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Abstract
In this article, the concepts of J-m-open sets, a-m-open sets in a minimal structure space with an ideal are
introduced. In addition, we present an a-m-local function and an R -operator in a minimal structure space with

an ideal. We studied the properties of the function and this operator.

Keywords: O0-m-open sets, a-m-open sets, d-m-local functions, R"m-operator, a minimal structure space with

an ideal.

! fifelSganln, andnsmaas smIngndgamiasany §1nefunsite Saniauniasaiy 44150

2 ;j’ﬁwmam’miﬂ‘, AMLANYNANFAT UMIANINRBURIRNITANY ENNDNUNTAITE TIRTANRIENTANN 44150

* {anmanansd, angdinenamans uniinendsumaniain dunefiunsidy SimTanmansau 44150

" Master degree student, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

2 Asst. Prof., Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

® Asst. Prof., Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand.

* Corresponding author ; Daruni Boonchari, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150,
Thailand. daruni.o@msu.ac.th.



214

Introduction

In 1945, Vaidyanathaswamy (1945)defined a local function
in an ideal topological space and studied some properties
of this function. In 1996, Maki, Umehara and Noiri (1996)
defined a minimal structure and studied some properties
of this structure. In 2014, Al-Omeri et al. (2014) defined
an a-local function in an ideal topological space and also
studied some properties of an a-local function. Later in
2016, Al-Omeri et al. (2016) defined an R -operator in an
ideal topological space and studied some properties of
this operator. In this article, we introduce the concepts of
0-m-open sets and d-m-open sets in a minimal structure
space with an ideal and study some fundamental
properties. Moreover, we introduce the notions of 0-m-local
functions and R -operators in minimal structure spaces,
along with studying some properties related to an

0-m-local function and an R* -operator defined above.

Preliminaries

Definition 2.1° Let X be a nonempty set and
P(X) the power set of X. A subfamily m of P(X) is called
a minimal structure (briefly MS) on X if @em and Xem.

By (X,m) we denote a nonempty set X
with a minimal structure m on X and it is called a
minimal structure space. Each member of m is said
to be m-open and the complement of m-open is

said to be m-closed.

Definition 2.2 (Noiri & Popa, 2009) Let (X,m) be
a minimal structure space and AcX. The m-closure of A,
denoted by CI (A) and the m-interior of A, denoted by
Int (A), are defined as follows ;

1) CI (A)=n{F:ACF, X\ Fem},

2) Int (A)={U:UCA, Uem}.

Lemma 2.3 (Maki & Gani, 1999) Let (X,m) be a
minimal structure space and A,BcX, the following
properties hold ;

(1) CI(X\A)=X\Int (A)and Int (X\ A)=X\
CI (A).

(2) If X\ Aem, then CI (A)=A and if Aem, then
Int (A)=A.

(3) CIm(Q)zﬁ, CI (X)=X, Intm(®)=®, and
Int (X)=X.
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(4) If AcB, then CI (A)cCI (B) and
Int (A)clInt (B).

(5) AcCI (A) and Int (A)cA.

(6) CI (CI (A)) = CI (A) and Int (Int (A)) =
Int (A).

Lemma 2.4 (Maki & Gani, 1999) Let (X,m) be
a minimal structure space and AcX, xeX. Then xeCI (A)
if and only if UnAz@®) for every an m-open set U
containing X.

Definition 2.5 (Rosas et al., 2009) Let (X,m) be
a minimal structure space and AcX.

(1) Ais called m-regular open if A=Int (CI (A))

(2) A is called m-regular closed if X \ A is
m-regular open.

The family of all m-regular open sets of X is
denoted by r(m) and the family of all m-regular closed

sets of X is denoted by rc(m).

Definition 2.6 (Ozbakir & Yildirim, 2009) An ideal

../ on a minimal structure space (X,m) is a nonempty

collection of subsets of X which satisfies the following
properties ;

(1) Ae.” and BcA implies Be. / (heredity),

(2) Ae . “and Be . “implies A\UBe . / (finite
additivity).

The set ./ together with a minimal structure
space (X,m) is called a minimal structure space with an
ideal, denoted by (X,m,. /).

Main Results

Definition 3.1 Let (X,m) be a minimal structure
space. A subset A is said to be d-m-open if for each XeA
there exists an m-regular open set G such that XeG <
A. The complement of 0-m-open set is called d-m-closed.
The family of all 9-m-closed sets of X, denoted by 6C (X).

Theorem 3.2 Let (X,m) be a minimal structure
space and A < X. The arbitrary union of d-m-open sets

is a 0-m-open set.

