

ลำดับใหม่ที่สอดคล้องกับลำดับ k -ฟีโบนัคชี

Some novel sequences related to k -Fibonacci sequences

พงษ์พันธ์ มุขะชิ¹, เพ็ญศิริ สมพงษ์², สุวรรณี สมพงษ์³ และ ไกรลิกิต ลาดປະລະ^{4*}

Phongphan Mukwachi¹, Pensiri Sompong², Supunnee Sompong³ and Krailikhit Latpala^{4*}

Received: 13 March 2023 ; Revised: 18 May 2023 ; Accepted: 27 June 2023

บทคัดย่อ

งานวิจัยนี้เราได้นำเสนอสามลำดับรูปแบบใหม่ของ γ_n , α_n และ β_n ที่มีส่วนเกี่ยวข้องกันผ่านความสัมพันธ์เวียนเกิด และเราได้สังเกตถึงความสัมพันธ์ของลำดับทั้งสามนี้สามารถแสดงให้อยู่ในรูปของลำดับ k -ฟีโบนัคชี เพื่อพิสูจน์ความสัมพันธ์นี้เราได้นำหลักอุปนัยเชิงคณิตศาสตร์ มาใช้สำหรับแสดงความถูกต้องของทฤษฎี และแสดงผลลัพธ์ที่ได้จากการศึกษาในงานนี้

คำสำคัญ: ลำดับ k -ฟีโบนัคชี, ความสัมพันธ์เวียนเกิด, อุปนัยเชิงคณิตศาสตร์

Abstract

In this research, we introduce three novel sequences of γ_n , α_n and β_n . These sequences are related to each other through the recurrence relation, and we have observed that their relationship can be expressed using k -Fibonacci sequences. To prove this relationship, we used mathematical induction. We have shown the validity of our theorem, and the results are presented in this study.

Keywords: k -Fibonacci sequences, recurrence relation, mathematical induction

¹ อาจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

² ผู้ช่วยศาสตราจารย์ ภาควิชาวิทยาศาสตร์ทั่วไป คณะวิทยาศาสตร์และวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตเฉลิมพระเกียรติ สกลนคร 47000

³ ผู้ช่วยศาสตราจารย์ ภาควิชาคณิตศาสตร์และสถิติ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

⁴ อาจารย์ ภาควิชาคณิตศาสตร์ คณะครุศาสตร์ มหาวิทยาลัยราชภัฏสกลนคร สกลนคร 47000

¹ Lecturer, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

² Assistant Professor, Department of General Science, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 Thailand

³ Assistant Professor, Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

⁴ Lecturer, Department of Mathematics, Faculty of Education, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000 Thailand

* Corresponding author: Krailikhit@snru.ac.th

Introduction

For any integer number $k \geq 1$, the n th k -Fibonacci sequence, denoted as $\{F_{k,n}\}_{n=0}^{\infty}$, is defined by (Falcon & Plaza, 2007) as a recursive sequence as follows:

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1}$$

where $F_{k,0} = 0$ and $F_{k,1} = 1$. The first 8 members of k -Fibonacci sequences are shown below:

$$0, 1, k, k^2 + 1, \dots, k^3 + 2k, k^4 + 3k^2 + 1, k^5 + 4k^3 + 3k, k^6 + 5k^4 + 6k^2 + 1.$$

(Atanassov, 2018) studied two new combined 3-Fibonacci sequences. Let a, b, c, d be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\alpha_{n+2} &= \gamma_{n+1} + \beta_{n+1}, \\ \beta_{n+2} &= \gamma_{n+1} + \alpha_{n+1}, \\ \gamma_{n+2} &= \gamma_{n+1} + \gamma_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$. From these sequences and for each natural number $n \geq 1$ the result are the following,

$$\begin{aligned}\alpha_{2n+1} &= b + F_{2n-1}a + (F_{2n-1} - 1)d, \\ \alpha_{2n} &= a + F_{2n}c + (F_{2n+1} - 1)d, \\ \beta_{2n-1} &= a + F_{2n-1}c + (F_{2n} + 1)d, \\ \beta_{2n} &= b + F_{2n}c + (F_{2n+1} - 1)d, \\ \gamma_{n+2} &= F_{n+1}c + F_{n+2}d.\end{aligned}$$

