การควบคุมโรคพืชโดยการใช้จุลินทรีย์ปฏิปักษ์

Plant Disease Control Using Antagonistic Microorganisms

ประภาษ กาวิชา¹, อภิเดช แสงดี²⁺

Praphat Kawicha¹, Aphidech Sangdee^{2*}

Received: 25 February 2012 ;Accepted: 10 May 2012

บทคัดย่อ

การควบคุมโรคพืชโดยการใช้จุลินทรีย์ปฏิปักษ์เป็นวิธีการหนึ่งในการควบคุมทางชีววิธีที่ประสบความสำเร็จในการนำไปใช้ โดยกลไกการทำงานของจุลินทรีย์ในการควบคุมโรคพืช ได้แก่ การเป็นปรสิต การผลิตสารปฏิชีวนะ การแก่งแย่งพื้นที่ การแก่งแย่งอาหาร การซักนำให้พืชสร้างความต้านทาน และการส่งเสริมการเจริญเติบโตของพืช นอกจากนี้ในบทความยังได้ กล่าวถึงการประยุกต์ใช้จุลินทรีย์ปฏิปักษ์ในการควบคุมโรคพืชด้วย

คำสำคัญ: การควบคุมทางชีววิธี จุลินทรีย์ปฏิปักษ์ เชื้อสาเหตุโรคพืช

Abstract

Plant disease control using antagonistic microorganisms is one biological control that has successfully been used. The mechanisms of these microorganisms in eliminating plant diseases include parasitism, antibiosis, competition for space and food, induced systemic resistance and induced growth response. Moreover, the applications, advantages and disadvantages of these antagonistic microorganisms will be reviewed.

Keywords: biological control, antagonistic microorganisms, plant pathogens

Introduction

Crop losses are caused by several kinds of problems including diseases, insects, and weeds. Plant diseases are one of the important causal agents. According to Agrios¹ and Cook², the effective control methods are using chemical pesticides and cultural practices. However, the increasing use of pesticides in crop production has been a point of public concern because they harmfully affect the environment and non-target organisms^{1,2}. Moreover, some plant pathogens develop in such a way so as to resist the available pesticides and some pesticide companies hesitate to create and test new pesticides because of the difficulties of the registration process and the limited budget². Therefore,

the plant diseases control using non-chemical pesticides such as biological control is a very important and interesting topic to discuss.

Biological control is a possible alternative strategy to manage plant diseases. It uses one organism known as antagonistic microorganisms to inhibit growth and infect another organism or plant pathogen. This control is an environmentally friendly method^{2,3}. Some plant pathogens that have successfully been controlled by these microorganisms are *Erysiphe* sp., the causal agent of powdery mildew disease; *Botrytis* sp., the causal agent of grey mold disease; and *Rhizoctonia* sp., the causal agent of damping off disease^{1,2,4}.

¹ Lecturer, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Sakon Nakhon 47000, Thailand

Assist. Prof., Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, Thailand 44150

^{*} Corresponding author: Aphidech Sangdee, Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand. E-mail: Aphidech_sangdee@yahoo.com

Although, there are many researchers who study the antagonistic microorganisms and employ them in plant disease management, a clear understanding of these microorganisms for further development and effective control is required. The aim of this review is to first; describe the cause of plant disease and their significance; second, describe the definition of the antagonistic microorganisms and their mechanisms in plant disease control, Third; describe the research and application of the antagonistic microorganisms and forth; discuss the advantages and disadvantages of the antagonistic microorganisms.

1. Cause of Plant Disease

Any cause capable of harmfully affecting healthy plants may be considered as a plant disease. The main agents engaged in plant disease are illustrated in Figure 1. The cause of diseased crops may be one or more causes. A practical difference can be depicted between biotic and abiotic agents of disease. A lot of biotic agents, with the microbial pathogens, the parasitic plants and a few of the animal pests, are infectious. By reason of their ability to grow, reproduce and spread, these agents increase or spread from one host plant to others. In specific appropriate conditions, they may expand rapidly over broad regions⁵.

