

การเปลี่ยนแปลงของปริมาณแอมโมเนียในโตรเจนรวมในระบบเลี้ยงปลาแบบความหนาแน่นสูงที่มีการหมุนเวียนน้ำและเชื่อมต่อกับระบบบำบัดชีวภาพแบบผสมผสานระหว่างบึงประดิษฐ์และใบโอฟิลเตอร์แบบไร้อากาศ

Total ammonia nitrogen (TAN) variation in flows of a recirculating intensive aquaculture system

ตรัน คง ตรุง^{1*}, เพชร เพ็งชัย¹, นิตา ชัยมูล¹, อนงค์ฤทธิ์ แข็งแรง¹, ภัทรพล ตุแสงนเณ¹, จิรศักดิ์ วิสาขะ¹, ปริญญา มนีกัญญา¹, พงษ์พิศาล วังหอม¹, ธีรพงศ์ สายรัตน์¹, กิตติคุณ เกษมลักษณ์¹, ตรัน ลี ตง²
 Tran Cong Trung¹, Petch Pengchai¹, Nida Chaimoon¹, Anongrit Kangrang¹, Pattarapon Tusanpan¹, Jirasak Visaka¹, Parinya Maneekan¹, Pongpisan Vanghom¹, Teerapong Sairat¹, Kittikun Kasamluck¹, Tran Ly Tuong²

Received : 15 June 2012 ; Accepted : 5 September 2012

บทคัดย่อ

ระบบบำบัดชีวภาพแบบผสมผสานได้ถูกสร้างขึ้นโดยนำระบบบึงประดิษฐ์แบบไฮโลผ่านพื้นผิว (FWS : free water surface wetland) มาเชื่อมต่อกับระบบใบโอฟิลเตอร์แบบไร้อากาศ (SSF-NP : anaerobic biofilter with subsurface horizontal flow) เพื่อบำบัดน้ำจากบ่อเลี้ยงปลา ระบบนี้สามารถกำจัดในเดรทได้อย่างมีประสิทธิภาพในขณะที่ประสิทธิภาพการกำจัดปริมาณแอมโมเนียรวม (TAN : total ammonia nitrogen) มีค่าต่ำ ผลการทดลองชี้ให้เห็นว่ากระบวนการ denitrification nitrate reduction to ammonia (DNRA) ในระบบ FWS และระยะเวลาเก็บเกินที่สั้นเกินไปของระบบ SSF-NP เป็นสาเหตุหลักที่ทำให้กำจัด TAN ได้ไม่ดี อย่างไรก็ตามระบบบำบัดชีวภาพแบบผสมผสานนี้สามารถรักษาสารดับความเข้มข้นของ TAN ให้อยู่ในระดับ 0.3-2.0 mg./L. ซึ่งถือว่ายอมรับได้สำหรับการเลี้ยงปลาดุก ประสิทธิภาพการกำจัด TAN ที่ระบบ SSF-NP ทำได้มีค่าสูงสุดเท่ากับ 25.2 % ที่ระยะเวลาเก็บเกิน 0.62 วัน

คำสำคัญ : ใบโอฟิลเตอร์ ปลาดุก มีประดิษฐ์ ระบบหมุนเวียนน้ำ การกำจัดปริมาณแอมโมเนียในโตรเจนรวม

Abstract

A biological hybrid configuration was constructed by combining a constructed free water surface wetland (FWS) to a facultative anaerobic biofilter with subsurface horizontal flow (SSF-NP) in order to treat aquaculture wastewater. It could efficiently remove nitrate while the TAN (total ammonia nitrogen) removal efficiency was low. Experimental results indicated that the denitrification nitrate reduction to ammonia (DNRA) mechanism in FWS units and the short hydraulic retention time (HRT) of SSF-NP units were the cause. However, the hybrid configuration could keep TAN concentration in the acceptable level (0.3-2.0 mg/ L) for catfish. SSF-NP units in this study could reduce TAN at the highest removal efficiency of 25.2% with 0.62 days HRT.

Keywords: biofilter, catfish, constructed wetland, recirculating system, TAN removal.