The second set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\alpha_{n+1} &= \alpha_{n+1} + \alpha_n, \\ \beta_{n+1} &= \alpha_{n+1} + \gamma_n, \\ \gamma_{n+1} &= \alpha_{n+1} + \beta_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \alpha_1 = d$. From these sequences and for each natural number $n \geq 1$ the result are the following,

$$\begin{aligned}\alpha_n &= F_{n-1}c + F_n d, \\ \beta_{2n-1} &= (F_{2n-1} - 1)a + b + (F_{2n+1} - 1)d, \\ \beta_{2n} &= (F_{2n+1} - 1)a + c + (F_{2n+2} - 1)d,\end{aligned}$$

$$\gamma_{2n-1} = (F_{2n-1} - 1)a + c + (F_{2n+1} - 1)d,$$

$$\gamma_{2n} = (F_{2n+1} - 1)a + b + (F_{2n+2} - 1)d.$$

In the same year, he studied two additional new combined 3-Fibonacci sequences part 2. Let a, b, c be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\alpha_{n+1} &= \beta_n + \gamma_n, \\ \beta_{n+1} &= \alpha_n + \gamma_n, \\ \gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n,\end{aligned}$$

where $\alpha_0 = 2a, \beta_0 = 2b, \gamma_0 = c$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\alpha_n &= (F_{2n-1} + (-1)^n)a + (F_{2n-1} - (-1)^n)b + F_{2n}c, \\ \beta_n &= (F_{2n-1} - (-1)^n)a + (F_{2n-1} + (-1)^n)b + F_{2n}c, \\ \gamma_n &= F_{2n}a + F_{2n}b + F_{2n+1}c.\end{aligned}$$

The second set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\alpha_{n+1} &= \alpha_n + \frac{\beta_n + \gamma_n}{2}, \\ \beta_{n+1} &= \alpha_{n+1} + \gamma_n, \\ \gamma_{n+1} &= \alpha_{n+1} + \beta_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = 2b, \gamma_0 = 2c$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\alpha_n &= F_{2n-1}a + F_{2n}b + F_{2n}c, \\ \beta_n &= F_{2n}a + (F_{2n+1} + (-1)^n)b + (F_{2n+1} - (-1)^n)c, \\ \gamma_n &= F_{2n}a + (F_{2n+1} - (-1)^n)b + (F_{2n+1} + (-1)^n)c.\end{aligned}$$

(Nuppatchploy & Pakapongpun, 2021) generated three combined sequences related to Jacobsthal sequences. Let a, b, c, d be arbitrary real numbers and J_n be the Jacobsthal sequences. The first set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+2} &= \gamma_{n+1} + 2\gamma_n, \\ \alpha_{n+1} &= \gamma_{n+1} + 2\beta_n, \\ \beta_{n+1} &= \gamma_{n+1} + 2\alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\gamma_n &= 2J_{n-1}c + J_n d, \\ \alpha_n &= 2\alpha_{n-1} + (J_n + (-1)^n)c + j_n d + (-2)^n(a-b), \\ \beta_n &= 2\beta_{n-1} + (J_n + (-1)^n)c + j_n d - (-2)^n(a-b).\end{aligned}$$

The second set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+2} &= \gamma_{n+1} + 2\gamma_n, \\ \alpha_{n+1} &= \gamma_n + 2\beta_n, \\ \beta_{n+1} &= \gamma_n + 2\alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\gamma_n &= 2J_{n-1}c + J_n d, \\ \alpha_n &= 2\alpha_{n-1} + (J_{n-1} + (-1)^{n-1})c + j_{n-1}d + (-2)^n(a-b), \\ \beta_n &= 2\beta_{n-1} + (J_{n-1} + (-1)^{n-1})c + j_{n-1}d - (-2)^n(a-b).\end{aligned}$$

The third set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + 2\gamma_n, \\ \alpha_{n+1} &= \gamma_n + 2\beta_n, \\ \beta_{n+1} &= \gamma_n + 2\alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\gamma_{n-1} &= (J_{2n-1} - 1)(a+b) + J_{2n-1}c, \\ \alpha_n &= (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n a + (-1)^{n+1} (2J_{n+1} + J_n)b + J_{2n}c, \\ \beta_n &= (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n b + (-1)^{n+1} (2J_{n+1} + J_n)a + J_{2n}c.\end{aligned}$$

