดในการสร้างกราฟและศึกษา
สมบัติพร้อมทั้งพิจารณาลักษณะเชิงกราฟของกราฟที่ขยายมาจากเคย์เลย์กราฟ อาทิเช่น  ในปี ค.ศ.2007 
Klotz และ Sander [11] ได้ศึกษาสมบัติบางประการและจำนวนโครมาติกของยูนิทารีเคย์เลย์กราฟ 
(unitary Cayley graph) เขียนแทนด้วย 𝐶𝑎𝑦−(ℤ𝑛, 𝑈𝑛) หรือ 𝑋𝑛 สำหรับจำนวนเต็มบวก 𝑛 โดยที่  
𝑛 > 1 

ในปี ค.ศ.2011 Sinha. และคณะ [12] ได้ศึกษาสมบัติของยูนิทารีแอดดิชันเคย์เลย์กราฟ (unitary 
addition Cayley graph) เขียนแทนด้วย 𝐶𝑎𝑦+(ℤ𝑛, 𝑈𝑛) หรือ 𝐺𝑛 โดยที่ 𝑛 เป็นจำนวนเต็มบวกและ 
𝑛 > 1 และได้ลักษณะเชิงระนาบของยูนิทารีแอดดิชันเคย์เลย์กราฟ ต่อมาในปี ค.ศ.2017 Momrit และ 
Promsakon [13] ได้ค่าจริงและขอบเขตของจำนวนอโครมาติกของยูนิทารีแอดดิชันเคย์เลย์กราฟ ซึ่งใน
งานวิจัยนี้ผู้วิจัยได้หาขอบเขตบนและขอบเขตล่างของอโครมาติกอินเด็กซ์ของยูนิทารีแอดดิเคย์เลย์กราฟ 
𝐺𝑛 และลักษณะโครงสร้างของกราฟนี้ 

 

2. วิธีการทดลอง 

บทนิยามและทฤษฎีบทที่จะกล่าวในหัวข้อนี้ ส่วนแรกจะให้บทนิยามที่จะช่วยจำแนกและศึกษา
สมบัติของลักษณะโครงสร้างของเคย์เลย์กราฟในแต่ละแบบ รวมถึงการหาพารามิเตอร์ต่าง ๆ ของยูนิทารี
แอดดิชันเคย์เลย์กราฟด้วยฟังก์ชันออยเลอร์-ฟี (Euler-phi function)  ส่วนต่อมาจะแสดงบทนิยามและ
ยกตัวอย่างการระบายสีให้จุดยอดหรือเส้นเชื่อมของกราฟที่มีเงื่อนไขของการระบายสีที่แตกต่างกัน ได้แก่ 
การระบายสี การระบายสีสมบูรณ์ จำนวนโครมาติก จำนวนอโครมาติก โครมาติกอินเด็กซ์ และอโครมาติก
อินเด็กซ์ เพื่อช่วยให้จำแนกการระบายสีและนำไปศึกษาสมบัติและพิสูจน์ทฤษฎีบทต่าง ๆ ในหัวข้อต่อไป  

 
2.1 กราฟและการระบายสีจุดยอด (Graph and vertex coloring) 

ในหัวข้อนี้ จะให้บทนิยามเกี่ยวกับกราฟและประเภทของกราฟที่น่าสนใจและการระบายสีจุดยอด
เบื้องต้น ส่วนบทนิยามเกี่ยวกับประเภทของกราฟและส่วนอื่น ๆ ที่ไม่ได้กล่าวถึงในที่นี้ ผู้อ่านสามารถศกึษา
เพิ่มในหนังสือของ West [14] ซึ่งในงานวิจัยนี้ เราจะพิจารณาเฉพาะกราฟเชิงเดียว (Simple graph)      
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𝐺 =  (𝑉(𝐺), 𝐸(𝐺)) ที่ 𝑉(𝐺) แทนเซตของจำนวนจุดยอด และ 𝐸(𝐺) แทนเซตของจำนวนเส้นเชื ่อม     
ซึ่ง ระดับขั้น (Degree) ของจุดยอด 𝑣 ในกราฟ 𝐺 คือ จำนวนเส้นเชื่อมที่มี 𝑣 เป็นจุดปลาย เขียนแทนด้วย 
𝑑𝐺(𝑣) หรือ 𝑑(𝑣) ค่าสูงสุดและค่าต่ำสุดของระดับขั้นของจุดยอดทั้งหมดในกราฟ 𝐺 เขียนแทนด้วย ∆(𝐺) 
และ  δ(𝐺) ตามลำดับ กราฟ G เรียกว่า กราฟปกติ (Regular graph) ถ้ากราฟ G มีระดับขั้นต่ำสุดเท่ากับ
ระดับขั้นสูงสุด นั่นคือ   ∆(𝐺) = δ(𝐺)  ถ้ากราฟปกติ G  มี ∆(𝐺) = 𝛿(𝐺)=  r  แล้ว กราฟปกติ G  เรียกอีก
แบบว่า r−กราฟปกติ (r−regular graph) ต่อจากนี ้จะเป็นบทนิยาม ทฤษฎีบท และตัวอย่างของ           
เคย์เลย์กราฟ กราฟขยายจากเคย์เลย์กราฟ และฟังก์ชันออยเลอร์-ฟี 

บทนิยาม 2.1 เคย์เลย์กราฟ (Cayley  graph) [10] ให้ Γ เป็นกรุปจำกัด และให้ 𝑆 ⊂ Γ  โดยที่ 
𝑒 ∉ 𝑆 และ 𝑆 = 𝑆−1 เคย์เลย์กราฟ 𝐺 = 𝐶𝑎𝑦(Γ, 𝑆) คือ กราฟที่มีจุดยอดเป็นสมาชิกในกรุป Γ และเซต
ของเส้นเชื่อมคือ 𝐸 = {{𝑔 , 𝑔𝑠} ∶ 𝑔 ∈ Γ, 𝑠 ∈ 𝑆} 

 

𝐺 = 𝐶𝑎𝑦(ℤ7, {1̅, 6̅})                 𝑋5 = 𝐶𝑎𝑦−(ℤ5, 𝑈5)                𝐺5 = 𝐶𝑎𝑦+(ℤ5, 𝑈5) 

รูปที่ 1. ตัวอย่างของเคย์เลย์กราฟ ยูนิทารีเคย์เลย์กราฟ และยูนิทารีแอดดิชันเคย์เลย์กราฟ  

 
จากบทนิยาม 2.1 สามารถสร้างเคย์เลย์กราฟแบบต่าง ๆ ได้ เมื่อกำหนดกรุปย่อย 𝑆 และกรุปจำกัด 