¹ วิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหาสารคาม ประเทศไทย

² มหาวิทยาลัยกว่างบิน กว่างบิน ประเทศไทย

¹ Environmental Engineering, Engineering Faculty, Mahasarakham University, Mahasarakham, Thailand

² Quang Binh University, Quang Binh, Vietnam

*Corresponding author : Tran Cong Trung, Quang Binh University, Quang Binh, Vietnam. Email : tct2504@yahoo.com

Introduction

Total ammonia nitrogen, namely TAN is the combination of two forms, unionized ammonia (NH_3) and ammonium ion (NH_4^+). In aquatic environment of aquaculture systems, TAN always exists in two forms including unionized form of ammonia (NH_3) and ionized form of ammonium (NH_4^+). The acidity and temperature of aquatic environment will specify the content ratio of each form^{1,2}. The unionized form (NH_3) is more dominant when the water is alkaline while the ionized form (NH_4^+) is predominant when the water is acidic². Ammonia is toxic to fish² and aquatic animals³. High ammonia levels in water impair the excretion of ammonia from fish across its gills. This affects damages in blood pH, enzyme systems, and gills for fish. Therefore, TAN control in fishpond should be done not only to prevent phytoplankton bloom but also to diminish the unionized ammonia form which is toxic for fish. Constructed wetland technology has collected public attention in the field of wastewater treatment since the early 1970s^{4,5}. Previous studies showed that constructed wetland could reduce TAN concentration in treated wastewater⁶ but the removal of ammonia in a wetland depended on the configuration of the wetland and the availability of dissolved oxygen⁷.

Usually, the constructed wetland includes 2 types, Free Water Surface (FWS) and Subsurface Flow (SSF)^{8,9,10}. However, a hybrid wetland system could be constructed based on combining water flow regimes and types of plants in order to exploit specific advantages of the different systems^{9,10}. FWS units consist of shallow basins partially filled with soil, peat or any other media that will support plant roots. FWS generally have a soil bottom, emergent vegetation, and a water surface above the substrate. Water moves slowly through the wetland above the substrate. The near-surface layer of water is aerobic while the deeper waters and the substrate are usually anaerobic⁸. In terms of SSFs, the water level is designed to be kept below the wet land surface. In contrast to the FWSs, coarse sand contributes to the treatment processes by providing a surface area for microbial growth

and supporting adsorption and filtration processes. This effect results in a lower area demand and generally higher treatment performance per area than FWS wetland¹⁰. Tran⁵ has found that in anaerobic or facultative anaerobic condition, SSF constructed wetland units and biofilter units had similar nitrogenous removal mechanisms including denitrification and anammox. Furthermore, biofilter units could be constructed using many kinds of various size media to increase microbial adhering surface area. Consequently, hydraulic retention time (HRT) required for biofilter units was shorter than that of SSF units. By these fundamental advantages, a new model of biological hybrid configuration consisting of a constructed free water surface wetland (FWS) and a facultative anaerobic biofilter with subsurface horizontal flow (SSF-NP) was built by Tran and his co-researchers⁵. Using shells and construction lime-stones as the biofilter media, the results demonstrated that this hybrid configuration could reduce certain levels of turbidity (75.2%), Chemical Oxygen Demand (COD 48%), and nitrate (88.2%) in experimental recirculation aquaculture systems. In this study, TAN removal ability of Tran's hybrid configuration was focused. TAN variation in 3 recirculating intensive aquaculture systems was discussed due to 3 different HRTs. Based on the result, suggested HRT and other conditions for TAN control in aquaculture system was proposed.

Materials and Methods

Recirculating aquaculture systems

The experimental recirculating aquaculture systems were designed as shown in Figure 1. Their sizes are described in Table 1. Three fish ponds were dug and laid with plastic sheets. Water and catfish (*Clarias sp*) were released into each pond with the density of 47.2 fishes/ m^3 . An aeration compressor was installed in each pond. Water in the ponds was continuously pumped by controlled pumps to the FWS units and consequently passed through the SSF-NP units which were separated into 2 tanks.

