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Abstract

This research aims to study the performance of data mining techniques in medical datasets. The data in this research
contaita information of patients with breast cancer, diabetics and patients with hyperthyroidism. All datasets were
collected from UCI databasee Mmachine learning, in particular Decision Tree C4.5, Naive Bayes, Neural Networks,
Random Forest and Deep Learning techniques were used to create the models of disease Breast cancer, diabetes
and hypothyroidism prediction models. In order to measure the performance of prediction models, 10-fold cross valida-
tion was utilized to divide the data into training and testing sets. Accuracy, sensitivity and specificity of the prediction
models were used to compare the prediction performance of each model. The experimental results showed that the
Decision Tree C4.5 technique was the best technique in modeling the prognosis of hypothyroidism. It provided 99.86

% accuracy, 99.85 % sensitivity and 100 % specificity.
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