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Abstract 
 

The objective of this study is to find the new method to get the analytical solutions of nonlinear 
partial differential equation, namely Bateman-Burgers equation which have the form t x xxu uu u  . 
The simple equation method is chosen to find the answer. The results of the study show that this 
method is effective at achieving the solutions of the Bateman-Burgers equation with both Bernoulli 
equation and Riccati equation. 
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Introduction 

Nonlinear partial differential equations 
are very important in both mathematics and 
physics. They describe a lot of systems in 
terms of mathematics equation. In 1915, Harry 
Bateman proposed the equation which is well-
known in many areas of applied mathematics 
such as gas dynamics, fluid mechanics and 
traffic flow. The equation was studied later in 
1948 by Jan Burgers1. So, we got the Bateman-
Burgers equation in the following form 

  t x xxu uu u  ,                                     (1) 

where u  is a function of variables x  and t ,   
is the viscosity of a fluid2. 

The research objective is to use the 
simple equation method ( SE method)  with 
both the Bernoulli equation and the Riccati 
equation to solve the analytical solutions of 
the Bateman-Burgers equation. Next, we will 
introduce the simple equation method. 

 
Simple Equation Method 

In this section, the process of simple 
equation method will be shown 3-5. 
Step 1: Given the nonlinear partial differential 
equation in the form 
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  ( , , , , ,...) 0t x xx xtP u u u u u  ,                (2) 
where u  is the function of x and t . 

Step 2: To transform ( , ) ( )u x t U   we set 
x bt    and use this to transform equation 

(2) into an ordinary differential equation 

  ( , , , ,...) 0G U U U U    ,                (3) 

where b  is nonzero constant of wave velocity 
and G  is a polynomial of ( )U   and its 
derivatives. 

Step 3: The solution of equation (3) can be 
express in the form 

  
0

( )
N

i

i

i

U a F


 ,                                 (4) 

where ( )F F  , 
ia  are constant and 

0Na  . 

Step 4: Find the value of N by balancing 
between the highest order derivative and the 
nonlinear terms. 

Step 5: For Bernoulli equation we use 

  2( ) ( )F cF dF    ,                (5) 

where c  and d  are nonzero constant.  

For Riccati equation we use 

  2 ( )F F     ,                 (6) 

where   and   are nonzero constant. 

Step 6: Substituting N from step 4 into 
equation (4) and then collect all terms which 
have the same power of F and set them to 
zero, the solution of equation (5) and equation 
(6) are described in two cases. 

For equation (5) Bernoulli equation  

Case 1: 0c  , 0d  ,
0 and   are constant, 

  
0

0

[ ( )]

[ ( )]
( )

1

c

c

ce
F

de

 

 








.                 (7) 

Case 2: 0c  , 0d  , 0 and   are constant, 

  
0

0

[ ( )]

[ ( )]
( )

1

c

c

ce
F

de

 

 





 


.                (8) 

For equation (6) Riccati equation 

Case 1: 0  , 0 0   and 1v   , 

  0ln( )
( ) tanh( )

2

v
F

 
 



 
   .  (9) 

Case 2: 0   and 0  is a constant, 

  
0( ) tan( ( ))F


   


  .              (10) 

Solutions of Bateman-Burgers equation with 
Bernoulli equation case 
 To transform equation (1) into ordinary 
differential equation (ODE) we set the wave 
variable x bt   where b is nonzero 
constant of wave 6-8 velocity so we get 

  0bU UU U      ,                     (11) 
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the solution of equation (11) is defined by 
equation (4). 

Find N by balancing between the highest 
order derivative and the nonlinear terms 

2 1N N N     

1N   

there for equation (4) will be  

  
0 1( )U a a F   .                             (12) 

Differentiating 

  2

1 1U a cF a dF   ,                            (13) 

  2 2 2 3

1 1 13 2U a c F a cdF a d F    ,              (14) 

  2 2 2 2 3

0 1 0 1 1 1UU a a cF a a dF a cF a dF     .    (15) 

Substituting equations (13), (14) and (15) into 
equation (11), we obtain 

  
2 2

1 1 0 1 0 1

2 2 2 3 2

1 1 1

2 2 3

1 13 2 0.

ba cF ba dF a a cF a a dF

a cF a dF a c F

a cdF a d F



 

   

  

  

              (16) 