Γ  โดยที่  𝑆 ⊂ Γ เช่น ถ้ากำหนดให้  Γ  แทนด้วย  ℤ𝑛 (จำนวนเต็มมอดูโล 𝑛 ) และ 𝑆 แทนด้วย 𝑈𝑛 แล้ว  
จะได้เคย์เลย์กราฟในบทนิยาม 2.2 และ 2.3 แต่กราฟที่ได้นั้นก็จะมีความแตกต่างกัน เมื่อกำหนดเซตของ
เส้นเชื่อมของเคย์เลย์กราฟที่ต่างกัน ดังรูปที่ 1 

บทนิยาม 2.2 ยูนิทารีเคย์เลย์กราฟ [13] เขียนแทนด้วย 𝑋𝑛  = 𝐶𝑎𝑦−(ℤ𝑛, 𝑈𝑛) และ 𝑈𝑛 =
{𝑎 ∈ ℤ𝑛: gcd(𝑎, 𝑛) = 1} เม ื ่อ 𝑛 เป ็นจำนวนเต ็มมากกว ่า 1  โดยที่  𝑉(𝑋𝑛) = ℤ𝑛 และ 𝐸(𝑋𝑛) =
{(𝑎, 𝑏): 𝑎, 𝑏 ∈ ℤ𝑛 , 𝑎 − 𝑏 ∈ 𝑈𝑛} 

 

บทนิยาม 2.3 ยูนิทารีแอดดิชันเคย์เลย์กราฟ [12] เขียนแทนด้วย  𝐺𝑛  = 𝐶𝑎𝑦+(ℤ𝑛, 𝑈𝑛) ที่ 
𝑈𝑛 = {𝑎 ∈ ℤ𝑛: gcd(𝑎, 𝑛) = 1} เมื่อ 𝑛 เป็นจำนวนเต็มที่มากกว่า 1 โดยที่ 𝑉(𝐺𝑛) = ℤ𝑛 และ 𝐸(𝐺𝑛) =
{(𝑎, 𝑏): 𝑎, 𝑏 ∈  ℤ𝑛 , 𝑎 + 𝑏 ∈ 𝑈𝑛}  
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บทนิยาม 2.4 ให้ ∅(𝑛) เป็นจำนวนสมาชิกในระบบส่วนตกค้างลดทอนมอดุโล 𝑛 นั่นคือ ∅(𝑛)  

เท่ากับจำนวนของจำนวนเต็มบวกที่น้อยกว่าหรือเท่ากับ 𝑛 และเป็นจำนวนเฉพาะสัมพัทธ์กับ 𝑛 จะเห็นว่า 

∅(𝑛) สามารถหาค่าได้ทุกค่าของจำนวนเต็มบวก 𝑛 และเรียกว่า ฟังก์ชันออยเลอร์-ฟี [15] 

ทฤษฎีบท 2.5 สำหรับจำนวนเต็มบวก 𝑛 ใด ๆ และ 𝑛  เป็นจำนวนเฉพาะก็ต่อเมื่อ ∅(𝑛) =   𝑛 − 1  

[15]   

ทฤษฎีบท 2.6 ให้ 𝑛 = 𝑝1𝑎1𝑝2𝑎2 … 𝑝𝑖𝑎𝑖 เมื่อ 𝑝𝑖 เป็นจำนวนเฉพาะที่ต่างกัน และ 𝑎𝑖 เป็นจำนวน

เต็มบวก จะได้ว่า  ∅(𝑛) =  ∏ (𝑝𝑖
𝑎𝑖 − 𝑝𝑖

𝑎1−1) =   𝑛∏ (1 − 
1

𝑝𝑖 
)𝑘

𝑖=1
𝑘
𝑖=1    [15] 

ในปี ค.ศ. 2011 Sinha และคณะ [12] ได้ศึกษาสมบัติหลายประการเกี่ยวกับยูนิทารีแอดดิชัน 

เคย์เลย์กราฟ โดยมีรายละเอียดดังนี้ 

ทฤษฎีบท 2.7 ให้ 𝑣 เป็นจุดยอดใด ๆ ของยูนิทารีแอดดิชันเคย์เลย์กราฟ  𝐺𝑛 แล้วจะได้ว่า 

𝑑𝑒𝑔(𝑣) = 𝑑(𝑣) = {  

 ∅(𝑛)          ถ้า  𝑛  เป็นจำนวนคู่                            
∅(𝑛)          ถ้า  𝑛  เป็นจำนวนคี่และ  (𝑣, 𝑛) ≠ 1
∅(𝑛) − 1  ถ้า  𝑛  เป็นจำนวนคีแ่ละ  (𝑣, 𝑛) = 1

 

|𝐸(𝐺𝑛)| =  {

 ∅(𝑛) × 𝑛 

2 
               ถ้า  𝑛  เป็นจำนวนคู ่  

∅(𝑛) × (𝑛 − 1)

2
     ถ้า  𝑛  เป็นจำนวนคี่  

   

นอกจากนี้ได้จำแนกลักษณะเชิงกราฟของยูนิทารีแอดดิชันเคย์เลย์กราฟ ดังนี้ 
 1.  ถ้า  𝑛  เป็นจำนวนคู่แล้ว ∅(𝑛) − กราฟปกติ 
 2.  ถ้า  𝑛  เป็นจำนวนเต็มคี่แล้ว  (∅(𝑛), ∅(𝑛) − 1) − กราฟกึ่งปกติ 

3.  สำหรับทุก 𝑛 ที่เป็นจำนวนเต็มคู่ หรือ 𝑛 =  3 จะได้ว่ากราฟ  𝐺𝑛  เป็นกราฟสองส่วน 
การระบายสีกราฟ ได้มีผู้ศึกษาและนิยามหลายแบบขึ้นอยู่กับวัตถุประสงค์ของผู้วิจัยและเป้าหมาย

ของงานวิจัย เช่น เกียรติสุดา นาคประสิทธิ์ [16] ได้นิยามว่า “ถ้ากราฟ 𝐺 สามารถแบ่งกั้นเซตของจุดยอด

ออกเป็นเซตอิสระ (Independent set) นั่นคือ จุดยอดสองจุดใด ๆ ในเซตนี้ไม่ประชิดกัน เป็นจำนวน 𝑘 

เซต 𝑉1, 𝑉2, . . . , 𝑉𝑘  แล้วจะกล่าวว่า 𝐺 สามารถระบายสี 𝑘 สี (𝑘-colorable) และเรียกเซตทั้ง 𝑘 เซตว่า 

คลาสของสี (Color classes) จำนวนเต็มบวก 𝑘 ที่น้อยที่สุดซึ่ง 𝐺 สามารถระบายสี 𝑘 สีได้เรียกว่า รงคเลข 

(Chromatic number) ของ 𝐺 เขียนแทนด้วย 𝜒(𝐺)” เป็นต้น  ดังนั้น ผู้วิจัยจึงนิยามการระบายสีกราฟ 