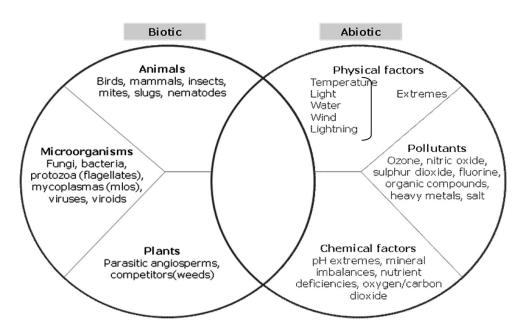


Figure 1. Agents responsible for plant diseases, disorders and damage.

Source: Lucas⁵

The causes of plant disease are very similar to the causes of human and animal disease. They consist of pathogenic microorganisms, for instance viruses, bacteria, fungi, protozoa and nematodes and inappropriate environmental circumstances, for example lack or excess of nutrients, moisture and light and the occurrence of toxic substances in the environment. Plants also become sick during competition with weeds and they are frequently destroyed by insects. However, the damage caused by insects, humans or animals is not considered to be a plant disease¹.

2. Significance of Plant Disease

In crop production, one of the causes affecting crop yield and quality is disease. Farmers and people who work in agriculture pay attention only to those modifies in crop performance that have an effect on cash earnings per production area. The ideal condition, in which plant pathogens are prevented, prohibited or eliminated, is an imaginary rather than a workable purpose. Therefore, the selection of crop variety is mostly derived from expected productivity rather than resistance or tolerance to disease. As a result, the

impact of a disease will rely on a significant limitation on the market cost of the product. Using chemicals or pesticides to control diseases are only necessary when the expected effect on crop or quality will outweigh the cost of the amount though agrochemical companies as well as affect decision-taking by advertising sales of their products. As the promoting force persuades a grower to use chemicals, the method currently accepted is more carefully considerated than in the past, and pesticide use is inhibited in circumstances where environmental side-effects might occur⁵.

3. Disease Control

Over the last few decades, plant pests control has relied progressively on the widespread application of pesticides. Plant diseases management regularly requires the use of toxic chemicals on crops, on their products and into soil where numerous plant pathogens reside and damage the plant roots. Several chemical pesticides have been proved that they are toxic to non-target organisms including beneficial microorganisms, animals and humans. It is hard to assess the short- and long-term effect of environmental contamination from the result of our efforts to control plant disease on being health and welfare. A large amount of current research in plant disease control aspires to discover additional environmentally friendly methods for plant disease management. The majority of the methods consist of conventional plant breeding and genetic engineering of disease-resistant crops, the use of cultural practices to suppress plant disease and the application of antagonistic microorganisms to inhibit plant pathogens1.

With regard to the challenges to crop production, the greatest ones are the decrease in the food loss resulting from plant diseases, the simultaneous increase in food quality and the improvement in the protection of the environment. Although, the global population is progressively increasing, many natural resources are gradually decreasing¹. Therefore, it is essential to establish successful and safe control of plant disease in order to provide high drop yields and quality.

4. Definition of Antagonistic Microorganism

Biological control is becoming more prominent and is gaining popularity because of the concern for the effect of pesticides on non-target organisms and the pesticides contamination of the environment. The terms of 'biological control' or 'biocontrol' in plant pathology refer to the use of antagonistic microorganisms to inhibit diseases. Biocontrol needs the introduction and establishment of this microorganism in the plant pathogens community on or near the plant surface^{2,3,6}.

An antagonist has been broadly defined as an opponent or an adversary. In terms of biology, it refers to an associate of an interaction that interferes with another individual, ranging from interference among molecules to that among higher plants. In the case of plant disease control, antagonists are biological agents called antagonistic microorganisms with the ability to interfere in the life development of plant pathogens².

