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Abstract

Authentication is the first line of defense of any information technology system. One of the popular methods used
today is biometric, and iris authentication is gaining popularity. However, the threshold value that is deemed to be
secure and appropriate has not been thoroughly studied. The threshold is a value that defines the acceptable amount
of the correct bits of the image before securely passing the authentication process. Therefore, the main aim of this
research was to find a secure and suitable threshold value used in iris authentication system, where iris localization
was done by using Circle Hough Transform technique. Iris image databases v.4 from the CASIA were used in this
research. The way to find the appropriate threshold was to test for the right balance of the GAR, FMRMR and FMR
values when trying to verify the person’s identity. The results of the test revealed that the appropriate threshold had
the value of 72.9246 percent of all the available bits of the iris image. Both had GAR 77.50, FMRMR 22.50 and FMR

1.00 values. It can be concluded that the obtained threshold value was suitable and secure.
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Figure 2 Segmentation Process
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Figure 5 Create Iris Data by Convolving

2. Threshold Value
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<
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Figure 6 Framework

7N Figure 6 LEAINTILATIZYAN Threshold
Value 31N9AGAYBILEHATIVEIA GAR LAz FMRMR 628
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Algorithm Compare
Begin
Read IrisTeampate
Read IrisTest
Rows=20, Columns=480
TotalBitlris=Row*Column
For i=1 to Row
For j=1 to Colum
IF IrisTeampate (i, j) ==lIrisTest (i, j) Then
Count=Count+1
End IF
End For
End For
Compare=Count*100/ TotalBitlris
End Compare
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