(Atanassov, 2022) introduce on two new combined 3-Fibonacci sequences. Let a, b, c, d, e be arbitrary real numbers and $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence. The first set of sequences has the form for $n \geq 1$,

$$\begin{aligned}\alpha_{n+1} &= \alpha_n + \alpha_{n-1}, \\ \beta_{n+1} &= \beta_n + \beta_{n-1}, \\ \gamma_{n+1} &= \frac{\alpha_n + \beta_n}{2} + \gamma_n.\end{aligned}$$

where $\alpha_0 = 2a, \beta_0 = 2b, \gamma_0 = c, \alpha_1 = 2d, \beta_1 = 2e$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\alpha_n &= 2F_{n-1}a + 2F_n d, \\ \beta_n &= 2F_{n-1}b + 2F_n e, \\ \gamma_n &= F_n a + F_n b + c + (F_{n+1} - 1)d + (F_{n+1} - 1)e.\end{aligned}$$

The second set of sequences has the form for $n \geq 1$,

$$\begin{aligned}\alpha_{n+1} &= \alpha_n + \alpha_{n-1}, \\ \beta_{n+1} &= \beta_n + \beta_{n-1}, \\ \gamma_{n+1} &= \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \alpha_1 = 2d, \beta_1 = 2e$. From these sequences and for each natural number $n \geq 1$ the result are the following.

$$\begin{aligned}\alpha_n &= 2F_{n-1}a + 2F_n d, \\ \beta_n &= 2F_{n-1}b + 2F_n e, \\ \gamma_n &= F_n a + F_n b + c + (F_{n+1} - 1)d + (F_{n+1} - 1)e.\end{aligned}$$

(Pakapongpun & Kongson, 2022) introduced three combined sequences related to k -Fibonacci sequences. Let a, b, c, d be arbitrary real numbers and $\{F_{k,n}\}_{n=0}^{\infty}$ be the k -Fibonacci sequence. The first set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+2} &= k\gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k\gamma_n + \beta_n, \\ \beta_{n+1} &= k\gamma_n + \alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$. From these sequences the result are the following theorem 1.1.

Theorem 1.1. For any positive integer k and n ,

- (a) $\gamma_n = F_{k,n}d + F_{k,n-1}c,$
- (b) $\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1)c + a,$
- (c) $\beta_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} + (F_{k,2} - 1)c + b,$
- (d) $\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2} - 1)c + b,$
- (e) $\beta_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2} - 1)c + a.$

The second set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+2} &= k\gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= k\gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= k\gamma_{n+1} + \alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$. From these sequences the result are the following theorem 1.2.

Theorem 1.2. For any positive integer k and n ,

- (a) $\gamma_n = F_{k,n}d + F_{k,n-1}c,$
- (b) $\alpha_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + a,$
- (c) $\beta_{2n} = (F_{k,2n+1} + F_{k,2n} - 1)d + (F_{k,2n} + F_{k,2n-1} - 1)c + b,$
- (d) $\alpha_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-1} + F_{k,2n-2} - 1)c + b,$
- (e) $\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1} - 1)d + (F_{k,2n-2} + F_{k,2n-3} + (F_{k,2} - 1)c + a.$

The third set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+1} &= k\gamma_n + \frac{\alpha_n + \beta_n}{2} \\ \alpha_{n+1} &= k\gamma_n + \beta_n, \\ \beta_{n+1} &= k\gamma_n + \alpha_n.\end{aligned}$$

where $\alpha_0 = 2a, \beta_0 = 2b, \gamma_0 = c$. From these sequences, the result are the following theorem 1.3.

Theorem 1.3. For any positive integer k and n ,

- (a) $\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k-1}) = \gamma_1(F_{k,2} + F_{k-1})^n,$
- (b) $\alpha_{2n} = \gamma_1(F_{k,2} + F_{k-1})^{2n-1} + a - b,$
- (c) $\beta_{2n} = \gamma_1(F_{k,2} + F_{k-1})^{2n-2} + b - a.$

In this paper, we introduce a new three set of combined sequences which are more general context related to k -Fibonacci sequences.