ตามอ้างอิงใน [9] เพื่อต้องการนิยามและนำเสนอจำนวนอโครมาติกและอโครมาติกอินเด็กซ์ของกราฟ 

บทนิยาม 2.8 การระบายสีจุดยอด (Vertex coloring) คือ การกำหนดสีให้กับจุดยอดของกราฟ 

โดยจุดยอดสองจุดที่ประชิดกัน จะต้องระบายสีที่แตกต่างกัน  ถ้าการระบายสีจุดยอดทั้งหมดของ 𝐺 ใช้ 𝑘 สี 
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แล้วจะเรียกว่า 𝑘-การระบายสี (𝑘-coloring of graph 𝐺) ของ 𝐺 และกล่าวว่า 𝐺 เป็น 𝑘-การระบายสี

สมบูรณ์ (Complete 𝑘-coloring) ถ้าการระบายสีจุดยอดของ 𝐺 ใช้ 𝑘 สีและทุกสองสีใด ๆ จะมีเส้นเชื่อม

อย่างน้อย หนึ่งเส้น (คู่สี) แล้ว 𝑋(𝐺) คือ จำนวน 𝑘 สีที่น้อยที่สุดที่สามารถระบายจุดยอดของกราฟ 𝐺   (นั่น

คือ จำนวนเต็ม 𝑘 ที่น้อยที่สุดใน 𝑘-การระบายสีของ 𝐺) แต่ถ้า 𝑘 เป็นจำนวนเต็มมากที่สุดที่ทำให้การ

ระบายสีจุดยอดของ 𝐺 เป็น 𝑘-การระบายสีสมบูรณ์ แล้วจะเรียกจำนวน 𝑘 ว่า จำนวนอโครมาติก และเขียน

แทนด้วย 𝜓(𝐺) 

หมายเหตุ ในการกำหนดสีจะใช้ตัวเลขแทนสีต่าง ๆ ที่ระบายให้กับจุดยอดหรือเส้นเชื่อมดังตัวอย่าง

ต่อไปนี้ 

ตัวอย่าง 2.9 กำหนดให้กราฟ  𝐺1 , 𝐺2  และ 𝐺3 สมสัณฐาน (Isomorphic) กัน สามารถระบายสี

จุดยอดของแต่ละกราฟ เป็น k-การระบายสีสมบูรณ์ ได้จำนวน 𝑘 แตกต่างกัน ดังแสดงในรูปที ่2 

 

รูปที่ 2. 𝑘-การระบายสสีมบูรณ์ของกราฟ 𝐺1 , 𝐺2  และ 𝐺3  (เมื่อ 𝑘 = 3, 4 และ 5 ตามลำดับ) 

 
จากรูปที่ 2 จะเห็นว่า กราฟ 𝐺3 ระบายสีจุดยอดใช้ 5 สี แต่มีบางคู่สีไม่มีเส้นเชื่อมหากัน (จุดยอดสี 

1 และจุดยอดสี 4 ไม่ประชิดกัน) จึงไม่เป็นการระบายสีสมบูรณ์ แต่กราฟ 𝐺1  และ 𝐺2  เป็นการระบายสี
สมบูรณ์ เพราะสีทุกสีนั้นประชิดกันจนครบจำนวนสี และจำนวนสีมากสุด คือ 4 ดังนั้น 𝜓(𝐺) = 4 

 
2.2 กราฟเส้นและการระบายสีเส้นเชื่อม (Line graph and edge coloring) 

บทนิยาม 2.10 กราฟเส้น (Line graph) ของกราฟ 𝐺 เขียนแทนด้วย 𝐿(𝐺) คือ กราฟซึ่ง 
𝑢𝑣 ∈ 𝐸(𝐿(𝐺)) เมื่อ 𝑢 และ 𝑣 คือเป็นจุดยอดที่ประชิดกันบนกราฟ 𝐺  [14] ตัวอย่างดังรูปที่ 3 

 
รูปที่ 3. กราฟ G และกราฟเส้นของกราฟ G 

2 



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 33 ฉบับที่ 2 เดือนกรกฎาคม - ธันวาคม 2567 
Journal of Science Ladkrabang Vol. 33 No. 2 July – December 2024 

 
 

 

7 

บทนิยาม 2.11 การระบายสีเส้นเชื่อม (Edge coloring) คือ การกำหนดสีให้กับเส้นเชื่อมของกราฟ 
โดยเส้นเชื่อมสองเส้นที่ตกกระทบจุดยอดเดียวกัน จะต้องระบายสีแตกต่างกัน  ถ้าการระบายสีเส้นเชื่อม
ทั้งหมดของ 𝐺 ใช้ 𝑞 สี แล้วจะเรียกว่า 𝑞-การระบายสีเส้นเชื่อม (𝑞-edge coloring of graph 𝐺) ของ 𝐺 
และกล่าวว่า 𝐺 เป็น 𝑞-การระบายสีเส้นเชื่อมสมบูรณ์ (Complete 𝑞-edge coloring) ถ้าการระบายสีเส้น
เชื่อมของ 𝐺 ใช้ 𝑞 สีและทุกสองสีใด ๆ ที่ระบายให้กับเส้นเชื่อมของ 𝐺 มีจุดยอดอย่างน้อยหนึ่งจุดที่ตก
กระทบร่วมกันแล้ว โครมาติกอินเด็กซ์ 𝜒′(𝐺) คือ จำนวน 𝑞 สีที่น้อยที่สุดที่สามารถระบายเส้นเชื่อมของ
กราฟ 𝐺  ได้ ในทางกลับกันถ้า 𝑞 เป็นจำนวนเต็มที่มากสุดที่ทำให้การระบายสีเส้นเชื ่อมของ 𝐺 เป็น        
𝑞-การระบายสีเส้นเชื่อมสมบูรณ์ แล้วจะเรียกจำนวน 𝑞 ว่า อโครมาติกอินเด็กซ์ และเขียนแทนด้วย 𝜓′(𝐺) 

ตัวอย่าง 2.12 กำหนดให้กราฟ 𝐺1, 𝐺2 และ 𝐺3 ที่ซึ่งสมสัณฐานกัน และได้กำหนดสีให้เส้นเชื่อม

ของแต่ละกราฟ ดังรูปที่ 4 

                                   (ก) ไม่เป็นการระบายสีเชื่อม   (ข) การระบายสเีส้นเชื่อมสมบูรณ ์   (ค) การระบายสีเส้นเชื่อม 

 

รูปที่ 4. ตัวอย่างการกำหนดสีให้กับเส้นเชื่อมของกราฟ 𝐺1, 𝐺2 และ 𝐺3 โดยที่ 𝐺1, 𝐺2 และ 𝐺3 สมสัณฐานกัน  

