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บทคัดย่อ
งานวิจัยนี้เราได้นำ�เสนอสามลำ�ดับรูปแบบใหม่ของ γ

n
, α

n 
และ β

n
 ที่มีส่วนเกี่ยวข้องกันผ่านความสัมพันธ์เวียนเกิด และเราได้

สังเกตถึงความสัมพันธ์ของลำ�ดับท้ังสามน้ีสามารถแสดงให้อยู่ในรูปของลำ�ดับ k-ฟีโบนักชี เพื่อพิสูจน์ความสัมพันธ์นี้เราได้นำ�
หลักอุปนัยเชิงคณิตศาสตร์ มาใช้สำ�หรับแสดงความถูกต้องของทฤษฎี และแสดงผลลัพธ์ที่ได้จากการศึกษาในงานนี้

คำ�สำ�คัญ:	 ลำ�ดับ k-ฟีโบนักชี, ความสัมพันธ์เวียนเกิด, อุปนัยเชิงคณิตศาสตร์

Abstract
In this research, we introduce three novel sequences of γ

n
, α

n 
and β

n
. These sequences are related to each other 

through the recurrence relation, and we have observed that their relationship can be expressed using k-Fibonacci 
sequences. To prove this relationship, we used mathematical induction. We have shown the validity of our theorem, 
and the results are presented in this study.
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Introduction
For any integer number k ≥ 1, the n th k-Fibonacci  
sequence, denoted as {Fk-n}

∞
n=0, is defined by (Falcon & 

Plaza, 2007) as a recursive sequence as follows:

	 Fk,n+1 = kFk,n + Fk,n-1

	 where Fk,0 = 0 and Fk,1 = 1. The first 8 members 
of k-Fibonacci sequences are shown below:

	
0, 1, k, k2 +1,..., k3 + 2k, k4 + 3k2 + 1, k5 + 4k3 + 

3k, k6 + 5k4 + 6k2 + 1.

	 (Atanassov, 2018) studied two new combined 
3-Fibonacci sequences. Let a, b, c, d be arbitrary real  
numbers and {Fn}

∞
n=0 be the standard Fibonacci  

sequence. The first set of sequences has the form for  
n ≥ 0,

	 αn+2 = γn+1 + βn+1,

	 βn+2 = γn+1 + αn+1,

	 γn+2 = γn+1 + γn.

	 where α0 = a, β0 = b, γ0 = c, γ1 = d. From these 
sequences and for each natural number n ≥ 1 the result 
are the following,

	 α2n+1 = b + F2n-1a + (F2n-1)d,

	 α2n = a + F2nc + (F2n+1-1)d,

	 β2n-1 = a + F2n-1c + (F2n+1)d,

	 β2n = b + F2nc + (F2n+1-1)d,

	 γn+2 = Fn+1c + Fn+2d.

	 The second set of sequences has the form for 
n ≥ 0,

	 αn+1 = αn+1 + αn,

	 βn+1 = αn+1 + γn,

	 γn+1 = αn+1 + βn.

	 where α0 = a, β0 = b, γ0 = c, α1 = d. From these 
sequences and for each natural number n ≥ 1 the result 
are the following,

	 αn = Fn-1c + Fnd,

	 β2n-1 = (F2n-1)a + b + (F2n+1-1)d,

	 β2n = (F2n+1-1)a + c + (F2n+2-1)d,

	 γ2n-1 = (F2n-1)a + c + (F2n+1-1)d,

	 γ2n = (F2n+1-1)a + b + (F2n+2-1)d.

	 In the same year, he studied two additional 
new combined 3-Fibonacci sequences part 2. Let a, b, c 
be arbitrary real numbers and {Fn}

∞
n=0 be the standard 

Fibonacci sequence. The first set of sequences has the 
form for n ≥ 0, 

	 αn+1 = βn + γn, 

	 βn+1 = αn + γn, 

	 where α0 = 2a, β0 = 2b, γ0 = c. From these  
sequences and for each natural number n ≥ 1 the result 
are the following.