Main Results

We applied those three sets of sequences from (Pakapongpun & Kongson, 2022) work as follows. Let a, b, c, d and s be arbitrary real numbers with $s \neq 0$. The first set of sequences has the form for $n \geq 0$,

$$\begin{aligned}\gamma_{n+2} &= k\gamma_{n+1} + \gamma_n, \\ \alpha_{n+1} &= ks\gamma_{n+1} + \beta_n, \\ \beta_{n+1} &= ks\gamma_{n+1} + \alpha_n.\end{aligned}$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first few members of the sequences $\{\gamma_n\}_{n=0}^{\infty}$, $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to n represented in Table 1, Table 2 and Table 3 respectively.

Table 1 This table shows first 8 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	c
1	d
2	$kd + c$
3	$k^2d + kc + d$
4	$k^3d + k^2c + c + 2kd + c$
5	$k^4d + k^3c + 3k^2d + 2kc + d$
6	$k^5d + k^4c + k^3d + 3k^2c + 3kd + c$
7	$k^6d + k^5c + 5k^4d + 4k^3c + 6k^2d + 3kc + d$

Table 2 This table shows first 8 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	a
1	$ksc + b$
2	$ks(c+d) + a$
3	$k^2sd + ks(2c+d) + b$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + a$
5	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + b$
6	$k^5sd + k^4s(c+d) + k^3s(c+4d) + k^2s(3c+3d) + ks(3c+3d) + a$
7	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) + k^2s(3c+6d) + ks(4c+3d) + b$

Table 3 This table shows first 8 members of $\{\beta_n\}_{n=0}^{\infty}$ from the first set of sequences.

n	$\{\beta_n\}_{n=0}^{\infty}$
0	b
1	$ksc + a$
2	$ks(c+d) + b$
3	$k^2sd + ks(2c+d) + a$
4	$k^3sd + k^2s(c+d) + ks(2c+2d) + b$
5	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + a$
6	$k^5sd + k^4s(c+d) + k^3s(c+4d) + k^2s(3c+3d) + ks(3c+3d) + b$
7	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) + k^2s(3c+6d) + ks(4c+3d) + a$

Theorem 2.1. For any positive integer k and n ,

- (a) $\gamma_n = F_{k,n}d + F_{k,n-1}c,$
- (b) $\alpha_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n-3} - 1)sc + a,$
- (c) $\beta_{2n} = (F_{k,2n} + F_{k,2n-1} - 1)sd + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n-3} - 1)sc + b,$
- (d) $\alpha_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2n-4} - 1)sc + b, \text{ for } n \geq 2,$
- (e) $\beta_{2n-1} = (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2n-4} - 1)sc + a, \text{ for } n \geq 2.$

Proof. we will prove (a) by mathematical induction.

Let $P(n)$ be a statement $\gamma_n = F_{k,n}d + F_{k,n-1}c$ for $n \geq 1$, we will show that $P(1)$ is true.

Since $F_{k,1}d + F_{k,0}c = (1)d + (0)c = d = \gamma_1$, then $P(1)$ is true. Let $m \geq 1$, assume that $P(1), P(2), \dots, P(m-1)$, $P(m)$ are true that is, $\gamma_n = F_{k,n}d + F_{k,n-1}c$, where $1 \leq i \leq m$.

We will show that $P(m+1)$ is true.

consider,

$$\begin{aligned} \gamma_{m+1} &= k\gamma_m + \gamma_{m-1} \\ &= k(F_{k,m}d + F_{k,m-1}c) + F_{k,m-1}d + F_{k,m-2}c \\ &= k(F_{k,m} + F_{k,m-1})d + (kF_{k,m-1} + F_{k,m-2})c \\ \gamma_{m+1} &= F_{k,m+1}d + F_{k,m}c. \end{aligned}$$

Then $P(m+1)$ is true.

By mathematical induction, the statement $P(n)$ is true for all $n \geq 1$.

Next, we will prove (b) by mathematical induction.

Let $P(n)$ be a statement,

$$\begin{aligned} \alpha_{2n} &= (F_{k,2n} + F_{k,2n-1} - 1)sd \\ &\quad + (F_{k,2n-1} + F_{k,2n-2} + F_{k,2n-3} - 1)sc + a, \text{ for } n \geq 1. \end{aligned}$$

We will show that $P(1)$ is true.