 
จากรูปที ่4(ค) พบว่าเส้นเชื่อมของกราฟ 𝐺3 ถูกระบายสีทั้งหมด 6 สี โดยที่เส้นเชื่อมทีต่กกระทบกับ

จุดยอดเดียวกันระบายสีต่างกัน แต่มีสองสีที่ระบายสีเส้นเชื่อมโดยที่ไม่มีจุดยอดตกกระทบร่วมกัน (นั่นคือ  
สี 2 กับ สี 4 หรือ สี 3 กับ สี 6) ดังนั้นการกำหนดสีเส้นเชื ่อมกราฟ 𝐺3 จึงเป็นการระบายสีเส้นเชื ่อม       
(6-การระบายสีเส้นเชื่อม) แต่ไม่เป็นการระบายสีเส้นเชื่อมสมบูรณ์ ส่วนการกำหนดสีให้กับเส้นเชื่อมของ
กราฟ 𝐺2 รูปที่ 4(ข) พบว่าเป็นการระบายสีเส้นเชื่อมสมบูรณ์ (5-การระบายสีเส้นเชื่อมสมบูรณ์) และไม่
สามารถระบายสีเส้นเชื่อมมากกว่า 5 สีได้ (5 เป็นจำนวนที่มากที่สุด)  ดังนั้น อโครมาติกอินเด็กซ์ของกราฟ

 𝐺2 เท่ากับ 5  (𝜓′(𝐺2) = 5 ) และการกำหนดสีเส้นเชื่อมของกราฟ 𝐺1 ในรูปที่ 4(ก) ไม่เป็นการระบายสี
เส้นเชื่อมเพราะมเีส้นเชื่อมที่ถูกระบายสีเดียวกันแต่ตกกระทบจุดยอดร่วมกัน คือ เส้นเชื่อมที่ระบายสี 4 

ในการหาขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ 𝐺𝑛  ในหัวข้อถัดไป ผู้วิจัยจะนำทฤษฎีบทนีเ้พื่อ
ช่วยในการหาค่าขอบเขตและพัฒนาขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ 𝐺𝑛  
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ทฤษฎีบท 2.13 ถ้า  𝐺  เป็นกราฟเชิงเดียวแล้ว  ∆(𝐺)  ≤  𝑋′(𝐺)  ≤   ∆(𝐺) + 1  [7]  

ทฤษฎีบท 2.14 ให้  𝐾𝑚,𝑛 เป็นกราฟสองส่วนบริบูรณ์ จะได้ว่า 𝐿(𝐾𝑚,𝑛) มีจำนวนจุดยอดเท่ากับ 

𝑚𝑛  และแต่ละจุดยอดจะมีดีกรีเท่ากับ  𝑚 + 𝑛 − 2   และกราฟ 𝐿(𝐾𝑚,𝑛)  สมสัณฐานกับกราฟ 𝐾𝑚  × 𝐾𝑛    

[18] 

ทฤษฎีบท 2.15 ถ้า 𝐺 เป็นกราฟเชิงเดียวที่สามารถระบายสีสมบูรณ์ได้ 𝑘 สี แล้วเส้นเชื่อมของ

กราฟ 𝐺 จะมีอย่างน้อย 𝑘(𝑘 − 1)/2 เส้น นั่นคือ 𝜓(𝐺) ≤ √2|𝐸(𝐺)| + 1   [9]  

ทฤษฎีบท 2.16 สำหรับ  𝑡 ≥ 2  จะได้ว่า [19]   

1.  ถ้า  ⌊2𝑡2 − 𝑡

2
⌋ ≤ 𝑚 ≤ ⌈2𝑡2 + 

3

2
𝑡 − 1⌉   แล้ว  𝜓′(𝐾𝑚,𝑛) ≤ 𝑡(2𝑚 − 𝑡 − 1) + 1 

2.  ถ้า  ⌈2𝑡2 + 3

2
𝑡⌉  ≤ 𝑚 ≤ ⌊2(𝑡 + 1)2 − 

1

2
(𝑡 + 1) − 1⌋  แล้ว   𝜓′(𝐾𝑚,𝑛) ≤

𝑚2

𝑡+1
 

ทฤษฎีบท 2.17 ให้  𝑚 ≥ 4  จะได้ว่า  𝜓(𝐾𝑚 × 𝐾𝑛) ≥ {
𝑚 + 𝑛 − 1             เมื่อ   𝑚 = 𝑛

2𝑛 −  ⌈
𝑛

𝑚−1
⌉        เมือ่  𝑚 ≠ 𝑛

  [20] 

 

3. ผลการทดลองและวิจารณ์ 
วิธีการดำเนินงานและผลวิจัยจะแบ่งออกเป็นสองส่วน   ส่วนที่หนี่งจะศึกษาเงื ่อนไขลักษณะ       

เชิงกราฟที่ทำให้ยูนิทารีแอดดิชันเคย์เลย์กราฟมีลักษณะเป็นกราฟสองส่วนบริบูรณ์และหาขอบเขตของ 
อโครมาติกอินเด็กซ์ของกราฟ 𝐺𝑛  อีกทั้งได้พัฒนาขอบเขตบนและขอบเขตล่างของอโครมาติกอินเด็กซ์ของ       
ยูนิทารีแอดดิชันเคย์เลย์กราฟ 𝐺2𝑘    ในส่วนที่สองผู้วิจัยได้สรุปผลวิจัยที่ทำให้ลักษณะเชิงกราฟของยูนิทารี
แอดดิชันเคย์เลย์กราฟเป็นกราฟสองส่วนบริบูรณ์ และได้วิเคราะห์ผลขอบเขตบนและขอบเขตล่างของ   
อโครมาติกอินเด็กซ์ยูนิทารีแอดดิชันเคย์เลย์กราฟเทียบกับผลของขอบเขตของอโครมาติกอินเด็กซ์ของ   
บางยูนิทารีแอดดิชันเคย์เลย์กราฟที่ได้พัฒนาขึ้นใหม่  

 
3.1 ลักษณะเชิงกราฟและขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ 𝐺𝑛 

จากการศึกษาข้อสังเกตลักษณะเชิงกราฟของ 𝐺𝑛 พบว่า กราฟ 𝐺𝑛  มีลักษณะเป็นกราฟสองส่วน
และกราฟปกติ เมื่อ 𝑛 เป็นจำนวนเต็มคู่ ที่มีเซตของจุดยอดแบ่งออกเป็นสองส่วนและดีกรีแต่ละจุดยอดมี
จำนวนเท่ากัน นั่นก็คือ  𝑉(𝐺𝑛) = 𝑉1(𝐺𝑛) ∪ 𝑉2(𝐺𝑛) โดยที่ |𝑉1(𝐺𝑛)| = |𝑉2(𝐺𝑛)| =