5. Mechanism of Disease Control

The mechanisms of antagonistic microbial biocontrol of plant pathogens include many modes. The most effective ones are antibiosis, competition, parasitism, induced systemic resistance, hypovirulence and induced growth response. These mechanisms are described below

5.1 Antibiosis

As a term in biology, antibiosis is an association between two or more microorganisms that is harmful to at least one of them. The success of a target microorganism's deterioration is that microorganisms named antagonistic microorganisms produce metabolic compounds with antibiotic activity which can directly inhibit, poison or kill target microorganisms. This association can be observed as a zone of inhibition appearing between two microorganisms while growing together on agar plates. There is abundant evidence and reports showing that some antibiotics produced by microorganisms are mainly successful against plant pathogens^{6,7,8}. In addition, Whipps⁹ reports that bacteria produce antifungal compounds including ammonia, HCN, Oligomycin A, Oomycin A, pyrrolnitrin (PIn), phenazine-1-carboxylic acid (PCA) and others. Several studies have revealed that some of them have

a broad-spectrum activity. For instance, pyrrolnitrin produced by bacteria *Pseudomonas* and *Burkholderis* species has presented activity against a variety of plant pathogenic fungi such as Basidiomycetes, Deuteromycetes and Ascomycetes¹⁰

5.2 Competition

As a biological term, competition is an interaction between organisms, in which the ability of one is decreased with the occurrence of another. The shortage of at least one resource such as food, water or space can cause competitive interaction between antagonistic microorganisms and plant pathogens (Begon et al., 1996). In soil, the nutrients and rhizosphere are regularly not adequate for all microorganisms. They have to successfully compete for their available food and territory. Consequently, they successfully colonize the phytosphere and the rhizosphere. In addition, antagonistic microorganisms are able to competently consume essential resources and they can efficiently fight with the plant pathogen. Many plant pathogens need such nutrients to germinate, then penetrate and infect the plant host tissue successfully. It is widely believed that competition for limited nutritional factors may be the occasion of the biocontrol of plant pathogens^{3,6,12}. Additionally, it is also considered that such interaction is more significant for soil borne pathogens including Fusarium and Pythium species 12.

It has been revealed that non-pathogenic microorganisms usually protect the plant by rapid colonization. Hence, the limited available substrates or nutrients are not accessible for plant pathogens to grow up. For instance, fungi *Pythium ultimum*, the causal agent of damping off disease, is suppressed by bacteria *Enterobacter cloacae*^{6,13,14}.

5.3 Parasitism

Parasitism is an interaction in which one organism, the parasite, gains the resources of another organism or the host. The host is damaged by the interaction while the parasite benefits. As a term of biology, hyperparasitism, direct parasitism and interfungus parasitism are applied in indication of the occurrence of one parasitizing another. Hyperparasitisim comprises various interactions as well as slight and main morphological disorders, the overgrowth

of hyphae of one fungus by another, penetration and direct parasitism by the formation of haustoria, and the lysis of one hyphae by another¹⁵.

For example, *Trichoderma harzianum*, a parasitic fungus, has been revealed to penetrate the resting spores and hyphae of the arbuscular mycorrhizal species, *Glomus mossease*, resulting in dissolution of the hyphal and spore cytoplasm. Moreover, metabolites produced by this fungus may also play a part in the interaction of mycoparasitism because they change in spore protoplasm and cell wall integrity which is a phenomenon appearing prior to the penetration of the antagonists in plant pathogens. Consequently, it causes the death of spore or hyphae of *G. mossease* ¹⁶.

5.4 Induced systemic resistance

In terms of inducing plant disease resistance, the resistance mechanism of plant is consisted a short-term and long-term response. In a short-term response, a host plant is responded by pathogens which are in adjacent cells of the infection site and induce cell apoptosis to restrict a colonization of the pathogens¹⁷. The term of "Long-term resistance", "induced systemic resistance (ISR)" or "systemic acquired resistance (SAR)" has been used to describe the phenomenon of induced resistance after Chester¹⁹ proposed the term "acquired physiological immunity". In particular, the long-term response is focused as describe below.

