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Abstract

This study aims at classifying high resolution satellite images by using object-based image analysis by comparing 2
sampling methods, namely (1) point sample-based directly derived from visual interpretation and (2) segmented image
objects sampling utilizing Nearest Neighbor classifier (NN). There were 46 vector point samples used for analytical
scenario 1, and 36 sample image objects were used for process 2. These selected samples represented of 5 land
cover classes, i.e. (1) Roofs, (2) Trees, (3) Waterbodies, (4) Paddy field, and (5) Crops, respectively. For the second
scenario, the sample image objects were directly selected from segmented image objects by visual interpretation at
the same location from the sample points selected from the first scenario. Moreover, the threshold conditions were
the same data set applied to the first scenario. The results indicated that the overall accuracy from the scenario 1
showed 85.71 with a Kappa statistic (Khat) of 0.82. The highest Users’ accuracy was the Trees class (94%), and
the lowest accuracy was Waterbodies, which showed 74% of users’ accuracy. For the second scenario, the overall
accuracy found was 79.19% with Khat 0.73, respectively. The highest users’ accuracy was Trees (87%), and the lowest

of producers’ accuracy was Paddy field (65%).
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Figure 1 The selected village located in Na Dun cultural
settlement, Maha Sarakham Province
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Table 1 Samples data derived from visual interpretation (S1) and image objects segmentation (S2)
Class Class_id Sample point number (S1) Image object sample
number (S2)

Roofs 1 17 7
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Waterbodies (w1) 3 6 3
Paddy field (A1) 4 5 6
Crops 5 9 13

Total 46 36
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Table 2  Threshold condition for image classification

Features types

Feature names

Spectral

Mean bands: Mean Blue, Mean Green, Mean Red, Mean NIR

Standard Deviation

Sdev.Red, Sdev. Green, Sdev blue, and Sdev. NIR

Pixel-based

Band ratios: Ratio Blue, Ratio Green, Ratio Red, and Ratio NIR
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Table 3  Area of classified image objects from scenario 1 (S1)

Class name Area (sq.m.) Classified Image objects
Roofs 35,341.92 187
Trees 50,905.80 174
Water bodies 3,583.08 7
Paddy field 64,346.04 96
Crops 61,555.68 133

Total 215,732.52 597
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Table 4  Classification result from image objects sample-based (scenario 2: S2)
Class name Area (sq.m.) Classified Image objects
Roofs 31,793.76 160
Trees 51,765.12 171
Water bodies 1,945.80 6
Paddy field 55,955.88 92
Crops 73,614.96 172
Total 215,075.52 601
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Figure 4 Classification result from image
objects sample-based (scenario 2)
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Accuracy assessment process for each Land cover class from scenario 1 (S1) and 2 (S2)

Classes Users’ accuracy (UA) Producer’s accuracy (PA)
S1 S2 S1 S2
Roofs 77% 74% 88% 77%
Trees 94% 87% 89% 83%
Water bodies 89% 81% 74% 85%
Paddy field 85% 83% 79% 65%
Crops 81% 69% 88% 73%
Overall accuracy S1:85.71 % S2: 79.19%
K S$1: 0.82 S$2: 0.73
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