𝑛

2
  (ดังตัวอย่าง 3.2)

นอกจากนั้น ถ้า 𝑛 = 2𝑘 เมื่อ  𝑘  เป็นจำนวนนับแล้วกราฟ 𝐺𝑛 จะเป็นกราฟสองส่วนบริบูรณ์ โดยได้พิสูจน์
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ในทฤษฎีบท 3.1 (ดังตัวอย่าง 3.3) และได้หาขอบเขตล่างโดยใช้ความสัมพันธ์ระหว่างจำนวนโครมาติกและ
จำนวนอโครมาติก ส่วนการหาขอบเขตบนได้ใช้ความสัมพันธ์ระหว่างจำนวนอโครมาติกและอโครมาติก   
อินเด็กซ์ของกราฟเส้น 

ทฤษฎีบท 3.1 กราฟ 𝐺𝑛 จะเป็นกราฟสองส่วนที่มีดีกรีแต่ละจุดยอดเท่ากับ ∅(𝑛)  และ 𝑛 เป็น
จำนวนเต็มคู่ ถ้า  𝑛 =  2𝑘  แล้ว 𝐺𝑛 จะเป็นกราฟสองส่วนบริบูรณ์ 

บทพิสูจน์  ให้  𝐺𝑛 = 𝐶𝑎𝑦+{ℤ𝑛,𝑈𝑛}  โดยที่  𝑛  เป็นจำนวนเต็มคู่  จากทฤษฎีบท  2.7 ทำให้ได้ว่า  
𝐺𝑛  เป็น  ∅(𝑛) −กราฟปกติและกราฟสองส่วน  ในกรณี 𝑛 =  2𝑘 เราจะพิจารณาแยกออกเป็น  3  กรณี  
โดยที่ให้  𝑎, 𝑏 𝜖 𝑉(𝐺𝑛)  นั่นคือ 𝑎, 𝑏 ∈  ℤ𝑛  

กรณี  1  ให้  𝑎  และ  𝑏  เป็นจำนวนเต็มคู่  จะได้ว่า  𝑎 = 2𝑚 และ  𝑏 = 2𝑡  สำหรับบางจำนวน
เต็ม  𝑚, 𝑡  ทำให้ได้ว่า  𝑎 + 𝑏 = 2𝑚 + 2𝑡 = 2(𝑚 + 𝑡)  จะเห็นได้ว่า  2  เป็นตัวประกอบของ  𝑎 + 𝑏 
นั่นคือ  gcd(𝑎 + 𝑏, 2𝑘) = gcd(2(𝑚 + 𝑡), 2𝑘) ≠ 1 เพราะฉะนั้นจะไม่มีเส้นเชื ่อมระหว่างจุดยอด 𝑎  
และ 𝑏   

กรณี  2  ให้  𝑎  และ  𝑏  เป็นจำนวนเต็มคี่  จะได้ว่า  𝑎 = 2𝑚 + 1  และ 𝑏 = 2𝑡 + 1 สำหรับ
บางจำนวนเต็ม 𝑚, 𝑡 ทำให้ได้ว ่า 𝑎 + 𝑏 = 2𝑚 + 2𝑡 + 2 = 2(𝑚 + 𝑡 + 1)  จะเห็นได้ว ่า  2  เป็น         
ตัวประกอบของ  𝑎 + 𝑏  นั่นคือ  gcd(𝑎 + 𝑏, 2𝑘) = gcd(2(𝑚 + 𝑡 + 1), 2𝑘) ≠ 1  เพราะฉะนั้นจะไม่มี
เส้นเชื่อมระหว่างจุดยอด  𝑎 กับจุดยอด  𝑏 

กรณี  3  ให้ 𝑎 เป็นจำนวนเต็มคู่ และ 𝑏 เป็นจำนวนเต็มคี่  จะได้ว่า  𝑎 = 2𝑚  และ  𝑏 = 2𝑡 + 1 
สำหรับบางจำนวนเต็ม 𝑚, 𝑡 ทำให้ได้ว่า 𝑎 + 𝑏 = 2𝑚 + 2𝑡 + 1 จะเห็นได้ว่า 2  ไม่เป็นตัวประกอบของ 
𝑎 + 𝑏 นั่นคือ gcd(𝑎 + 𝑏, 2𝑘) = gcd(2𝑚 + 2𝑡 + 1, 2𝑘) = 1 เพราะฉะนั้น จะเกิดเส้นเชื่อมระหว่างจุด
ยอด 𝑎 กับจุดยอด  𝑏  เมื ่อพิจารณาจุดยอดใด ๆ ในกราฟ  𝐺2𝑘 และใช้ทฤษฎีบท  2.7  จะเห็นได้ว่า  
∅(2𝑘) =   2𝑘 – 2𝑘−1 = 2𝑘−1(2 − 1) =  2𝑘−1  จึงสรุปได้ว่า  𝐺2𝑘 จะเป็นกราฟสองส่วนบริบูรณ์  
𝐾2𝑘−1,2𝑘−1                                                                 

 

ตัวอย่าง 3.2 พิจารณากราฟ 𝐺10 = 𝐶𝑎𝑦
+{ℤ10,𝑈10} และ 𝐺14 = 𝐶𝑎𝑦

+{ℤ14,𝑈14} ซึ่งสามารถ
วาดได้ดังรูปที่ 5 

 

 

 

 

รูปที่ 5. กราฟ 𝐺10  และกราฟ 𝐺14 
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จากรูปที่ 5 จะเห็นว่าลักษณะเชิงกราฟของ 𝐺10  และ 𝐺14 เป็น 4-กราฟปกติและ 6-กราฟปกติ

ตามลำดับ และพิจารณา 𝐺10  และ 𝐺14 ให้เป็นกราฟสองส่วนได้ โดยแบ่งเซตของจุดยอดออกเป็น 2 เซต
ย่อย โดยที ่สมาชิกในเชตย่อยเด ียวกันจะไม่ม ีเส ้นเช ื ่อมไปหากัน ค ือ  𝑉1(𝐺10) = {0, 4, 2, 6, 8}, 
𝑉2(𝐺10) = {1, 5, 3, 7, 9} แ ล ะ  𝑉1(𝐺14) = {0, 2, 8, 10, 6, 4, 12},  𝑉2(𝐺14) = {1, 3, 9, 11, 7, 5, 13}  
ได้ดังรูปที่ 6 
 

 

 

รูปที่ 6. กราฟ 𝐺10  และกราฟ 𝐺14  เป็นกราฟสองส่วน 

 

ตัวอย่าง 3.3 พิจารณากราฟ 𝐺8 = 𝐶𝑎𝑦+{ℤ8,𝑈8} และ 𝐺16 = 𝐶𝑎𝑦
+{ℤ16,𝑈16} ซึ่งสามารถ

วาดกราฟได้ดังรูปที่ 7 

 