Induced systemic responses (ISR) are broad-spectrum resistance to plant pathogens²⁰. Mechanism of ISR is induced by prior treatment with either a biological or chemical agent which causes a damage of host plant tissue and an induced resistance signal respectively. The signal from the infection sites is translocated through the phloem in order to change or induce systemic immunity within the plant with the aim of defending the pathogen invasion²¹. The signaling molecules have been reported in the last few years, which including methyl salicylate, jasmonic acid, undefined glycerolipid derived factor, and a peptides that is involved in cell-to-cell basal defense signaling^{20, 21}.

For example, *Trichoderma harzianum* was used as biotic plant inducers for anthracnose pathogen resistant

in chilli. This biotic agent, 10⁸ spore/ml of *T. harzianum*, showed 24.2 and 57.4% reduction of the infection percentage on seedling and mature stages, respectively²². In addition, lipopolysaccharides, siderophores and salicylic acid are produced from plant growth promoting *Pseudomonas* spp. which has successfully been used as biotic inducer for plant protection. The plant growth promoting *Pseudomonas* spp. induces cell wall structural modifications and biochemical/physiological changes that involved to plant defense mechanisms²³.

5.5 Hypovirulence

As a biological term, hypovirulence is a pathogenic strain reduced on virulence level because it has infected with an infectious agent or hyperparasite. Hypovirulence as a natural incident that limited the spread of chestnut blight disease was first reported in Italy²⁴. This limiting is caused by the effect of viruses in the species *Cryphonectria hypovirus1* (family *Hypoviridae*) on the fungal, *Cryphonectria parasitica*. Moreover, the hypovirulence was found that it is a fungal characteristic, maternal inherited, and transmissible by fungal anastomosis²⁵. Therefore, this hypovirulence was potentially used for biocontrol of chestnut blight²⁶.

5.6 Induced growth response

To enhance plant growth, one of the significant inducers is rhizosphere microorganism²⁷. Some of rhizosphere microorganisms have an antagonistic property so they not only can be used as a plant growth promoting microorganism for increasing the plant growth but also can be used as a biological control agent. Such as *Saccharomyces unispora* and *Candida steatolytica*, they have an antagonistic characteristic to *Fusarium oxysporum* and they were able to increase kidney bean growth compared to infected and non-infected plants²⁸. Additionally, the growth of cucumber plant was increased of 25 and 40% in the dry weight of roots and shoots, respectively after inoculated with the potential biocontrol agent *T. harzianum*²⁹.

6. Application of Antagonistic Microorganisms

Baker³⁰ reported that the application of antagonistic microorganisms of plant diseases control actually

developed as an academic field during the 1970s. Nowadays, it is a complete discipline supported in the public area. Research related to the implementation of these microorganisms is published in many scientific journals such as Biological Control, Biological Research and Technology and BioControl^{3,6,31}.

Over the past forty years, much research in antagonistic microorganisms has conducted. However, researchers need to look forward for new and different approaches to facilitate new plant disease control technologies and applications. Presently, knowledge in various fields such as computer science, mathematics, statistics, molecular biology and chemistry have directed the recent research aimed at illustrating the structure and functions of antagonistic microorganisms, plant pathogens and plant at the molecular, cellular and ecological levels^{3,6,32}.

At the present, numerous antagonistic microbial based products are being sold for control the plant diseases caused by fungi. An increasing number of companies are also creating products which are being in the process of registration. Many of them are small companies and have a limited product line. Others are widely traded and have significant capitalization cost. Moreover, larger companies with more different product lines that include various biotechnological products have played a major role in the development and the trade of products for the inhibition of the causal agents of plant diseases³³.

Antagonistic microbial products are either marketed as stand-alone products or formulated as combinations with other microorganisms. Some of them with biocontrol properties may not be registered. On the other hand, they are sold as an alternative, as crop strengtheners or growth promoters with no particular argument concerning plant disease control³³. In addition, Heydari and Pessaraki⁶ suggest that to help develop the worldwide market perception of biocontrol agents as an effective product, the biocontrol agents Industry Alliance is establishing a guarantee process to certify industry standards for efficiency, quality and constancy. In order to increase the application of these agents, it is very

significant to emphasize on some factors such as training of farmers, formulation of antagonistic microorganisms and studying the function of environmental factors.