Now consider,

$$\begin{aligned} &(F_{k,2(1)} + F_{k,2(1)-1} - 1)sd \\ &\quad + (F_{k,2(1)-1} + F_{k,2(1)-2} + F_{k,2(1)-3} - 1)sc + a \\ &= (F_{k,2} + F_{k,1} - 1)sd + (F_{k,1} + F_{k,0} + F_{k,2} - 1)sc + a \\ &= (k+1-1)sd + (1+0+k-1)sc + a \\ &= ksd + ksc + a \\ &= ks(c+d) + a = \alpha_{2(1)}. \end{aligned}$$

Then $P(1)$ is true.

Let $m \geq 1$, assume that $P(m)$ is true that is,

$$\begin{aligned} \alpha_{2n} &= (F_{k,2m} + F_{k,2m-1} - 1)sd \\ &\quad + (F_{k,2m-1} + F_{k,2m-2} + F_{k,2m-3} - 1)sc + a. \end{aligned}$$

We will show that $P(m+1)$ is true.

Consider,

$$\begin{aligned}
 \alpha_{2m+2} &= ks\gamma_{2m+1} + \beta_{2m+1} \\
 &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks\gamma_{2m} + \alpha_{2m} \\
 &= ks(F_{k,2m+1}d + F_{k,2m}c) + ks(F_{k,2m}d + F_{k,2m-1}c) \\
 &\quad + (F_{k,2m} + F_{k,2m-1} - 1)sd + (F_{k,2m-1} + F_{k,2m-2} + \\
 &\quad F_{k,2} - 1)sc + a \\
 &= [(kF_{k,2m+1} + F_{k,2m})sd + (kF_{k,2m} + F_{k,2m-1}) \\
 &\quad sd - sd] + [(kF_{k,2m} + F_{k,2m-1})sc + (kF_{k,2m-1} \\
 &\quad + F_{k,2m-2})sc + F_{k,2}sc - sc] + a \\
 &= (F_{k,2m+2} + F_{k,2m+1} - 1)sd + (F_{k,2m+1} + F_{k,2m} \\
 &\quad + F_{k,2} - 1)sc + a \\
 \alpha_{2(m+1)} &= (F_{k,2(m+1)} + F_{k,2(m+1)-1} - 1)sd \\
 &\quad + (F_{k,2(m+1)-1} + F_{k,2(m+1)-2} + F_{k,2} - 1)sc + a.
 \end{aligned}$$

Then $P(m+1)$ is true.

By mathematical induction the statement $P(n)$ is true for all $n > 1$.

The proof of (c) is similar to (b).

To prove equation (d) for $n \geq 2$, using (a) and (c) we have,

$$\begin{aligned}
 \alpha_{2n-1} &= ks\gamma_{2n-2} + \beta_{2n-2} \\
 &= ks(F_{k,2n-2}d + F_{k,2n-3}c) + (F_{k,2n-2} + F_{k,2n-3} - 1)sd \\
 &\quad + (F_{k,2n-3} + F_{k,2n-4} + F_{k,2} - 1)sc + b \\
 &= [(kF_{k,2n-2} + F_{k,2n-3})sd + (F_{k,2n-2}sd - sd) + \\
 &\quad [(kF_{k,2n-3} + F_{k,2n-4})sc + (F_{k,2n-3}sc + F_{k,2}sc - sc)] \\
 &\quad + b \\
 &= (F_{k,2n-1} + F_{k,2n-2} - 1)sd + (F_{k,2n-2} + F_{k,2n-3} \\
 &\quad + F_{k,2} - 1)sc + b,
 \end{aligned}$$

then

$$\begin{aligned}
 \alpha_{2n-1} &= (F_{k,2n-1} + F_{k,2n-2} - 1)sd \\
 &\quad + (F_{k,2n-2} + F_{k,2n-3} + F_{k,2} - 1)sc + b.
 \end{aligned}$$

is true.

By (a), (b), and the proof is similar to (d), then we have (e).

The proof is complete.

Next, we present the second sequences.