 

 
 

รูปที่ 7. กราฟ 𝐺8  และกราฟ 𝐺16 

จากรูปที่ 7 สามารถพิจารณา 𝐺8  และ 𝐺16 ให้เป็นกราฟสองส่วนบริบูรณ์ได้ โดยแบ่งเซตของจุด
ยอดของแต่ละกราฟออกเป ็น 2 เซตย่อยดังน ี ้  𝑉1(𝐺8) = {0, 2, 4, 6},  𝑉2(𝐺8) = {1, 3, 5, 7} และ 
𝑉1(𝐺16) = {0, 2, 4, 6, 8, 10, 12, 14}, 𝑉2(𝐺16) = {1, 3, 5, 7, 9, 11, 13, 15}  ตามลำดับ 

 

 
 

 

 

รูปที่ 8. กราฟ 𝐺8  และกราฟ 𝐺16  เป็นกราฟสองส่วนบริบูรณ์ 

7 

4 

7 

2 4 

9 



วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 33 ฉบับที่ 2 เดือนกรกฎาคม - ธันวาคม 2567 
Journal of Science Ladkrabang Vol. 33 No. 2 July – December 2024 

 
 

 

11 

 
ทฤษฎีบท  3.4  ให้  𝑛  เป็นจำนวนเต็มคู่  และ  𝑛 =   𝑝1

𝑘1𝑝2
𝑘2 …𝑝𝑞

𝑘𝑞  โดยที่  𝑝𝑖 เป็นจำนวน
เฉพาะ  และ  𝑘𝑖  เป็นจำนวนเต็มบวก  จะได้ว่า  𝜓′(𝐺𝑛)  ≥ ∏ (𝑝𝑖

𝑘𝑖 − 𝑝𝑖
𝑘𝑖−1)

𝑞
𝑖=1    

บทพิสูจน์  ให้  𝐺𝑛  =   𝐶𝑎𝑦+{ℤ𝑛,𝑈𝑛}  โดยที่  𝑛  เป็นจำนวนเต็มคู่  จากทฤษฎีบท 2.13 ทฤษฎี
บท 2.7  ทำให้ได้ว่า   𝜓′(𝐺𝑛)  ≥   𝜒′(𝐺𝑛)  ≥  ∆(𝐺𝑛) =  ∅(𝑛)  และจากทฤษฎีบท  2.6  ทำให้ได้ 

                        ∏ (𝑝𝑖
𝑘𝑖 − 𝑝𝑖

𝑘𝑖−1) = ∅(𝑛) = ∆(𝐺𝑛)  ≤  𝜒
′(𝐺𝑛) ≤   𝜓

′(𝐺𝑛) 
𝑞
𝑖=1   

สรุปได้ว่า                             𝜓′(𝐺𝑛) ≥ ∏ (𝑝𝑖
𝑘𝑖 − 𝑝𝑖

𝑘𝑖−1) 
𝑞
𝑖=1  

                                                                                                                          
ทฤษฎีบท 3.5 ให้ 𝑛 เป็นจำนวนเต็มคู่และ 𝑛 =  𝑝1

𝑘1𝑝2
𝑘2 …𝑝𝑞

𝑘𝑞 โดยที่ 𝑝𝑖 เป็นจำนวนเฉพาะและ  
𝑘𝑖  เป็นจำนวนเต็มบวก  จะได้ดังอสมการที่ (*) 

                           𝜓′(𝐺𝑛)  ≤ √𝑛 × [(∏ (𝑝𝑖
𝑘𝑖 − 𝑝𝑖

𝑘𝑖−1)
𝑞
𝑖=1 )

2
−∏ (𝑝𝑖

𝑘𝑖 − 𝑝𝑖
𝑘𝑖−1)

𝑞
𝑖=1  ]  + 1             (*) 

บทพิส ูจน์  ให ้กราฟ  𝐺𝑛 เป ็นย ูน ิทาร ีแอดด ิช ันเคย ์ เลย ์กราฟและ 𝑛 เป ็นจำนวนเต ็มคู่                  
จากความสัมพันธ์ของ อโครมาติกอินเด็กซ์กับจำนวนอโครมาติกของกราฟใด ๆ ที่ว่า 𝜓′(𝐺) =  𝜓(𝐿(𝐺)) 

และจากทฤษฎีบท  2.15 ทำให้ได้ว่า    𝜓(𝐿(𝐺𝑛)) ≤  √2|𝐸(𝐿(𝐺𝑛))|  + 1    

ฉะนั้น                                                   𝜓′(𝐺𝑛) ≤  √2|𝐸(𝐿(𝐺𝑛))|  + 1                                     (∗∗) 

จากทฤษฎีบท 2.13 และทฤษฎีบท 2.7 เนื่องจาก 𝐺𝑛 เป็น ∅(𝑛) − กราฟปกติ 

ทำให้ได้ว่า              |𝐸(𝐿(𝐺𝑛))| =   
จำนวนจุดยอดของ 𝐿(𝐺𝑛)×จำนวนดีกรีของ 𝐿(𝐺𝑛)

2
 

                                           =  
∅(𝑛)×𝑛

2
 ×2(∅(𝑛)−1)

2
 

                                            = 
 𝑛×∅(2𝑝1

𝑘1𝑝2
𝑘2…𝑝𝑞

𝑘𝑞
)×(∅(2𝑝1

𝑘1𝑝2
𝑘2…𝑝𝑞

𝑘𝑞
)−1)

2
 

จากทฤษฎีบท  2.6  ทำให้ได้ว่า  |𝐸(𝐿(𝐺))| =  
𝑛×∏ (𝑝

𝑖

𝑘𝑖−𝑝
𝑖

𝑘𝑖−1)
𝑞
𝑖=1 ×(∏ (𝑝

𝑖

𝑘𝑖−𝑝
𝑖

𝑘𝑖−1)
𝑞
𝑖=1 −1)

2
    

นำไปแทนในอสมการ (**)  จะได้  𝜓′(𝐺𝑛) ≤ √2
𝑛×∏ (𝑝

𝑖

𝑘𝑖−𝑝
𝑖

𝑘𝑖−1)
𝑞
𝑖=1 ×(∏ (𝑝

𝑖

𝑘𝑖−𝑝
𝑖

𝑘𝑖−1)
𝑞
𝑖=1 −1)

2
   + 1 
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                                                        = √𝑛 × [(∏ (𝑝𝑖
𝑘𝑖 − 𝑝

𝑖
𝑘𝑖−1)

𝑞
𝑖=1 )

2

−∏ (𝑝𝑖
𝑘𝑖 − 𝑝

𝑖
𝑘𝑖−1)