ProofLet B_ be a d-m-open set for all a.eJ where
J is an index set and let xeUB,. There exists BeJ
such that x e Ba. Since BB isaeé-m-open, there exists
an m-regular open set GB such that XeGBg BB. Then
xeG, B, cUB,. Therefore UB, is 6-m-open.

ael ael
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Definition 3.3 Let (X,m) be a minimal structure
space and AcX. A point xeX is called a -m-cluster point
of A if UnA=@ for each m-regular open set U containing
X.

Definition 3.4 Let (X,m) be a minimal structure
space and AcX. The set of all -m-cluster points of A
is called d-m-closure of A and is denoted by C,, (A) and
the union m-regular open sets contained in A is called
the o-m-interior of A, denoted by I, (A).

Theorem 3.5 Let (X,m) be a minimal structure
space and ACX. Then A is 0-m-openifand only if I, (A)=A.

Proof (=) Suppose that A is 0-m-open. By
definition of O-m-interior, I, (A)=A. Let xeA. Since A
is 0-m-open, there exists an m-regular open set O such
that xe OcA. This implies that xel, (A). Then Acl, (A).
Hence A=1, (A)=A. (<) It follows from Theorem 3.2.

Theorem 3.6 Let (X,m) be a minimal structure
space and A,BcX. The following property hold ;

(1) If AcB, then I, (A)cl, (B),

(2) If AcB, then C, (A)cC,, (B).

Proof (1) Assume that AcB and xel, (A).
Then, there exists an m-regular open set G such that
xeGcA. Since AcCB, we have xe GCACB. This implies
that xel,, (B). Hence I, (A)cl, (B).

(2) Let ACB. Assume that x¢ C, (B). Then there
exists an m-regular open set U containing X such that
UNB=@. Since AcB, we have UNAcUNB =@. Thus
x¢C, (A). Therefore C, (A)cC, (B).

Theorem 3.7 Let (X,m) be a minimal structure

space and AcX. The following properties hold ;

(1) C, (A)=X\I, (X\A),

21, (A)=X\C, (X\A).

Proof (1) We will show that C, (A)=X\1, (X\A)
by contrapositive. Assume that x ¢ X\ 1, (X\A). We get
that X\ I, (X\ A). So there exists an m-regular open set

G such that x e G X\ A. Then GNA =@ and xgC; (A).
Thus C, (A) = X\I, (X\A).

Next, we show that X\ I, (X\ A) c C, (A)
by contrapositive. Assume that x¢C, (A). Then
x is not a O-m-cluster point of A. There exists

an m-regular open set G containing x such that GNA =@.
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Sox e GS X\A and we get that x € I, (X\A). Hence x
¢ X\I, (X\A). Thus X\, (X\A)c C, (A).

(2) Since X\ A c X, we have C, (X\A) = X\
I, (X\(X\A)) by (1) and we get C, (X\A)=X\I, (A).
Therefore I, (X\A) =X\C, (X\A).

Definition 3.8 Let (X,m) be a minimal structure

space and AcX.
(1) Ais called a-m-open it Ac Int, (CI (I, (A))).

m

The family of all a-m-open sets of X is denoted by . 7.
(2) Ais called a-m-closed it CI, (Int (C, (A)))CA.

Theorem 3.9 Let (X,m) be a minimal structure
space and AcX. Then A is a-m-open if and only if X\ A

is a-m-closed.

Proof Assume that A is a-m-open. Then A
Int (CI (I, (A))).and X\A 2 X\ (Int (CI (I, (A)))). By
Lemma 2.3 and Theorem 3.7, X\ A 2 CI (Int (C, (X\
A))). Therefore, X\ A is a-m-closed.

Conversely, assume that X \ A is a-m-closed.
Then CI (Int (C, (X\A)))c X\Aand X\CI (Int (C, (X
\A))) 2 X\(X\A). By Lemma 2.3 and Theorem 3.7, Int
(CI (1, (A))) 2 A. Hence A is a-m-open.

Example 3.10 Let X ={a, b, ¢, d} with a minimal
structure m = {@, {a,b}, {b,c}, {c,d}, {a,d}, x}. Then r(m)
={0.{a,b},{a.d},{b,c}.{cd} x},and 00, (x) ={D,{a,b},
{a,d},{b,c},{c,d},{ab,c} {abd} {a,c,d} {b,c,d} x}, . Vi
= {0, {a,b}, {a,d}, {b,c}, {c.d}, {ab,} {abd}, {a,cd},
{b,c,d}, x}.In this example {a,b}{a,d}e. //° but {a,b} N
{ad} = {a} ¢ . //°, that means . //° does not have the
property that any finite intersection of a-m-open sets is
a-m-open.