The second set of sequences has the form for

$n \geq 0$,

$$\begin{aligned}
 \gamma_{n+2} &= k\gamma_{n+1} + \gamma_n, \\
 \alpha_{n+1} &= k\gamma_{n+1} + \beta_n, \\
 \beta_{n+1} &= k\gamma_{n+1} + \alpha_n.
 \end{aligned}$$

where $\alpha_0 = a$, $\beta_0 = b$, $\gamma_0 = c$ and $\gamma_1 = d$.

From these sequences, we generate the first 7 members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to n represented in Table 4, and Table 5 respectively.

Table 4 This table shows first 7 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the second set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	a
1	$ksd + a$
2	$k^2sd + ks(c+d) + a$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + b$
4	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(2c+2d) + a$
5	$k^5sd + k^4s(c+d) + k^3s(c+4d) + k^2s(3c+3d) + ks(2c+3d) + b$
6	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) + k^2s(3c+6d) + ks(3c+3d) + a$

Table 5 This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ from the second set of sequences.

n	$\{\beta_n\}_{n=0}^{\infty}$
0	b
1	$ksd + a$
2	$k^2sd + ks(c+d) + b$
3	$k^3sd + k^2s(c+d) + ks(c+2d) + a$
4	$k^4sd + k^3s(c+d) + k^2s(c+3d) + ks(3c+2d) + b$
5	$k^5sd + k^4s(c+d) + k^3s(c+4d) + k^2s(3c+3d) + ks(2c+3d) + a$
6	$k^6sd + k^5s(c+d) + k^4s(c+5d) + k^3s(4c+4d) + k^2s(3c+6d) + ks(3c+3d) + b$

Theorem 2.2. For any positive integer k and n ,

- (a) $\gamma_n = F_{k,n}d + F_{k,n-1}c$,
- (b) $\alpha_{2n} = (F_{k,2n+1} + F_{k,2n}-1)sd + (F_{k,2n} + F_{k,2n-1}-1)sc + a$,
- (c) $\beta_{2n} = (F_{k,2n+1} + F_{k,2n}-1)sd + (F_{k,2n} + F_{k,2n-1}-1)sc + b$,
- (d) $\alpha_{2n-1} = (F_{k,2n} + F_{k,2n-1}-1)sd + (F_{k,2n-1} + F_{k,2n-2}-1)sc + b$,
- (e) $\beta_{2n-1} = (F_{k,2n} + F_{k,2n-1}-1)sd + (F_{k,2n-1} + F_{k,2n-2}-1)sc + a$.

Proof. The proofs are similar to theorem 2.1.

Finally, the last sequences in our work.

The third set of sequences has the form for

$n \geq 0$,

$$\begin{aligned}\gamma_{n+1} &= k\gamma_n + \frac{\alpha_n + \beta_n}{2s} \\ \alpha_{n+1} &= ks\gamma_n + \beta_n, \\ \beta_{n+1} &= ks\gamma_n + \alpha_n.\end{aligned}$$

where $\alpha_0 = 2as$, $\beta_0 = 2sb$ and $\gamma_0 = c$.

The first 7 members of the sequences $\{\gamma_n\}_{n=0}^{\infty}$, $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are show in Table 6, Table 7, and Table 8 respectively.

Table 6 This table shows first 7 members of $\{\gamma_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\gamma_n\}_{n=0}^{\infty}$
0	c
1	$kc + a + b$
2	$k^2c + k(a+b+c) + a + b$
3	$k^3c + k^2(a+b+2c) + k(2a+2b+c) + a + b$
4	$k^4c + k^3(a+b+3c) + k^2(3a+3b+3c) + k(3c+3b+c) + a + b$
5	$k^5c + k^4(a+b+4c) + k^3(4c+4b+6c) + k^2(6a+6b+4c) + k(4a+4b+c) + a + b$
6	$k^6c + k^5(a+b+5c) + k^4(5a+5b+10c) + k^3(10a+10b+10c) + k^2(10a+10b+5c) + k(5a+5b+c) + a + b$