7. Successful antagonistic microorganism used in Thailand

There are a number of plant diseases control researches focusing on a practical use of antagonistic microorganisms in a crop field. The microorganisms such as *Trichoderma* spp., *Streptomyces* spp., and *Bacillus* spp. have successfully been used for plant diseases control worldwide 16,34,35,36. In Thailand, they have also been studied and applied. Therefore, in the particularly section we focus on some benefits antagonistic microorganisms.

Trichoderma harzianum is one of the most effective antagonistic microorganisms in Thailand. It is able to broadly control many plant pathogens for instance *Rhizoctonia solani*³⁷, *Sclerotium rolfsii*, *Pythium* spp. 38,39,40, *Phytophthora* spp. 41, *Fusarium* spp. 42,43 and *Macrophomina phaseolina* In 1996, *Trichoderma* commercial product named the Unigreen UN-1 was the first product registered in Thailand 5. Apart from using an instant commercial product, farmers can culture and propagate *Triderderma* on their own. However, they probably have a contamination problem, if they do not have an aseptic skill and do not use an appropriate material and method.

Bacillus spp. are another group of antagonistic microorganism that successfully used. These bacteria have been studied to control a wide spread of many plant pathogens in Thailand. For example, *B. subtilis* can use for control of root and stem rot disease of durian caused by *Phytophthora palmivora*⁴⁶ and tomato gray mold disease caused by *Botrytis cinerea*⁴⁷. *Bacillus megaterium* SBK5.7 and *Bacillus* sp. SPT41.1.3 reduced the disease severity of chilli anthracnose on seed⁴⁸. *Bacillus* sp. HT-NK-460 and TZ-CP-342 had 97.22-100% inhibitory effect on spore germination of *Cercospora cruenta*, *Uromyces vignae* and *Oidium* sp.⁴⁹.

Streptomyces spp. are a group of Gram positive bacteria that can be used for antagonistic microorganism against many significant plant pathogens such as *S. philanthi* RL-1-178 could as inhibit *Sclerotium*

root and stem rot and *Ralstonia* wilt of chili pepper as equal to carboxin and streptomycin sulfate treatment, respectively. Moreover, this antagonistic microorganism could effectively protect chilli plants from *S. rolfsii* and *R. solanacearum* under field conditions³⁴. Furthermore, Thummabenjapone and Choksan⁵⁰ reported that *Streptomyces*-15, *Streptomyces*-22, *Streptomyces*-84 and *Streptomyces*-87 could inhibit *Acidovorax avenae* subsp. *citrulli* and *Ralstonia solanacearum* by bioassay test.

In conclusion, the antagonistic microorganisms found in Thailand are high efficiency plant disease control agents. Some of them are being examined and have not been reported so far. In case of further benefit, antibiotics produced by these microorganisms are probably useful for animal and human disease treatment.

8. The Advantages and Disadvantages of Diseases Control Using Antagonistic Microorganisms

Regarding the advantages of the application of antagonistic microorganisms, generally, consumers and growers are concerned about their health, safety and the environment. There are much evidence and research that commercial pesticides affect both an organism and the environment. Therefore, the acceptance of the biological plant disease control approaches using antagonistic microorganisms is various promoting in crop production. In case of efficiency and reliability, Fravel⁵¹ states that the most achievements in biocontrol have been accomplished in circumstances where environmental conditions are most controlled or expected and where antagonistic microorganisms can protectively colonize the infection area. In addition, Kessel⁵² and Heydari and Pessaraki⁶ affirm that soilborne and postharvest diseases have been eliminated successfully by using these microorganisms. They take action as bioprotectants, for instance preventing diseases. Particular applications for the great value crops targeting certain disease such as downy mildew, powdery mildew and some other diseases have also been implemented 6,52 . Consequently, as research solves the numerous situations desired for successful control of diverse diseases, the implementation of antagonistic microorganisms in crop production is bound to expand in the future.