Definition 3.11 Let (X,m) be a minimal structure
space and AcX. The a-m-closure of A, denoted by aC (A)
and the a-m-interior of A, denoted by aIm(A), are defined

as follows ;

(1) aC (A)=n{F:X \ Fe . /7 and AcCF},
(2) al (A)=U{U:Ue . //* and UCA}.

Theorem 3.12 Let (X,m) be a minimal struc-
ture space and A ¢ X, xeX, Then xeaC (A) if and
only if UNnA=@ for every a-m-open set U containing x.

Proof (=) Suppose that there exists an a-m-open
set U containing x such that UnA=@. So A < X\ U and

X\ U is a-m-closed. Since aC (A) is the intersection of
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all a-m-closed sets containing A, aC (A) < X\ U. Since
x ¢ X\U, we have x ¢ aC (A).

(<) Assume that x ¢ aC (A). Then there exists
an a-m-closed set F such that A< F and x ¢ F. Choose
U=X\F Then Uis a-m-open and x € X\ F = U.
Moreover, UNnAc (X\F)NF =@.

Theorem 3.13 Let (X,m) be a minimal structure

space and A, B < X. The following properties hold ;
(1) If A< B, then aC (A) c aC (B).
(2) If Ac B, then al (A) cal (B).

Proof (1) Assume that Ac B and x ¢ aC (B).
Then there exists an a-m-open set U containing x such that
UNF=0.SinceAcB, UNA=0.Hence x ¢ aC (A).

(2) Let Ac Band x € al (A). Then there exists
an a-m-open set U such that x e Uc A. Since AcC B, x
€ Uc B. Therefore x € al (B).

Proposition 3.14 Let (X,m) be a minimal structure
space. Then Be. /° and Xe. /°.

Proof Since @ c Int, (CI (I, (D))),Dis a-m-open,
and so @e. /°. Clearly X = Int, (CI (X)), so X is an
m-regular open. Then X is d-m-open, that is I, (X)= X,
and so X c Int, (CI (I, (X))). Therefore Xe. //*.

Theorem 3.15 Let (X,m) be a minimal structure
space. Then the arbitrary union of elements of . Vs
belongs to . /"~

Proof Let V_ be a-m-open for all aeJ and
G=UV,. Then V. < Int (CI (I, (V ))) for all aeJ.
Sinc(éEJVa c G, it follows that Iém(Va) c I, (G) and so
Ccr, (V) cCl (I, (G)).ThenInt (CI (I, (V )))<lInt,
(CI (I, (G))). This implies that V_c Int (CI (I, (G))) for
all aeJ. Thus UV, clInt (Cl (15.(G))). Therefore G

ael

c Int (CI (I, (G))).

Corollary 3.16 Let (X,m) be a minimal
structure space. Then the arbitrary intersection of

a-m-closed sets is an a-m-closed set.

Proof Let G, be a-m-closed for all aeJ.

Then X\ G, is a-m-open and so U(X\G,) is
ag)

a-m-open. Since X\(G,=U(X\G,), NG, is

ael aej ael

a-m-closed.

Remark 3.17 In a minimal structure space, by

Corollary 3.16, aC (A) is a-m-closed.
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Theorem 3.18 Let (X,m) be a minimal structure

space and AcX. The following properties hold ;
(1) aC, (aC,(A)) = aC,(A),

m

(2) al (al (A))=al (A).

Proof (1) Clearly aC (A) < aC, (aC (A)). Since
aC (A)is a-m-closed, aC (aC, (A)) < aC, (A).Therefore
aC (aC (A))=aC (A).

(2) Clearly al (al (A)) = al (A). Since al (A)
a-m-open, al (A)c al (al (A)). Therefore al (al (A))=
al (A).

Let (X,m,. /) be a minimal structure space with

an ideal. For each xeX, let. /° (x) ={U : xeU, Ue. //*}
be the family of all a-m-open sets that contain x.

Definition 3.19 Let (X,m, - 7) be a minimal struc-
ture space with an ideal and A ¢ X. Then A2 (.7 ,m) =
{xeX:UnAg. 7, for every Ue. /°(x)} is called a-m
-local function of A with respect to. /'and m. We denote
simply A2 for A% (.7 m).

Remark 3.20 The minimal ideal is {@} and
the maximal ideal is P(x) in any minimal structure
space with an ideal (X,m,. ). It can be deduced that
A% ({@},m)=aC, (A)and A (P(X),m)=D for every
AcX.

Remark 3.21 In general, AczAf; and Af;¢A.

The next example shows that Az A7 .