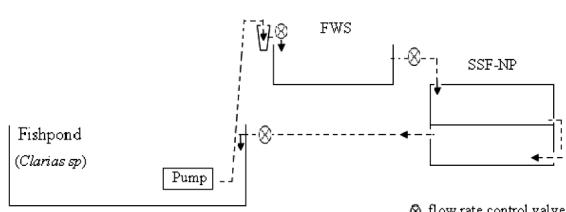


Figure 1 Recirculating aquaculture system layout

Table 1 Designed sizes of fish ponds and treatment

Designed sizes	Fish ponds	Treatment units	
		FWS	SSF-NP
Length (L) m	4	1.5	1.5
Width _{min} (W _{min}) m	1.0	0.8	0.85
Width _{max} (W _{max}) m	1.5	0.8	0.85
Depth (d) m	1.0	0.5	0.9
Nominal porosity (ε)	1	0.864	0.478
Area (A=LW) m ²	6	1.2	1.275

Table 2 Designed parameters for recirculating treatment systems operation

No.	Water recirculation (%/day)	Flow rate (m ³ /day)	HRT (day)	
			FWS	SSF-NP
1	20	0.72	0.39	0.62
2	40	1.44	0.19	0.31
3	60	2.16	0.13	0.21

The treated effluent of these biological hybrid configurations was then discharged back to the fishponds by gravity. The flow rate of each recirculating aquaculture system was controlled by gate valves to ensure designed requirements as shown in Table 2. Each FWS unit was filled with 0.28 m³ of water. The thickness of the soil layer was 0.2 m with a silty clay loam to sand ratio of 3:1¹¹. The type of plant in FWS was water hyacinth with the density of 15 plants/ m²^{12, 13}. Each SSF-NP unit was filled with lime stones and shells in a ratio of 3:1. The top of the SSF-NP units was covered by polyethylene (PE) plastic sheets to produce an anaerobic condition.

The culture time and hydraulic conditions

The fish cultivation started on June 15th 2011 and was harvested on September 20th. During this study period, no water discharge or displacement was done in the three fishponds except in cases of water replacement, which was occasionally done when water was lost from evaporation, and an unexpected problem that occurred. At the end of the experiment, fishes were sampled and measured for their weights. Table 2 illustrates the hydraulic conditions for the recirculating systems.

Sampling and analysis

Water samples from effluents at the edge of the fish ponds were collected as the influents of FWS units, namely P₁ for system no.1, P₂ for system no.2, and P₃ for system no.3. FWS and SSF-NP units in system no.1, 2, and 3 were defined as FWS₁, SSF-NP₁, FWS₂, SSF-NP₂, FWS₃, SSF-NP₃, respectively. Effluents of FWS₁, FWS₂, FWS₃ which were the influent of SSF-NP₁, SSF-NP₂, SSF-NP₃ were collected as W₁, W₂, and W₃. Similarly, effluents of SSF-NP₁, SSF-NP₂, SSF-NP₃ were collected as B₁, B₂, and B₃ samples, respectively. All samples were collected around 10 a.m. each time. The sampling was scheduled for three times a week for pH, temperature, dissolved oxygen (DO); and once a week for chemical oxygen demand (COD), nitrate (NO₃-N), total ammonia nitrogen (TAN), and orthophosphate (PO₄-P). Temperature, pH, and DO of the water in the sampling locations were measured by hand-held equipment, a DO and temperature incorporated meter (YSI 5000, USA), and a pH meter (Mettler Toledo AG, Switzerland). COD, NO₃-N, TAN, and PO₄-P were measured using methods described in Water and Wastewater Analysis¹⁴.