Considering the disadvantages of the application of antagonistic microorganisms, its application in plant diseases control has been slow mainly because of their inconsistent performances under diverse ecological conditions in the crop field. Many antagonistic microorganisms achieve perfectly in the laboratory and green house situations but fail to work in the crop field. This difficulty can only be solved by improved knowledge of the environmental factors that have an effect on them^{53,54}. In addition to this difficulty, there has also been rather little investment in the enhancement and creation of trade formulation of these microorganisms because of the budget allocated to invention, examination, registration and promotion of these products^{6,33}.

Conclusion

In recent year, there has been an increasing use of chemical pesticides. However, there are concerns on their contamination of the environment and their effect on non target organisms. Biological control of plant diseases is an alternative safer approach. This review suggests the application of the plant diseases control using antagonistic microorganisms instead of chemical pesticides including its detail and discussion.

Biological control of plant diseases by using antagonistic microorganisms refers to the inhibition of one plant pathogen by one antagonist in a crop production system. It is highly probable that the disease control mechanisms which include antibiosis, competition and parasitism, induced systemic resistance, hypovirulence and induced growth response work in all natural and managed environments. Complete ejection of the chemical pesticide usage in the agricultural system might be unfeasible; however, a reasonable decrease in their use is certainly practicable.

In order to achieve the agricultural and food safety policy goal, which is the guiding principle of the World Trade Organization (WTO), the Common Agricultural Policy (CAP) and many national governments, a sustainable and an organic agricultural system with lowest contamination level and risks to the environment must be widely introduced. Therefore, the use of antagonistic microorganisms should

be employed to manage plant disease problems in place of hazardous pesticides. Implementation of this method could be the safest key to the management of such problems in every crop production system.

References

- Agrios, G. Plant Pathology. California: Academic press; 2005.
- Cook RJ. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 1993; 31: 53-80.
- Pal KK, Gardener BM (Eds). The Plant Health Instructor in Biological control of plant pathogens, Constable, London, English; 2006. 206p.
- Heydari A., Misaghi IJ. Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils. Plant Soil 1998; 202(1): 109-116.
- Lucas JA. Plant Pathology and Plant Pathogens.
 Oxford: Blackwell publishing; 2002.
- Heydari A, Pessarakli M. A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 2010; 10 (4): 273-290.
- Thomashow LS, Weller DM, Bonsall RF, Pierson LS.
 Production of the antibiotic phenazine-1-carboxylic
 acid by fluorescent pseudomonas in the rhizosphere
 of wheat. Appl Environ Microbiol 1990; 56 (4):
 908-912.
- Islam TM, Hashidoko Y, Deora A, Ito T, Tahara S. Suppression of damping-off disease in host plants by the rhizoplane bacterium *Lysobacter* sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 2005; 71(2): 3786-3796.
- Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 2001; 52: 487-511.
- Raaijmakers JM, Vlami M, De Souza, Jorge T. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 2002; 81(1-4): 537-547.
- Begon M, Harper, JL, Townsend CR. Ecology: Individuals, populations and communities. London: Blackwell Scientific Publications; 1996.