Example 3.22 Let X = {a,b,c,d} with a minimal
structure m = {@, {a,b}, {b,c}, {c,d}, {a,d}, X} and . / =
{@, {a}, {b}, {ab}}, A = {a,b}. Then . /° = {©, {ab},
{a,d},{b,c},{cd}, {ab,c} {abd} {ac,d} {b,c,d} X}and
AL =0.

Theorem 3.23 Let (X,m,/ ) be
a minimal structure space with an ideal and A, B < X.
The following properties hold ;

(1) (D), =2.]

(2) If ACB, then A? <B?.

(3) (AR5 C A

@) A}, UB, c(AUB);,.

(5) (ANB)®. = A NB2.

(6) (A\B): \(B)®, = AZ\B.
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Proof (1) Assume (@)f;;t@. Then there
exists Xe(@):. Since Xe. /% (X), XnDe. /. It
contradicts with Xn@=@¢. /. Therefore (@)f;;:@.

(2) Assume that AcB. We will show that
Af;ng; by contrapositive. Suppose that X¢ Bf;.Then
there exists Ue. /* (X) such that UnBe. /. From AcB
and the property of ./ UnAe. /. Therefore XeAf;.

(3) Assume thatxe(Af;)f;, and Ue. /7 (X).
Then Af;mUe ./and so Af;mU #(J.Thus there ex-
ists ye Af;mU, and so yeUe. /* (y). This implies that
AnUg. /. Therefore Xe A .

(4) Since AcAuUB and BcCAUB, by (2)
Al c(AUB), and B, c(AUB):. So
Al UB. c(AUB);,.

(5) Since AnBcA and AnBcB, by (2)
(ANB). c A% and (ANB);, cB;,. So
(ANB);, c A NB;.

(6) Since A\BcA, by (2) (A\B)® cA® . So
(A\B):\B; c A’ \B..

Theorem 3.24 Let (X,m) be a minimal structure
space and . /. / are ideals on X where . /< /. Then
AL/ m) < AL(. 7 ,m) for all ACX.

Proof Let that
xeA; ( /,m). Then UnAg / for every Ue. 77 (x).

Since . /c /', UnAg. / for every Ue. /* (x). Thus
xe A (.7, m).Hence A, ( /im)< A, (-7 m).

AcX. Assume

Theorem 3.25 Let (X,m, ./ ) be a minimal
structure space with an ideal and AcX. The following
properties hold ;

(1) A, caC,(A),

(2) Af;=aCm(A), (ie., Af; is an a-m-closed
subset).

Proof (1) Assume that xgaC (A). Then there
exists an a-m-closed set F such that AcF and xgF.
Thus x € X\ F, and so X\ F €. /°(x). Hence (X\F)"A =
Qe./, and so xg A2 . This implies that A> —aC_(A).

(2) It is clear that Af;gaCm(Af;). Next, we
will prove that aC_(A;)cA;,. Let xeaC, (A})and
Ue. /% (X). Then Al NU=D. Therefore there exists
yeAf';mU, so Ue. 7/° (y). Since yeAf;, AnUg. /,
and so x€A; . Then A} =aC (A}).

Properties of Ram-operator in Minimal Structure Space with an Ideal

Theorem 3.26 Let (X,m,. /) be a minimal
structure space with an ideal and AcX. The following

properties hold ;

(1) If Ae. 7, then A% =(.

@) If Ue 7, then AL =(AUU)%.

(3) If Ue. 7, then A% =(A\U)?.

Proof (1) Assume that Af; #(. Then there exists
xeA? . Since Xe. /* (x),A=XnAg./.

(2) Assume that Ue. /. Since ACAUU by Theo-
rem 3.23(2), we get A> <(AUU):,.. Next, we will prove
that (AUU)2 A% by contrapositive. Suppose that
xg A’ . Then there exists Ve. //%(x) such that AnVe. /.
Since (AUU)NV=(ANV)U(UNV)e./, (AuU)NVe. /.
Therefore xg(ANU)? .

(3) Assume that Ue./ .
AZ =(ANX)% =(AN((X\U)UU)): =((A\U) U(AULU))?,
and AnUcUe. 7/, by (2) A2 =(A\U)?.

Since

Definition 3.27 Let (X,m,./) be a minimal
structure with an ideal. An operator R :P(X) —P(X)
is defined as follows ; for every AeP(X),
R (A)={xeX:there exists Ue. //*(x) such that (N e

.

Theorem 3.28 Let (X,m, /) be a minimal
structure space with an ideal and AeP(X). Then
R (A)=X\(X\A)%.