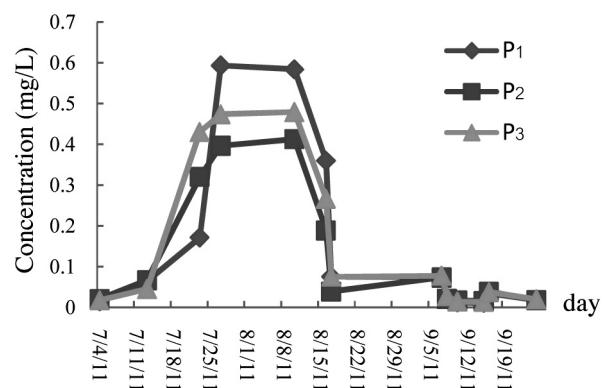
Tests for significant differences in water quality between influents and effluents of the treatment units were determined by t-test: two samples, paired t-tests and F-tests at a significant level of 0.05 for each set of data.

Results and discussions

Water quality in fishponds

The water quality factors in fishponds are not only directly affecting to fish living and growth but also acting on fluc-

tuation and transformation processes of other factors in aquatic environment. The water quality (mean \bar{X} and standard deviation Σ) in the three experimental fishponds are described as shown in Table 3. The results showed that average values of pH and temperature were in the recommended range (6.5-9.0 of pH, and 26-32°C of temperature) for the catfish². Although, nitrate is relatively non-toxic to aquatic organisms¹⁵ and none of nitrate limitation force to catfish, however the average value of nitrate is below 50 mg/L which is a safe nitrate level in fresh water for common fishponds¹⁶. The suitable range of TAN for catfish is not excess 0.3-2 mg/ L according to the recommendation of USAID². COD was higher than 60 mg/ L of the Vietnamese national standard for wastewater in aquaculture¹⁷. DO concentrations in fishponds were less than 3 mg/ L which were lower than the value recommended by FAO¹⁸, 3 mg/ L for *Clarias gariepinus*. USAID² supported that DO should be from 4 mg/ L to saturation for catfish eggs, larvae, fry and fingerlings. However, *Clarias gariepinus* can live at DO level of 2 mg/ L¹⁹, and hybrid catfish can even withstand DO level from 1 to 2 mg/L²⁰. The main reason for this low DO value should be the extremely high density of catfish in the experimental ponds (47.2 fishes/ m³). The excess of COD value against the standard is clear evidence.


Table 3 Water quality in fishponds

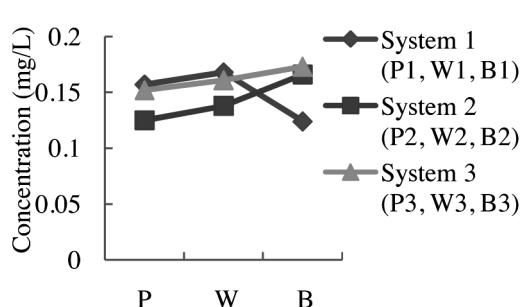
		pH	DO (mg/L)	Temp (0C)	COD (mg/L)	N-NO ₃ (mg/L)	P-PO ₄ (mg/L)	TAN (mg/L)
P1		7.20	2.12	27.79	74	15.33	1.27	0.16
	\bar{X}	0.22	0.40	0.88	26.17	6.30	0.95	0.21
P2		7.27	2.18	28.07	68.5	15.50	1.49	0.13
	\bar{X}	0.20	0.54	0.98	23.09	6.42	0.87	0.15
P3		7.28	1.92	28.17	65.75	12.57	1.33	0.15
	\bar{X}	0.23	0.62	1.20	20.86	4.8	0.85	0.18

Due to a survival ratio of greater than 95% and normal fish growth observed at the end of the experiment, DO as well as the other parameters were considered acceptable for this experimental hybrid catfish. According to t-test results, no significant difference was detected between P₁, P₂, and P₃ for all measured parameters.

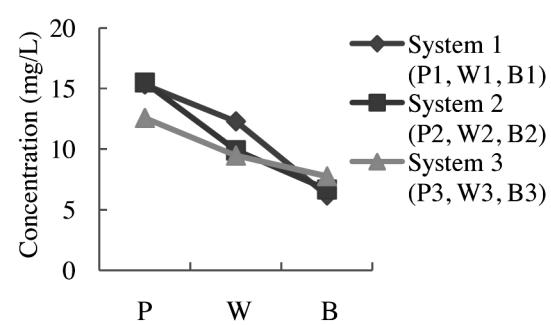
TAN variation in fishponds

The results in Figure 2 showed that TAN content tendentiously rose at the first period time of experiment, and then remained in a steady range until systems met leakage and overflow problems on August 21st, 2011. After the problems were solved, 70% of water in all fishponds was changed to ensure the same condition. From August 22nd, 2011 to the end of the experiment, TAN stayed at low concentration. Water refilling was slightly done during the time since evaporation and leakage occurred at all fishponds.