	 αn = (F2n-1+(-1)n)a + (F2n-1-(-1)n)b + F2nc,

	 βn = (F2n-1-(-1)n)a + (F2n-1+(-1)n)b + F2nc,

	 γn = F2na + F2nb + F2n+1c.

	 The second set of sequences has the form for 
n ≥ 0,

	
	 βn+1 = αn+1 + γn, 

	 γn+1 = αn+1 + βn. 

	 where α0 = a,β0 = 2b, γ0 = 2c. From these  
sequences and for each natural number n ≥ 1 the result 
are the following.

	 αn = F2n-1a + F2nb + F2nc,

	 βn = F2na + (F2n+1 + (-1)n)b + (F2n+1 - (-1)n)c,

	 γn = F2na + (F2n+1 - (-1)n)b + (F2n+1 + (-1)n)c.

	 (Nubpetchploy & Pakapongpun, 2021) generated  
three combined sequences related to Jacobsthal  
sequences. Let a, b, c, d be arbitrary real numbers and  
Jn be the Jacobethal sequences. The first set of sequences 
has the form for n ≥ 0, 

	 γn+2 = γn+1 + 2γn,

	 αn+1 = γn+1 + 2βn,

	 βn+1 = γn+1 + 2αn.
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For any integer number 1k  , the n th  

k   Fibonacci sequence, denoted as 

, 0{ }k n nF 
 , is defined by (Falcon & Plaza, 2007) as a 

recursive sequence as follows: 

, 1 , , 1k n k n k nF kF F    

where ,0 0kF   and ,1 1kF  . The first 8 members of 

k  Fibonacci sequences are shown below: 
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(Atanassov, 2018) studied two new 

combined 3-Fibonacci sequences. Let , , ,a b c d  be 

arbitrary real numbers and   0n nF 


 be the standard 

Fibonacci sequence. The first set of sequences has 

the form for 0n  ,  

2 1 1,n n n       

2 1 1,n n n       

2 1 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following, 

2 1 2 1 2( 1) ,n n nb F a F d       

2 2 2 1( 1) ,n n na F c F d      

2 1 2 1 2( 1) ,n n na F c F d       

2 2 2 1( 1) ,n n nb F c F d      

2 1 2 .n n nF c F d      

The second set of sequences has the form for 

0n  ,  

1 1 ,n n n      

1 1 ,n n n      

1 1 ,n n n      

where 0 0 0 2, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following, 

1 ,n n nF c F d    

2 1 2 2 1( 1) ( 1) ,n n nF a b F d        

2 2 1 2 2( 1) ( 1) ,n n nF a c F d        

2 1 2 2 1 ( 1) ( 1) ,n n nF a c F d        

2 2 1 2 2 ( 1) ( 1) .n n nF a b F d        

In the same year, he studied two additional 

new combined 3-Fibonacci sequences part 2. Let 

, ,a b c  be arbitrary real numbers and   0n nF 


 be the 

standard Fibonacci sequence. The first set of 

sequences has the form for 0n  ,  

1 ,n n n      

1 ,n n n      
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n n

n n
 

  



   

where 0 0 02 , 2 , .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 

2 1 2 1 2( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 1 2 1 2( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 2 2 1 .n n n nF a F b F c     

The second set of sequences has the form for 

0n  , 

1 ,
2
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n n
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
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where 0 0 0, 2 , 2 .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 
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In the same year, he studied two additional 

new combined 3-Fibonacci sequences part 2. Let 

, ,a b c  be arbitrary real numbers and   0n nF 


 be the 

standard Fibonacci sequence. The first set of 

sequences has the form for 0n  ,  
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n n
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 

  



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where 0 0 02 , 2 , .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 

2 1 2 1 2( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 1 2 1 2( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 2 2 1 .n n n nF a F b F c     
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0n  , 

1 ,
2

n n
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 
 


   

1 1 ,n n n      

1 1 ,n n n      

where 0 0 0, 2 , 2 .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 
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	 where α0 = a, β0 = b, γ0 = c, γ1 = d. From these 
sequences and for each natural number n ≥ 1 the result 
are the following.