Table 7 This table shows first 7 members of $\{\alpha_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\alpha_n\}_{n=0}^{\infty}$
0	$2as$
1	$ksc + 2bs$
2	$k^2sc + ks(a+b+c) + 2as$
3	$k^3sc + k^2s(a+b+2c) + ks(2a+2b+c) + 2bs$
4	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) + ks(3a+3b+c) + 2as$
5	$k^5sc + k^4s(a+b+4c) + k^3s(4c+4b+6c) + k^2s(6a+6b+4c) + ks(4a+4b+c) + 2bs$
6	$k^6sc + k^5s(a+b+5c) + k^4s(5a+5b+10c) + k^3s(10a+10b+10c) + k^2s(10a+10b+5c) + ks(5a+5b+c) + 2as$

Table 8 This table shows first 7 members of $\{\beta_n\}_{n=0}^{\infty}$ from the third set of sequences.

n	$\{\beta_n\}_{n=0}^{\infty}$
0	$2bs$
1	$ksc + 2as$
2	$k^2sc + ks(a+b+c) + 2bs$
3	$k^3sc + k^2s(a+b+2c) + ks(2a+2b+c) + 2as$
4	$k^4sc + k^3s(a+b+3c) + k^2s(3a+3b+3c) + ks(3a+3b+c) + 2bs$
5	$k^5sc + k^4s(a+b+4c) + k^3s(4c+4b+6c) + k^2s(6a+6b+4c) + ks(4a+4b+c) + 2as$
6	$k^6sc + k^5s(a+b+5c) + k^4s(5a+5b+10c) + k^3s(10a+10b+10c) + k^2s(10a+10b+5c) + ks(5a+5b+c) + 2bs$

Theorem 2.3. For any positive integer k and n ,

- (a) $\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k,1}) = \gamma_1(F_{k,2} + F_{k,1})^n$,
- (b) $\alpha_{2n} = \gamma_1s(F_{k,2} + F_{k,1})^{2n-1} + as - bs$,
- (c) $\beta_{2n} = \gamma_1s(F_{k,2} + F_{k,1})^{2n-1} + bs - as$,
- (d) $\alpha_{2n-1} = \gamma_1s(F_{k,2} + F_{k,1})^{2n-2} + bs - as$,
- (e) $\beta_{2n-1} = \gamma_1s(F_{k,2} + F_{k,1})^{2n-2} + as - bs$.

Proof. To prove (a) we will show that $\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k,l})$ since, $\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$ and we know that,

$$\frac{\alpha_n + \beta_n}{2s} = \frac{(ks\gamma_{n-1} + \beta_{n-1}) + (ks\gamma_{n-1} + \alpha_{n-1})}{2s}$$

$$= k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s},$$

so, we have $\gamma_{n+1} = k\gamma_n + k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s}$

Since $\gamma_n = k\gamma_{n-1} + \frac{\alpha_{n-1} + \beta_{n-1}}{2s}$

we get that,

$$\gamma_{n+1} = k\gamma_n + \gamma_n$$

$$= \gamma_n(k+1)$$

$$\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k,l}).$$

Next, we will show that $\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k,l})^n$.

Since $\gamma_n = \gamma_{n-1}(F_{k,2} + F_{k,l})$

we have that,

$$\gamma_2 = \gamma_1(F_{k,2} + F_{k,l}).$$

$$\gamma_3 = \gamma_2(F_{k,2} + F_{k,l}) = \gamma_1(F_{k,2} + F_{k,l})^2.$$

$$\gamma_4 = \gamma_3(F_{k,2} + F_{k,l}) = \gamma_1(F_{k,2} + F_{k,l})^3.$$

.

.

.

$$\gamma_{n+1} = \gamma_1(F_{k,2} + F_{k,l})^n.$$

thus $\gamma_{n+1} = \gamma_n(F_{k,2} + F_{k,l}) = \gamma_1(F_{k,2} + F_{k,l})^n$.

We will prove (b) by mathematical induction.

Let $P(n)$ be the statement

$$\alpha_{2n} = \gamma_1 s(F_{k,2} + F_{k,l})^{2n-1} + as - bs \text{ for } n \geq 1.$$

We will show that $P(1)$ is true.

consider,

$$\begin{aligned} & \gamma_1 s(F_{k,2} + F_{k,l})^{2(1)-1} + as - bs \\ &= s(kc + a + b)(k+1) + as - bs \\ &= k^2sc + ksa + ksb + ksc + as - bs + as + bs \\ &= k^2sc + ks(a + b + c) + 2as + \alpha_{2(1)} \end{aligned}$$

Then $P(1)$ is true.