𝑞
𝑖=1  ]  + 1          

 

จากบทพิสูจน์การหาค่าของ  ∅(𝑛)  สามารถทำได้หลายวิธี เพื ่อความสะดวกจึงได้แยกกรณี
ดังต่อไปนี้ ถ้า  𝑛  เป็นจำนวนเต็มคู่และ  𝑝  เป็นจำนวนเฉพาะแล้ว  

                                 ∅(𝑛) =  

{
 
 

 
 
   𝑝 − 1                      ; 𝑛 = 2𝑝          

2𝑘−1(𝑝 − 1)        ; 𝑛 = 2𝑘𝑝   

𝑝𝑘−1(𝑝 − 1)      ; 𝑛 = 2𝑝𝑘 

2𝑘 − 2𝑘−1             ; 𝑛 = 2𝑘      
  และยงัมีกรณีอืน่ ๆ                                 

 

 

 

จากทฤษฎีบท 3.4 และทฤษฎีบท 3.5 เมื่อกำหนดให้   𝑛 =  2𝑝1
𝑘1𝑝2

𝑘2 …𝑝𝑞
𝑘𝑞  โดยที่  𝑝𝑖   และ  𝑘𝑖  

เป็นจำนวนเฉพาะจะทำให้ได้บทแทรก 3.6 และบทแทรก 3.7 ตามลำดับ 
บทแทรก 3.6 ถ้า  𝑛  เป็นจำนวนเต็มคู่และ  𝑝  เป็นจำนวนเฉพาะแล้ว 

𝜓′(𝐺𝑛) ≥

{
 
 

 
 
   𝑝 − 1                       ; 𝑛 = 2𝑝          

2𝑘−1(𝑝 − 1)          ; 𝑛 =  2𝑘𝑝   

𝑝𝑘−1(𝑝 − 1)         ; 𝑛 = 2𝑝𝑘   

2𝑘−1                          ; 𝑛 =  2𝑘      
และยงัมีกรณีอืน่ ๆ                                 

 

 

 

บทแทรก 3.7 ถ้า  𝑛  เป็นจำนวนเต็มคู่และ  𝑝  เป็นจำนวนเฉพาะแล้ว  

  𝜓′(𝐺𝑛) ≤   

{
  
 

  
  √2𝑝(𝑝

2 − 3𝑝 + 2)                                                  เมือ่    𝑛 = 2𝑝          

√22𝑘−1𝑝(𝑝 − 1)[2𝑘−1(𝑝 − 1) − 1]  + 1          เมื่อ    𝑛 =  2𝑘𝑝     

√2𝑝2𝑘−1(𝑝 − 1)[2𝑘−1(𝑝 − 1) − 1]  + 1          เมือ่    𝑛 = 2𝑝𝑘      

√23𝑘−2 − 22𝑘−1  + 1                                            เมื่อ    𝑛 =  2𝑘      
และยงัมีกรณีอืน่ ๆ                                                                                        

 

 

 

ทฤษฎีบท 3.1 และทฤษฎีบท 3.4-3.5  กับความสัมพันธ์ของการระบายสีทำให้ได้ขอบเขตของ  

อโครมาติกอินเด็กซ์ของยูนิทารีแอดดิชันเคย์เลย์กราฟ ผู้วิจัยจึงได้นำทฤษฎีบท 3.1 กับความสัมพันธ์ของ

การระบายสี ทฤษฎีบท 2.16 และทฤษฎีบท 2.17 เพื่อพัฒนาขอบเขตของจำนวนอโครมาติกอินเด็กซ์ของ       

ยูนิทารแีอดดิชันเคย์เลย์กราฟ ได้ผลวิจัยดังนี้ 

บทแทรก  3.8   𝜓′(𝐺2𝑘)  ≥  2𝑘 − 1 สำหรับจำนวนเต็ม  𝑘 ≥ 3 
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บทพิสูจน์   ให้   𝐺2𝑘 เป็นยูนิทารีแอดดิชันเคย์เลย์กราฟที่มีจุดยอด  2𝑘  จุด จากทฤษฎีบท 3.1  

จะได้ว่า 𝐺2𝑘 เป็นกราฟสองส่วนบริบูรณ์ 𝐾2𝑘−1,2𝑘−1 และความสัมพันธ์ของอโครมาติกอินเด็กซ์กับจำนวน 

อโครมาติกของกราฟใด ๆ ที่ว่า  𝜓′(𝐺) =  𝜓(𝐿(𝐺))  นั่นคือ 

𝜓′(𝐺2𝑘) =  𝜓 (𝐿(𝐺2𝑘)) 

                        =  𝜓 (𝐿(𝐾2𝑘−1,2𝑘−1))  

                                                            =   𝜓(𝐾2𝑘−1  × 𝐾2𝑘−1) 

และจากทฤษฎีบท  2.17  จะได้ว่า     𝜓′(𝐺2𝑘)  ≥  2𝑘−1 + 2𝑘−1 − 1 

                                                            ≥ 2𝑘 − 1  

ดังนั้น   𝜓′(𝐺2𝑘)  ≥  2𝑘 − 1  สำหรับจำนวนเต็ม  𝑘 ≥ 3                           

บทแทรก  3.9  กำหนดให้  𝑘  เป็นจำนวนนับที่มากกว่า 4  จะได้ว่า 

                            1.    𝜓′(𝐺2𝑘)  ≤ 𝑡(2𝑘 − 𝑡 − 1) + 1  โดยที่ 𝑡 =  −2+
√9+2𝑘+4 

8
 ,                       

                            2.   𝜓′(𝐺2𝑘)  ≤   
22𝑘−2

𝑡+1
                          โดยที่ 𝑡 =  −6+

√1+2𝑘+4 

8
                         

บทพิสูจน์ ให้กราฟ 𝐺𝑛 เป็นยูนิทารีแอดดิชันเคย์เลย์กราฟ เมื่อ 𝑛 =  2𝑘 และ 𝑘 𝜖 ℕ จากทฤษฎีบท  