Figure 2 TAN variations in fishponds


In fishponds, ammonia is the by-product from protein metabolism excreted by fish and bacterial decomposition of organic matters. All nitrogen forms including nitrogen gas (N₂) are biochemically interconvertible and are components of the nitrogen cycle⁷. There are 3 stages in a normal biological nitrogen cycle. Mineralization is the first step in the biochemical decomposition and the end products are ammonia (NH₃) and organic acids. Nitrification is a second stage which the ammonia (NH₃) and ammonium (NH₄⁺) molecules are oxidized into nitrite (NO₂⁻) and nitrate (NO₃⁻), respectively. Denitrification is the stage which the end products are dinitrogen oxide (N₂O) and nitrogen (N₂) gases. These two gases escape

through the water surface. Similarly, in this study, TAN in fishponds were directly produced from fish excreta and first step of the biochemical organic matters decomposition process. Usually, TAN in fishponds increases along with the growth of fish because of excreta, residue and redundant food accumulation. TAN reduction occurs through natural mechanisms themselves (nitrification) with the presence of oxygen, and attached treatment systems. Although the TAN increased at the first period, the maximum value did not reach the standard value for catfish 0.3-2 mg/ L². This fluctuation proclaimed lower treatment ability of the systems at starting up period that corresponding to the result of Lin et al.⁴. Low DO and high COD in fishponds also considered as the reasons inhibiting nitrification which leaded to the restriction of TAN removal. EPA⁷ reported that nitrification required 4.3 mg/L O₂ per mg N oxidized. Consequently, increasing the DO or lessening the fish density is the solution to reduce TAN content in these fishponds.


TAN variations after pass through FWS units

Water from fishponds was drained to FWS treatment units. TAN concentrations in the effluents of FWS units were tendentially higher than the influents (Figure 3.a, P and W). However this tendency was not significant according to t-Test: Paired Two Sample for Means ($p=0.05$). The TAN increasing tendency was considered as a result of TAN producing and losing processes that occurred in FWS units. Ammonification produced ammonia concomitant with organic acid as the end products in mineralization stage. This resulted in pH decreasing

tendency from P to W units as shown in Figure 3.c. Dissimilation nitrate reduction to ammonia (DNRA) is the process which causes nitrate decreasing and ammonia increasing in the condition of low DO and high organic carbon¹⁵. Values of DO and COD in Table 3 and fluctuation tendency of ammonia and nitrate in Figure 3.a, b were the proof of the DNRA process in FWS units. Low DO also encouraged phosphorus decomposition process that increased orthophosphate concentration as shown in Figure 3.f. TAN could be reduced by the processes of nitrification, assimilation, plants uptake, and anammox. However, these mechanisms were not supported because of the increasing of TAN in FWS units as shown in Figure 3.a, W. Significant nitrate reduction in FWS units (Figure 3.b) could be performed by denitrification, assimilation, plants uptake and DNRA processes. However, assimilation and plants uptake processes needs the absence of reduced inorganic nitrogen species such as ammonia. Further, denitrification would concomitantly raise pH and synthesize polyphosphate¹⁵ that contrasted to the inhibition of Figure 3.c, f. Therefore, DNRA should be the main process in this study that reduced nitrate which concomitantly increased ammonia. Besides, TAN reduction in this study did not result in the increasing of nitrate concentration. Consequently, FWS treatment units used in this study could not reduce TAN. The nitrate removal was considered as an indirect factor which caused TAN increasing. To eliminate TAN in these units, DO have to be raised and the fish density should be reduced