Proof Let xe®R’ (A).

an a-m-open set U containing x such that U\Ae

Then there exists

7 Thus U (X\A)e. /. So x(X\A)’. and hence

xeX\(X\ A): . Therefore R2(A)=X\(X\A): .

For the reverse inclusion, let XeX\(X\A)f;.
Then xg(X\A):. Thus there exists an a-m-open set
U containing x such that Un(X\ A)e. 7 This implies that

U\Ae. /. Hence xeR:(A). So X\(X\A)2 =R (A).
Therefore R2(A)=X\(X\A)? .

Example 3.29 Let X = {a,b,c,d)} with a minimal
structure m = {@, {a,b}, {b,c}, {c,d}, {a,d}, X} and / =
{9, {a}, {b}, {a,b}}, A = {a,b}. Then = {D, {a,b}, {a,d},
{b,c}, {c,d}, {a,b,c}, {a,bd}, {a,c,d}, {b,c,d}, X} and
R° (A)={ab}.

Theorem 3.30 Let (X,m,. /) be a minimal structure

space with anideal,and A< X. Then R} (A) is a-m-open.
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(3) Assume that (A\ B)U(B\ A) € ./ .

Yutthapong Manuttiparom, Daruni Boonchari, Chokchai Viriyapong
Proof We know that R7 (A)=X\(X\A): and
(X\A)2 is a-m-closed. Therefore R (A) is a-m-open. ~ Thus

Theorem 3.31 Let (X,m, ./ ) be a minimal
structure space with an ideal and A,BcX. Then the
following properties hold ;

(1) If AcB, then R (A) =R (B).

(2) If AcB, then R2 (ANB)cR2 (A)NR2 (B).

(3) If AcB, then R (A)UR’ (B)cR: (AUB).

(4) If Ac. /%, then ACR? (A).

(5) If ACB, then R (A)R2 (R (A)).

Proof (1) Assume that AcB. TherJ X\BCX\A.
By Theorem 3.23(2), (X\B)fng(X\A)fn and hence
X\(X\A)Z CX\(X\B) Therefore R2 (A)cR2 (B).

(2) Since AnBcA and ANnBcCB,
R (ANB) R (A) and R (ANB)c= R, (B) . There-
fore N2 (ANB) <R (A)NR: (B).]

(3) Since AcAuB and BcCAUB,
R (A) =R (AUB) and R; (B)c R’ (AUB). There-
fore N2 (A)UR: (B) R (AUB).

(4) Assume that Ae./? Then X \ A
is a-m- closed By Theorem 3.25(1), we get that
(X\A)?, caC H(XNA)=X\A. Therefore
A=X\(X\A) = X(X\A)2 =R? (A).

(5) By Theorem 3.30, we get that R (A)is
a-m-open. By (4), we get that R? (A) = R? (R (A)).

Theorem 3.32 Let (X,m,. /) be a minimal struc-
ture space with an ideal and A, B, UcX. Then the following
properties hold ;

(1) If Ue. 7, then R (A\U) =R (A).

(2) If Ue. /7, then N2 (AUU) =R (A).

(3) If (A\B)U(B\A)e. /, then R? (A)=R: (B).

(4) If Ae. 7, then R (A)=X\X?..

Proof (1) Assume that AcX, U e. /. By Theorem
3.26(2) and 3.28, we have R (A\U)=X\(X\(A\U))?
=X\((X\A)UU))> =X\(X\A)®. Therefore
R (A\U) =R (A).

(2) Assume that Ue. /. By Theorem 3.26(3),
we have R (AUU)=X\(X\(AUU))
=X\((XVANU)E =X\(X\A)? =2 (A).

R (=9 (A\(A\B)
—9R° ((A\(A\ B)U(B\ A))
=R (B).

(4) Assume that Ac. /. By Theorem 3.26(3),
we get that R2 (A)=X\(X\A)? =X\ X

Theorem 3.33 Let (X,m,./) be a minimal
structure space with an ideal and AcX. Then
R (A)=R° (R (A)) ifandonlyif (X\ A)E =((X\ A)? )2 .

Proof It follows from the facts that,

) R2(A)=X\(X\A)®

1) RRL(A)=
=X\((X\A)? )2,
Therefore K2 (A)=R2 (N2 (A))if and only if
=((X\A))2 .

and R,
XALX\ (XA (X\ AT

(X\A):

Discussion and Conclusion

The aim of this article is to introduce the results
of properties of some sets in a minimal structure space
with an ideal. In addition, we study some properties of
0-m-open sets, a-m-open sets in a minimal structure space
with an ideal. Moreover, we define an d-m-local function
and an R® -operator in a minimal structure space with an

ideal. Someproperties of them are obtained.
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