2.16  และทฤษฎีบท 3.1 จะให้ได้ว่า   

(1)    𝜓′(𝐺2𝑘)  ≤ 𝑡(2𝑘 − 𝑡 − 1) + 1  ถ้า   ⌊2𝑡2 − 𝑡

2
⌋  ≤ 2𝑘−1 ≤ ⌈2𝑡2 + 

3

2
𝑡 − 1⌉ 

(2)    𝜓′(𝐺2𝑘)  ≤
22𝑘−2

𝑡+1
      ถ้า  ⌈2𝑡2 + 3

2
𝑡⌉  ≤ 2𝑘−1 ≤ ⌊2(𝑡 + 1)2 − 

1

2
(𝑡 + 1) − 1⌋  

พิจารณาหาค่า  𝑡  จากกรณี (1)   ⌊2𝑡2 − 𝑡

2
⌋  ≤ 2𝑘−1 ≤ ⌈2𝑡2 + 

3

2
𝑡 − 1⌉  จะได้ว่า   

                        ⌊2𝑡2 − 𝑡

2
⌋ ≤ 2𝑘−1    และ    2𝑘−1 ≤ ⌈2𝑡2 + 

3

2
𝑡 − 1⌉  

      2𝑡2 −
𝑡

2
− 1 <  2𝑡2 −

𝑡

2
 ≤ 2𝑘−1    และ    2𝑘−1 ≤ 2𝑡2 + 

3

2
𝑡 − 1 < 2𝑡2 +

3

2
𝑡 

   จะได้ว่า        2𝑡2 − 𝑡

2
− 1 < 2𝑘−1    และ      2𝑘−1 < 2𝑡2 + 3

2
𝑡 

               4𝑡2 − 𝑡 + (−2 − 2𝑘) < 0      และ      4𝑡2 + 3𝑡 − 2𝑘 > 0    
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จะได้   𝑡 ∈  (1−√33+2
𝑘+4 

8
 ,
1+√33+2𝑘+4 

8
) และ 𝑡 ∈ (−∞, −3−√9+2

𝑘+4 

8
) ∪ (

−3+√9+2𝑘+4 

8
, ∞)  

และจะได้ว่ามีจำนวน   𝑡 ∈  (−3+√9+2
𝑘+4 

8
 ,
1+√33+2𝑘+4 

8
) ที่สอดคล้องเงื่อนไขใน (1)  

เพราะฉะนั้นจึงเลือกให้  𝑡 =  −2+√9+2
𝑘+4 

8
   โดยที่  𝑘 ≥ 5  

พิจารณาค่า กรณี (2)   ⌈2𝑡2 + 3

2
𝑡⌉  ≤ 2𝑘−1 ≤ ⌊2(𝑡 + 1)2 − 

1

2
(𝑡 + 1) − 1⌋  จะได้ว่า  

                ⌈2𝑡2 + 3

2
𝑡⌉  ≤ 2𝑘−1   และ         ⌊2(𝑡 + 1)2 − 1

2
(𝑡 + 1) − 1⌋ ≥  2𝑘−1 

2𝑡2 + 
3

2
𝑡 − 1 < 2𝑡2 +

3

2
𝑡 ≤ 2𝑘−1    และ   2(𝑡 + 1)2 − 1

2
(𝑡 + 1) > 2(𝑡 + 1)2 −

1

2
(𝑡 + 1) − 1 ≥ 2𝑘−1 

2𝑡2 + 
3

2
𝑡 − 1 < 2𝑘−1                และ              2(𝑡 + 1)2 − 1

2
(𝑡 + 1) >  2𝑘−1 

  4𝑡2 − 3𝑡 − 2 − 2𝑘 < 0            และ          4(𝑡 + 1)2 − (𝑡 + 1) − 2𝑘 > 0 

                                                      4(𝑡2 + 2𝑡 + 1) − (𝑡 + 1) − 2𝑘 > 0     

                                                           4𝑡2 + 8𝑡 + 4 − 𝑡 − 1 − 2𝑘 > 0    

                                                                      4𝑡2 + 7𝑡 + 3 − 2𝑘 > 0    

และทำนองเดียวกับกรณี (1) 

เพราะฉะนั้นจึงเลือกให้    𝑡 =  −6+√1+2
𝑘+4 

8
   โดยที่  𝑘 ≥ 5 

ดังนั้นเราจึงสรุปได้ว่า  ถ้า   𝑛 =  2𝑘     เมื่อ   𝑘 ≥ 5    

 ให้  𝑡 = −2+√9+2𝑘+4 

8
   จะได้  𝜓′(𝐺𝑛)  ≤ 𝑡(2𝑘 − 𝑡 − 1) + 1      

 ให้  𝑡 = −6+√1+2𝑘+4 

8
  จะได้  𝜓′(𝐺2𝑘)  ≤   

22𝑘−2

𝑡+1
         

 
3.2 ผลการทดลองและวิจารณ์ 

จากการศึกษายูนิทารีแอดดิชันเคย์เลย์กราฟ ทำให้ทราบว่ากราฟจะมีลักษณะเชิงกราฟเป็นกราฟ
สองส่วนบริบูรณ์เมื ่อ 𝑛 = 2𝑘, 𝑘  เป็นจำนวนนับและจุดยอดมีลักษณะ |𝑉1(𝐺𝑛)| = |𝑉2(𝐺𝑛)| =

𝑛

2
       

เมื่อ 𝑉(𝐺𝑛) = 𝑉1(𝐺𝑛) ∪ 𝑉2(𝐺𝑛) ส่วนการหาขอบเขตของอโครมาติกอินเด็กซ์ของ 𝐺𝑛 โดยใช้ทฤษฎีบท 3.4 
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และทฤษฎีบท 3.5 สามารถหาค่าได้ทุกกรณีที่ 𝑛 เป็นจำนวนเต็มคู่   แต่ค่าขอบเขตไม่ดีเท่ากับบทแทรก 3.8 
และบทแทรก 3.9 ในกรณีที่ 𝑛 = 2𝑘   

 

4. สรุปผลการทดลอง 
ผู้วิจัยได้ทำการหาค่าขอบเขตล่างและขอบเขตบนของอโครมาติกอินเด็กซ์ของยูนิทารีแอดดิชัน   

เคย์เลย์กราฟ 𝐺𝑛  เมื่อ 𝑛 เป็นจำนวนเต็มคู่ นอกจากนี้ยังได้พัฒนาขอบเขตของอโครมาติกอินเด็กซ์ของกราฟ 
𝐺𝑛 เมื่อ 𝑛 = 2𝑘 ที่ซึ่ง 𝑘 เป็นจำนวนนับได้แล้ว ซึ่งกรณี 𝑛 เป็นจำนวนเต็มคี่ ลักษณะโครงสร้างเชิงกราฟ
ของ 𝐺𝑛 จะเป็นกราฟหลายส่วน และสามารถขยายงานวิจัยเพื่อศึกษาพารามิเตอร์ของยูนิทารีแอดดิชัน   
เคย์เลย์กราฟ และการหาค่าขอบเขตล่างและขอบเขตบนของกราฟ 𝐺𝑛 ด้วย นอกจากนั้นแล้วลักษณะ     
เชิงกราฟยูนิทารีเคย์เลย์กราฟ 𝑋𝑛 มีลักษณะคล้ายกับยูนิทารีแอดดิชันเคย์เลย์กราฟ 𝐺𝑛 จึงสามารถศึกษา
การหาขอบเขตในการระบายสีได้อีกด้วย 
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