 Collect all terms which have the same power 
of F and set to zero 

  1F : 2

1 0 1 1 0ba c a a c a c    ,              (17) 

  2F : 2

1 0 1 1 13 0ba d a a d a c a cd     ,    (18) 

  3F :  2 2

1 12 0a d a d  .                            (19) 

Solving the system of equations (17), (18) and 
(19), we get 

  1 2a d , 0b a c  .                         (20) 

Substituting equations (7), (8) and (20) into 
equation (12), the solutions of the Bateman-
Burgers equation may be considered as, 

Case 1: 0, 0c d  , 

  
0 0

[ ( ( ) )]0 0

[ ( ( ) )]

0

2
( , )

1
c x a c t

c x a c t
dce

u x t a
de

 

 
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 


.        (21) 

Case 2: 0, 0c d  , 

  
0 0

[ ( ( c) )]0 0

[ ( ( c) )]

0

2
( , )

1
c x a t

c x a t
dce

u x t a
de

 

 
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 


.        (22) 

For case 1, using parameters 

0 01, 1,1 15,1 15, 0, 0c d x t a        

 and 1   the solutions of the Bateman-
Burgers equation can be demonstrated as in 
figure 1. 

 

Figure 1. The solutions by the SE method with 
Bernoulli equation in case 1. 

In the second case, using parameters 
0 010, 10,1 15,1 15, 0, 0c d x t a        

 and 1   the solutions of the Bateman-
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Burgers equation can be demonstrated as in 
figure 2. 

 

Figure 2. The solutions by the SE method with 
Bernoulli equation in case 2. 

 
Solutions of Bateman-Burgers equation with 
Riccati equation case 

For Riccati equation, we use F  from 
equation (6), since we consider the same 
equation then 1N   and ( )U   is the same 
as equation (12). 

Differentiating 

  2

1 1U a F a    ,               (23) 

  2 3

1 12 2U a F a F    ,              (24) 

  2 2 3 2

0 1 0 1 1 1UU a a F a a a F a F        .  (25) 

Substituting equations (23), (24) and (25) into 
equation (11), we obtain 

  

2 2

1 1 0 1

2 3 2

0 1 1 1

2 3

1 12 2 0.

ba F ba a a F

a a a F a F

a F a F

  

  

   

  

  

  

            (26) 

 
Collect all terms which have the same power of 
F and set to zero 

  0F : 
1 0 1 0ba a a    ,                       (27) 

  1F : 2

1 12 0a a    ,                        (28) 

  2F : 1 0 1 0ba a a    ,                        (29) 

  3F : 2 2

1 12 0a a    .                         (30) 

Solving the system of equations (27), 
(28), (29) and (30), we get 
  

1 2a  ,  
0b a .                                 (31) 

Substituting equations (9), (10) and (31) 
into equation (12), the solutions of the Bateman-
Burgers equation may be considered as, 

 
Case 1 : 0  , 0 0   and 1v   , 
  0ln( )

( , ) 2 tanh( ( ) )
2

v
u x t b x bt


       

.  (32) 

 
Case 2 : 0   and 0  is a constant, 
  

0( , ) 2 tan( ( ))u x t b x bt       .  (33) 
 
For case 1, using parameters 

01, 1,1 15,1 15, 1, 1x t b          

 and 1   the solutions of the Bateman-
Burgers equation can be demonstrated as in 
figure 3. 
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Figure 3. The solutions by the SE method with 
Riccati equation in case 1. 

In the second case, using parameters 

01, 1,1 15,1 15, 1, 1x t b         

 and 1   the solutions of the Bateman-
Burgers equation can be demonstrated as in 
figure 4. 

 
Figure 4. The solutions by the SE method with 

Riccati equation in case 2. 
 

Conclusions 
The simple equation method is applied 

to solve the Bateman-Burgers equation with the 
wave variable x bt   in both Bernoulli 
equation and Riccati equation. The solutions 
may be defined in equation (4) along with the 
help from equation (5), (7) and (8) for Bernoulli 
equation and equation (6), (9) and (10) for 
Riccati equation. After some balancing and 
calculating, the solutions are achieved in 
equation ( 21)  and (22) for Bernoulli equation 
and equation (32) and (33) for Riccati equation.  
The simple equation in both Bernoulli equation 
and Riccati equation shows that this method in 
both cases is effective for solving Bateman-
Burgers equation. 
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