Let $n \geq 1$, assume that $P(m)$ is true.

That is, $\alpha_{2m} = \gamma_1 s(F_{k,2} + F_{k,l})^{2m-1} + as - bs$.

We will show that $P(m+1)$ is true.

Consider,

$$\begin{aligned} \alpha_{2(m+1)} &= \alpha_{2m+2} \\ &= ks\gamma_{2m+1} + \beta_{2m+1} \\ &= ks\gamma_{2m+1} + \beta_{2m} + \alpha_{2m} \\ &= ks\gamma_1(F_{k,2} + F_{k,l})^{2m} + ks\gamma_1(F_{k,2} + F_{k,l})^{2m-1} \\ &\quad + \gamma_1 s(F_{k,2} + F_{k,l})^{2m-1} + as - bs \\ &= ks\gamma_1(k+1)^{2m} + ks\gamma_1(k+1)^{2m-1} \\ &\quad + \gamma_1 s(k+1)^{2m-1} + as - bs \\ &= ks\gamma_1(k+1)(k+1)^{2m-1} + ks\gamma_1(k+1)^{2m-1} \\ &\quad + \gamma_1 s(k+1)^{2m-1} + as - bs \\ &= \gamma_1 s(k+1)^{2m-1} + [k(k+1) + k+1] + as - bs \\ &= \gamma_1 s(k+1)^{2m-1} + as - bs \\ &= \gamma_1 s(F_{k,2} + F_{k,l})^{2(m+1)-1} + as - bs \end{aligned}$$

then $P(m+1)$ is true.

By mathematical induction the statement $P(n)$ is true for all $n \geq 1$.

The proof of (c) is similar to (b).

From (a) and (c) we have (d), and similarly from (a) and (b) we also have (e).

Conclusion and Discussion

A new three combined sequences related to k -Fibonacci sequences from new types were introduced and explicit formulas for their members are given.

From our sequences,

the first set of sequences,

$$\begin{aligned} \gamma_{n+2} &= k\gamma_{n+1} + \gamma_n \\ \alpha_{n+1} &= ks\gamma_n + \beta_n \\ \beta_{n+1} &= ks\gamma_n + \alpha_n \end{aligned}$$

the second set of sequences,

$$\begin{aligned} \gamma_{n+2} &= k\gamma_{n+1} + \gamma_n \\ \alpha_{n+1} &= ks\gamma_{n+1} + \beta_n \\ \beta_{n+1} &= ks\gamma_{n+1} + \alpha_n \end{aligned}$$

the third set of sequences,

$$\gamma_{n+1} = k\gamma_n + \frac{\alpha_n + \beta_n}{2s}$$

$$\alpha_{n+1} = ks\gamma_n + \beta_n,$$

$$\beta_{n+1} = ks\gamma_n + \alpha_n.$$

If $s = 1$, then the results correspond to the 3 set of sequences and the theorem 1.1, 1.2, and 1.3 in (Pakapongpun & Kongson, 2022). Other new schemes, modifying the standard form of k -Fibonacci sequences and new combined sequences will be discussed in the future.

Acknowledgements

We thank the referees for their valuable reports that have improved this work.

References

Falcon, S., & Plaza, Á. (2007). On the fibonacci k -numbers. *Chaos, Solitons Fractals*, 32(5), 1615-1624.

Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 24(2), 90-93.

Atanassov, K. T. (2018). On two new combined 3-Fibonacci sequences. Part 2. *Notes on Number Theory and Discrete Mathematics*, 24(3), 111-114.

Nubpatchploy, S., Pakapongpun, A. (2021). Three combined sequences related to Jacobsthal sequences. *International Journal of Mathematics and Computer Science*, 16(1), 149-157.

Atanassov, K. T. (2022). On two new combined 3-Fibonacci sequences. Part 3. *Notes on Number Theory and Discrete Mathematics*, 28(1), 143-146.

Pakapongpun, A., & Kongson, J. 2022. "Three combined sequences related to k -Fibonacci sequences. *Computer Science*, 7(2), 551-559.