(a) TAN variations

(b) Nitrate variations

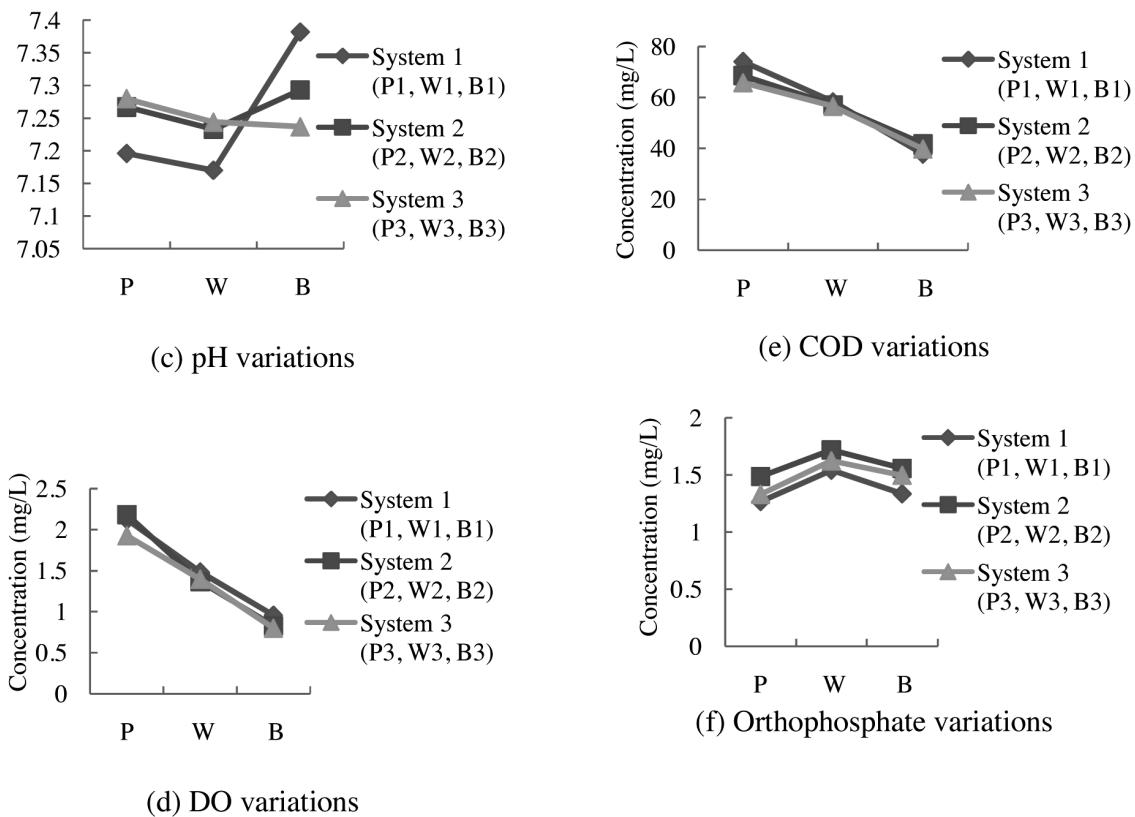
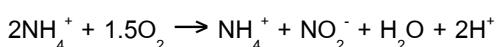
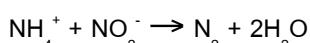



Figure 3 Water quality variations after passing through treatment units


TAN variation after pass through SSF-NP units

Subsurface flow wetlands without plant treatment (SSF-NP) units were designed to promote denitrification and anammox processes. Lime-stones and shells in SSF-NP were aimed to function as the pH buffer. In SSF-NP treatment units, denitrification directly reduced nitrate in recirculating water⁵ as shown in Figure 3.b. Anammox which enables complete ammonia removal was considered to occur in SSF-NP treatment units via autotrophic pathways without the requirement of organic carbon. Ammonia and nitrite were combined together to produce nitrogen gas as shown in following equations^{15, 21}.