- Loper JE, Buyer JS. Siderophores in microbial interactions of plant surfaces. Mol Plant Microbe Interact 1991; 4: 5-13.
- van Dijk K, Nelson EB. Fatty acid competition as a mechanism by which *Enterobacter cloacae* suppresses *Pythium ultimum* sporangium germination and damping-off. Appl Environ Microbiol 2000; 66(12): 5340-5347.
- Kageyama K, Nelson EB. Differential inactivation of seed exudates stimulation of *Pythium ultimum* sporangium germination by *Enterobacter cloacae* influences biological control efficacy on different plant species. Appl Environ Microbiol 2003; 69(2): 1114-1120.
- Akrapikulchart U. Efficiency of antagonistic microorganisms to biocontrol of anthracnose disease in *Dendrobium* sp. The Thesis of Master of Science, Mahidol University, Bangkok; 2009.
- Brimner TA, Boland GJ. A review of the non-target effects on fungi used to biologically control plant diseases. Agricult Ecosys Environ 2003; 100(1): 3-16.
- lakimova ET, Michalczuk L, Woltering EJ. Hypersensitive cell death in plants-its mechanisms and role in plant defense against pathogens. J Fruit Ornam Plant Res 2005; 13: 135-158.
- 18. Ross AF. Systemic acquired resistance by localized virus infection in plants. Virology 1961; 14: 340-358.
- 19. Chester K. The problem of acquired physiological immunity in plants. Q Rev Biol 1933; 8: 129-151.
- Van Wees SCM, Van der Ent S, Pieterse CMJ. Plant immune responses triggered by beneficial microbes.
 Curr Opin Plant Biol 2008; 11:443-448.
- 21. Vlot AC, Klessig DF, Park S-W. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 2008; 11: 436-442.
- Oanh LTK, Korpraditskul V, Rattanakreetakul C, Wasee S. Influence of biotic and chemical plant inducers on resistance of chilli to anthracnose. KU Journal 2006; 40: 39-48.
- 23. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R. Induction of systemic resistance by plant growth promoting rhizobacteria

- in crop plants against pests and diseases. Crop Prot 2001; 20: 1-11.
- Biraghi A. Possible active resistance to Endothia parasitica in Castanea sativa. Report Congress International Union Forest Research Organization 1953; 11: 149-157.
- Van Alfen NK, Jaynes RA, Anagnostakis SL, Day PR. Chestnut blight biological control by transmissible hypovirulence in *Endothia parasitica*. Science 1975; 189: 890-891.
- Turina M, Rostagno L. Virus-induced hypovirulence in *Cryphonectria parasitica*: still an unresolved conundrum. Journal of Plant Pathology 2007; 89(2): 165-178.
- Kleifield O, Chet I, Trichoderma harzianum.
 Interaction with plants and effect on growth response.
 Plant Soil 1992; 144: 267-72.
- EL-Mehalawy AA. The rhizosphere yeast fungi as biocontrol agents for wilt disease of kidney bean caused by *Fusarium oxysporum*. Int J Agric Biol 2004, 6(2): 310-316.
- Yedidia I, Srivastva AK, Kapulnik Y, Chet I. Effect of *Trichoderma harzianum* on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001; 235: 235-242.
- Baker K F. Evolving Concepts of Biological Control of Plant Pathogens. Annu Rev Phytopathol 1987; 25: 67-85.
- Bloom B, Ehlers R, Haukeland-Salinas S, Hoddanen H, Jung K, Kuhlmann U, Ravensberg W, Strasser H, Warrior P, Wilson M. Biological control agents: safety and regulatory policy. BioControl 2003; 48(4): 477-484.
- Spadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 2005; 24(7): 601-613.
- 33. Ardakani S, Heydari A, Khorasani N, Arjmandi R, Ehteshami M. Preparation of new biofungicides using antagonistic bacteria and mineral compounds for controlling cotton seedling damping-off disease.
 J. Plant Protection Res. 2009; 49(1): 49-55.