	 γn = 2Jn-1c + Jnd,

	 αn = 2αn-1 + (Jn + (-1)n)c + jnd + (-2)n(a-b),

	 βn = 2βn-1 + (Jn + (-1)n)c + jnd - (-2)n(a-b).

	 The second set of sequences has the form for 
n ≥ 0, 

	 γn+2 = γn+1 + 2γn,

	 αn+1 = γn + 2βn,

	 βn+1 = γn + 2αn.

	 where α0 = a, β0 = b, γ0 = c, γ1 = d. From these 
sequences and for each natural number n ≥ 1 the result 
are the following.

	 γn = 2Jn-1c + Jnd,

	 αn = 2αn-1 + (Jn-1 + (-1)n-1)c + jn-1d + (-2)n(a-b),

	 βn = 2βn-1 + (Jn-1 + (-1)n-1)c + jn-1d - (-2)n(a-b).

	 The third set of sequences has the form for  
n ≥ 0, 

	 γn+1 = 

   
 

  

                   

2 1 2 2 ,n n n nF a F b F c   

2 2 1 2 1( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 2 1 2 1 ( ( 1) ) ( ( 1) ) .n n
n n n nF a F b F c          

(Nubpetchploy & Pakapongpun, 2021) 

generated three combined sequences related to 

Jacobsthal sequences. Let , , ,a b c d  be arbitrary 

real numbers and nJ  be the Jacobethal sequences. 

The first set of sequences has the form for 0n  ,  

2 1 2 ,n n n      

1 1 2 ,n n n      

1 1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d  

12 ( ( 1) ) ( 2) ( ),n n
n n n nJ c J d a b         

12 ( ( 1) ) ( 2) ( ).n n
n n n nJ c J d a b           

The second set of sequences has the form for 

0n  ,  

2 1 2 ,n n n      

1 2 ,n n n      

1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d    
1

1 1

1 , )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
1

1 1

1 . )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
  

The third set of sequences has the form for 0n  ,  

1 1
1 2 ,

2
n n

n n
 

  



   

1 2 ,n n n      

1 2 ,n n n      

where 0 0 02 , 2 , .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 

1 2 1 2 1( 1)( )n n nJ a b J c        
2 2

1

1
1 2 ,  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J a
J J b J c

 




     

   
2 2

1

1
1 2 .  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J b
J J a J c

 




     

   
 

(Atanassov, 2022) introduce on two new 

combined 3-Fibonacci sequences. Let , , , ,a b c d e  be 

arbitrary real numbers and   0n n
F 


 be the standard 

Fibonacci sequence. The first set of sequences has 

the form for 1n  ,  

1 1,n n n      

1 1,n n n      

1 ,
2

n n
n n

 
 


   

where 0 0 0 1 12 , 2 , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

The second set of sequences has the form for 

1n  ,  

1 1,n n n      

1 1,n n n      

1 1
1 ,

2
n n

n n
 

  



   

where 0 0 0 1 1, , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

+ 2γn,

	 αn+1 = γn + 2βn,

	 βn+1 = γn + 2αn.

	 where α0 = 2a, β0 = 2b, γ0 = c. From these  
sequences and for each natural number n ≥ 1 the result 
are the following.

	 γn-1 = (J2n-1-1)(a+b) + J2n-1c,

	 αn = (J2
n+1 - J

2
n+1)(a+b) + (-1)nJna + (-1)n+1(2Jn+1 

+ Jn)b+J2nc,

	 βn = (J2
n+1 - J

2
n+1)(a+b) + (-1)nJnb + (-1)n+1(2Jn+1 

+ Jn)a+J2nc.

