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Abstract

The purposes of this research were to predict and assign a scale value of multilayer PCB. After the PCB board
underwent a process of lamination press, it made sheets be sized according to customers’ needs. The collected
data came from an electronics components manufacturing company in which there are the configuration data of the
scale of the multilayer PCB board which went back from January 2018 to June 2019. The dependent variables were
the percentage scale values of the multilayer PCB board and the independent variables were factors affecting the

determination of the percentage scale values of the multilayer PCB board. Those factors were layer count, distance,
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core thickness, thickness Cu side (thickness of copper on laminate core board), thickness Cu Foil, Tg (glass transition
temperature of material), cut direction, Axis, streak (Warp x Fill) and material brand. The models we used for
analyzing were a multiple linear regression method (MLR), a support vector regression method (SVR), and a decision
tree regression method. Those methods were the supervised learning models in machine learning and they were
processed by using the RStudio program, mean square error (MSE) and mean absolute percent error (MAPE) for
comparison of the efficiency of models for scale predictions. The result revealed that the MSE and the MAPE value
of the support vector regression model are minimal, which means it is the most suitable model for the data of scale
predictions of multilayer PCB board due to helping increase the accuracy in assigning scale values and helping save

the time of the production process as a consequence of errors in assigning scale values.
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Figure 7 Commands in RStudio to create Multiple Linear
Regression
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Vector Regression : SVR)
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Tibrary(e1071)
regressor2 = svm(formula = Scale ~.,
data = dataset,
type = 'eps-regression’')

##Fitting the SVR Model to the dataset####s##ssitussintthi

Figure 10 Commands in RStudio to create
Support Vector Regression
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Tree Regression)
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#####H####FITEING the decision tree to the dataset#########Y
Tlibrary(rpart)
regressor3 = rpart(formula = Scale ~ .,

data = dataset,
control = rpart.control(minsplit = 1))

Figure 11 Commands in RStudio to create
Decision Tree Regression
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