- Boukaew S, Chuenchit S, Petcharat V. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 2011; 56: 365-374.
- Kim P, Chung K-C. Production of an antifungal protein for control of *Colletotrichum lagenarium* by *Bacillus* amyloliquefaciens MET0908. FEMS Microbiol Lett 2004; 234: 177-183.
- 36. ŽivkoviĆ S, StojanoviĆ S., IvanoviĆ Ž, GavriloviĆ V, PopoviĆ T, BalaŽ J. Screening of antagonistic activity of microorganisms against *Colletotrichum acutatum* and *Colletotrichum gloeosporiodes*. Arch Biol Sci, Belgrade 2010; 62 (3): 611-623.
- 37. Sawangsri P, Pengnoo A, Suwanprasert J, Kanjanamaneesathian M. Effect of *Trichoderma harzianum* biomass and *Bradyrhizobium* sp. strain NC 92 to control leaf blight disease of bambara groundnut (*Vigna subterranea*) caused by *Rhizoctonia solani* in the field. Songklanakarin J Sci Technol 2007; 29(1): 15-24.
- Intana W, Chamswarng C. Control of Chinese-kale damping-off caused by *Pythium aphanidermatum* by antifungal metabolites of *Trichoderma virens*. Songklanakarin J Sci Technol 2007; 29(4): 919-927.
- Maketon M, Apisitsantikul J, Siriraweekul C. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz J Microbiol 2008; 39: 296-300.
- Promwee A, Chakhatrakan S, Chamswarng C.
 Efficacy of *Trichoderma* spp. isolated from bamboo soil for controlling damping-off disease of Chinese kale. Agricultural Sci J 2008; 39(3) (Suppl): 180-184.
- 41. Intana W, Issarakraisila M, Sattasakulchai S, Yenjit P, Suwanno T. Efficacy of *Trichoderma harzianum* mutant strains on mycelial growth inhibition and *Phytophthora palmivora* population reduction in durian orchard. Kamphaengsean Acad. J. 2007; 5(3): 1-9.
- 42. Srinon W, Chuncheen K, Jirattiwarutkul K, Soytong K, Kanokmedhakul S. Efficacies of antagonistic fungi against *Fusarium* wilt disease of cucumber and tomato and the assay of its enzyme activity. Journal of Agricultural Technology 2006; 2(2): 191-201.

- Charoenporn C, Kanokmedhakul S, Lin FC, Poeaim S, Soytong K. Evaluation of bio-agent formulations to control *Fusarium* wilt of tomato. Afr J Biotechnol 2010; 9(36): 5836-5844.
- Kuntajun U, Srichuwong S. Controlling charcoal rot of black gram seed cv. Phitsanulok2 by antagonistic fungi. Journal of Agriculture 2009; 25(3): 237-244.
- 45. Chamswarng C, Tanangsnakool C. UNIGREEN UN-1* (*Trichoderma harzianum*): The first registered biofungicide in Thailand. In Proceeding of the International Symposium on Biopesticides 1996 Oct 27-31; Pitsanulok, Thailand.
- Maketon M. Potential of *Bacillus subtilis* AP01 in controlling plant pathogens. KU Science Journal 1993; 11(1): 9-20.
- 47. Siripornvisal S. Biocontrol efficacy of *Bacillus subtilis* BCB3-19 against tomato gray mold. KMITL Sci & Tech Journal 2010; 10 (2): 37-44.
- Plodpai P, Chuenchit S, Petcharat V. Biocontrol of some chili fungus diseases by *Bacillus* spp. Agricultural Sci J 2008; 39(3) (Suppl): 185-188.
- Maneesang S, Chuenchit S, Petcharat V, Leelasuppakul W. Screening of *Bacillus* spp. for biological control of yard long bean foliar diseases caused by fungi. Agricultural Sci J 2008; 39(3) (Suppl): 189-192.
- 50. Thummabenjapone P, Choksan S. Efficacy of Fungicide Resistant Strains of Antagonistic Streptomyces to Inhibit Important Phytopathogenic Bacteria. KKU Annual Agricultural Seminar for Year 2009; 157-162.
- 51. Fravel D. Commercialization and implementation of biocontrol. Annu Rev Phytopathol 2005; 43: 337-359.
- 52. Kessel GJT, Kohl J, Powell JA, Rabbinge R, van der Werf W. Modeling spatial characteristics in the biological control of fungi at the leaf scale: Comparative substrate colonization by *Botrytis cinerea* and the saprophytic antagonist *Ulocladium atrum*. Phytopathology 2005; 95(4): 439-448.
- Paulitz TC, Belanger RR. Biological control in greenhouse systems. Annu Rev Phytopathol 2001;
 39: 103-133.

54. Wang H, Hwang SF, Chang KF, Turnbull GD, Howard RJ. Suppression of important pea diseases by bacterial antagonists. BioControl 2003; 48(4): 447-460.