	 (Atanassov, 2022) introduce on two new  
combined 3-Fibonacci sequences. Let a, b, c, d, e be  
arbitrary real numbers and {Fn}

∞
n=0 be the standard  

Fibonacci sequence. The first set of sequences has the  
form for n ≥ 1, 

	 αn+1 = αn + αn-1,

	 βn+1 = βn + βn-1,

	 γn+1 = 

   
 

  

                   

2 1 2 2 ,n n n nF a F b F c   

2 2 1 2 1( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 2 1 2 1 ( ( 1) ) ( ( 1) ) .n n
n n n nF a F b F c          

(Nubpetchploy & Pakapongpun, 2021) 

generated three combined sequences related to 

Jacobsthal sequences. Let , , ,a b c d  be arbitrary 

real numbers and nJ  be the Jacobethal sequences. 

The first set of sequences has the form for 0n  ,  

2 1 2 ,n n n      

1 1 2 ,n n n      

1 1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d  

12 ( ( 1) ) ( 2) ( ),n n
n n n nJ c J d a b         

12 ( ( 1) ) ( 2) ( ).n n
n n n nJ c J d a b           

The second set of sequences has the form for 

0n  ,  

2 1 2 ,n n n      

1 2 ,n n n      

1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d    
1

1 1

1 , )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
1

1 1

1 . )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
  

The third set of sequences has the form for 0n  ,  

1 1
1 2 ,

2
n n

n n
 

  



   

1 2 ,n n n      

1 2 ,n n n      

where 0 0 02 , 2 , .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 

1 2 1 2 1( 1)( )n n nJ a b J c        
2 2

1

1
1 2 ,  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J a
J J b J c

 




     

   
2 2

1

1
1 2 .  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J b
J J a J c

 




     

   
 

(Atanassov, 2022) introduce on two new 

combined 3-Fibonacci sequences. Let , , , ,a b c d e  be 

arbitrary real numbers and   0n n
F 


 be the standard 

Fibonacci sequence. The first set of sequences has 

the form for 1n  ,  

1 1,n n n      

1 1,n n n      

1 ,
2

n n
n n

 
 


   

where 0 0 0 1 12 , 2 , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

The second set of sequences has the form for 

1n  ,  

1 1,n n n      

1 1,n n n      

1 1
1 ,

2
n n

n n
 

  



   

where 0 0 0 1 1, , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

 + γn.

	 where α0 = 2a, β0 = 2b, γ0 = c, α1 = 2d, β1 = 2e.  
From these sequences and for each natural number  
n ≥ 1 the result are the following.

	 αn = 2Fn-1a + 2Fnd,

	 βn = 2Fn-1b + 2Fne,

	 γn = Fna + Fnb + c + (Fn+1-1)d + (Fn+1-1)e.

	 The second set of sequences has the form for 
n ≥ 1, 

	 αn+1 = αn + αn-1,

	 βn+1 = βn + βn-1,

	 γn+1 = 

   
 

  

                   

2 1 2 2 ,n n n nF a F b F c   

2 2 1 2 1( ( 1) ) ( ( 1) ) ,n n
n n n nF a F b F c        

2 2 1 2 1 ( ( 1) ) ( ( 1) ) .n n
n n n nF a F b F c          

(Nubpetchploy & Pakapongpun, 2021) 

generated three combined sequences related to 

Jacobsthal sequences. Let , , ,a b c d  be arbitrary 

real numbers and nJ  be the Jacobethal sequences. 

The first set of sequences has the form for 0n  ,  

2 1 2 ,n n n      

1 1 2 ,n n n      

1 1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d  

12 ( ( 1) ) ( 2) ( ),n n
n n n nJ c J d a b         

12 ( ( 1) ) ( 2) ( ).n n
n n n nJ c J d a b           

The second set of sequences has the form for 

0n  ,  

2 1 2 ,n n n      

1 2 ,n n n      

1 2 ,n n n      

where 0 0 0 1, , , .a b c d        From these 

sequences and for each natural number 1n   the 

result are the following. 