Partial nitrification:

Anammox:

However, only SSF-NP₁ could remove TAN at the confidence level of 92% ($p \leq 0.08$). Increasing tendency of TAN was expressed at SSF-NP₂ and SSF-NP₃ treatment units. This increasing trend might originate from DNRA. Further, Lin et al.⁴ reported that subsurface water constructed wetland could efficiently remove TAN after start-up period with the HTR values from 0.6 to 4.4 days which were longer than this experiment with HTR values from 0.21 to 0.62 days. Consequently, DNRA and HRT were thought as the main factors for low TAN removal ability in the 2 treatment units.

TAN removal efficiency of treatment systems

TAN removal efficiency of treatment units (E_u) and the systems (E_s) could be calculated following Eq.1 and Eq.2 and the results were describing as shown in Table 4.

$$E_u(\%) = \frac{(C_i - C_e)}{C_i} * 100 \quad Eq.1$$

$$E_s(\%) = [(E_{FWS} + E_{SSF-NP}) - (E_{FWS} * E_{SSF-NP})] * 100 \quad Eq.2$$

Where

C_i = TAN concentration at influent point

C_e = TAN concentration at effluent point

E_{FWS} = TAN removal efficiency of FWS treatment unit

E_{SSF-NP} = TAN removal efficiency of SSF-NP treatment unit

Table 4 TAN removal efficie

No.	FWS unit's efficiency (%)	SSF-NP unit's efficiency (%)	Total efficiency (%)
1	ND	25.2	8.37
2	ND	ND	ND
3	ND	14.8	0.32

ND : No determination

According to the result, TAN removal efficiencies in this experiment were extremely low comparing to the results of Lin et al.²² which reached 64%-66%. However, TAN concentration in the fishponds was at a low level (Table 3) which is far from the standard value for catfish as described in section 3.1. Significant nitrate reduction of these systems through the paths of DNRA as well as dissimilatory denitrification⁵ was supposed to cause these low TAN concentration and low TAN removal efficiency. FWS units in this experiment could not remove TAN because of DNRA process which happened at low average DO and high COD values (Figure 3.d, e). They were different from FWS units in the model of Lin et al.²² which could remove TAN based on nitrification process at high levels of DO (6.9-10 mg/ L). Therefore, the encouragement of the nitrification process by increasing DO and the prevention of DNRA process by reducing organic matters should enhance the TAN removal ability of the units.

FWS unit was designed with highest HRT but lowest TAN removal efficiency was derived. The appearance of freshwater crabs (unexpected problem) destroyed water hyacinths in FWS₁ unit. As the result, lowest TAN

removal efficiency was observed in FWS₁. This suggested that the amount of water hyacinth played an important role in TAN removal of the FWS units.

Conclusion

Treatment units used in this study could not accomplish high TAN removal, but they could keep TAN concentration in acceptable level for catfish. TAN increasing was found in FWS units due to the DNRA process. To inhibit this process, DO in fishponds have to be intensified and organic matters should be reduced from the unit- influent. Draining wastewater into SSW-NP units before delivering to the FWS units is the possible solution. SSF-NP treatment units could reduce TAN but the efficiency was low. In this experiment, the SSF-NP unit with HRT of 0.62 day should be chosen for the TAN removal. However, longer HRT in SSF-NP units should bring to higher TAN reduction. Further study to determine relationship between HRT and TAN removal efficiency is necessary.

References

1. Nguyen Dinh Trung. *Water quality in aquaculture*. Ho Chi Minh Agriculture Publish house, Vietnam; 2004.
2. USAID. Manual for the Commercial Pond Production of the African Catfish in Uganda. In Fisheries Investment for Sustainable Harvest Project. Department of Fisheries and Allied Aquacultures; Auburn University, Alabama, USA. 2009. Available from: URL:<http://www.ag.auburn.edu/fish/internationa1/current-projects/uganda-fish-project-fisheries-investment-for-sustainable-harvest/> Accessed August 10 2012.
3. Harris O.J, Maguire B.G., Edwards S., Hindrum S.M. *Effect of ammonia on the growth rate and oxygen consumption of juvenile greenlip abalone, Haliotis laevigata Donovan*. Aquaculture 1998;160(3-4): 259-272.
4. Lin, Y.F., Jing, S.R., Lee, D.Y., and Wang, T.W. *Nutrient removal from aquaculture wastewater using a constructed wetlands system*. Aquaculture 2002;209:169–184.

5. Tran, C.T. Remediation of Aquaculture Wastewater using Hybrid Constructed Wetlands. Master thesis. Mahasarakham University, Thailand; 2012.
6. OWPCSUS. Ammonia Removal in Wetlands: a Literature Review. 2009. Available from: URL:<http://www.owp.csus.edu/research/wastewater/papers/Wetlands-Literature-Review.pdf> Accessed August 10 2012.
7. EPA. Constructed Wetlands Treatment of Municipal Wastewaters. Office of Research and Development, United States Environmental Protection Agency, United States. 2000.
8. Halverson, N.V. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands. Department of Energy, United States. 2004. Available from: URL:http://www.osti.gov/bridge/product.biblio.jsp?query_id=1&page=0&osti_id=835229 Accessed September 20 2010.
9. Vymazal, J. *Removal of nutrients in various types of constructed wetlands*. Science of the Total Environment 2007;380:48–65.
10. Münch, E.V. Constructed wetlands for grey water and domestic wastewater treatment in developing countries. Sustainable sanitation - ecosan program, Germany. 2010. Available from: URL:<http://www.gtz.de/en/themen/umwelt-infrastruktur/wasser/9397.htm> Accessed September 20 2010.
11. Sirianuntapiboon, S., Kongchum, M., and Jitmaikasem, W. *Effects of hydraulic retention time and media of constructed wetland for treatment of domestic wastewater*. African Journal of Agricultural Research 2006;1(2):027-037.
12. EPA. Constructed Wetlands and Aquatic Plant Systems for Municipal Water Treatment. United States Environmental Protection Agency, United States. 1998. Available from: URL:http://www.hydrik.com/downloads/WetlandsDesign_Hydrik.pdf Accessed October 12 2010.
13. Snow, A. M., and Ghaly, A. E. *A Comparative study of the purification of aquaculture wastewater using water hyacinth, water lettuce and parrot's feather*. American Journal of Applied Sciences 2008;5(4):440-453.
14. Kaul, S.N., and Gautam, A. Water and Wastewater Analysis. India: Daya Publish House, Delhi 110035, 2002.
15. Rijn, J.V., Tal, Y., and Schreier, H.J. *De-nitrification in recirculating systems: Theory and applications*. Aquacultural Engineering 2006;34: 364–376.
16. OATA. Water quality criteria. Ornamental Aquatic Trade Association, England. 2008. Available from: URL:<http://www.ornamentalfish.org/association/code/Water%20Quality%20Final.pdf> Accessed October 19 2011.
17. Ria No.1. Vietnamese national technical regulation: Wastewater in aquaculture – technical requirement. Ministry of Agriculture and Rural Development, Vietnam; 2009.
18. FAO. Manual on seed production of African catfish (*Clarias gariepinus*). 1992. Available from: URL:<http://www.fao.org/docrep/field/003/AC378E/AC378E00.htm> Accessed September 20 2011.
19. Akinwole, A.O., and Faturoti, E.O. *Biological performance of African Catfish (*Clarias gariepinus*) cultured in recirculating system in Ibadan*. Aquacultural Engineering 2007;36(1):18-23.
20. Le An. Yellow hybrid catfish cultivation technique. Quang Tri Agriculture and Rural Development Department, Vietnam. 2010. Available from: URL:http://sonongnghiepvaptntquangtri.gov.vn/index.php?option=com_content&task=view&id=75&Itemid=159 Accessed September 20 2011.
21. van de Graaf, A.A., Mulder, A., de Bruijn, P., Jetten, M.S.M., Robertson, L.A., and Kuenen, J.G. *Anaerobic oxidation of ammonium is a biologically mediated process*. Applied Environment Microbiology 2005;61:1246–1251.
22. Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M, and Shih, K.C. *Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate*. Environmental Pollution 2005;134:411–421.