12 ,n n nJ c J d    
1

1 1

1 , )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
1

1 1

1 . )   

2 ( ( 1) )

( ) 2 (

n
n n n

n
n

J c
J d a b

  
 



   

   
  

The third set of sequences has the form for 0n  ,  

1 1
1 2 ,

2
n n

n n
 

  



   

1 2 ,n n n      

1 2 ,n n n      

where 0 0 02 , 2 , .a b c      From these 

sequences and for each natural number 1n   the 

result are the following. 

1 2 1 2 1( 1)( )n n nJ a b J c        
2 2

1

1
1 2 ,  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J a
J J b J c

 




     

   
2 2

1

1
1 2 .  

( 1)( ) ( 1)

( 1) (2 )   

n
n n n n

n
n n n

J J a b J b
J J a J c

 




     

   
 

(Atanassov, 2022) introduce on two new 

combined 3-Fibonacci sequences. Let , , , ,a b c d e  be 

arbitrary real numbers and   0n n
F 


 be the standard 

Fibonacci sequence. The first set of sequences has 

the form for 1n  ,  

1 1,n n n      

1 1,n n n      

1 ,
2

n n
n n

 
 


   

where 0 0 0 1 12 , 2 , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

The second set of sequences has the form for 

1n  ,  

1 1,n n n      

1 1,n n n      

1 1
1 ,

2
n n

n n
 

  



   

where 0 0 0 1 1, , , 2 , 2 .a b c d e          

From these sequences and for each natural number 

1n   the result are the following. 

12 2 ,n n nF a F d    

12 2 ,n n nF b F e    

1 1( 1) ( 1) .n n n n nF a F b c F d F e          

 + γn.

	 where α0 = a, β0 = b, γ0 = c, α1 = 2d, β1 = 2e.  
From these sequences and for each natural number  
n ≥ 1 the result are the following.

	 αn = 2Fn-1a + 2Fnd,

	 βn = 2Fn-1b + 2Fne,

	 γn = Fna + Fnb + c + (Fn+1-1)d + (Fn+1-1)e.

 	 (Pakapongpun & Kongson, 2022) introduced 
three combined sequences related to k-Fibonacci  
sequences. Let a, b, c, d be arbitrary real numbers and  
{Fk,n}

∞
n=0 be the k-Fibonacci sequence. The first set of 

sequences has the form for n ≥ 0, 

	 γn+2 = kγn+1 + γn,

	 αn+1 = kγn + βn,

	 βn+1 = kγn + αn.
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	 where α0 = a, β0 = b, γ0 = c, γ1 = d. From these 
sequences the result are the following theorem 1.1.

	 Theorem 1.1. For any positive integer k and n, 

(a)	 γn = Fk,nd + Fk,n-1c,

(b)	 α2n = (Fk,2n + Fk,2n-1 -1)d + (Fk,2n-1 + Fk,2n-2+ (Fk,2-1)
c + a,

(c)	 β2n = (Fk,2n + Fk,2n-1 -1)d + (Fk,2n-1 + Fk,2n-2+ (Fk,2-1)
c + b,

(d)	 α2n-1 = (Fk,2n-1 + Fk,2n-2 -1)d + (Fk,2n-2 + Fk,2n-3+ (Fk,2-
1)c + b,

(e)	 β2n-1 = (Fk,2n-1 + Fk,2n-2 -1)d + (Fk,2n-2 + Fk,2n-3+ (Fk,2-
1)c + a.

	 The second set of sequences has the form for 
n ≥ 0, 

	 γn+2 = kγn+1 + γn,

	 αn+1 = kγn+1 + βn,

	 βn+1 = kγn+1 + αn.

	 where α0 = a, β0 = b, γ0 = c, γ1 = d. From these 
sequences the result are the following theorem 1.2.

	 Theorem 1.2. For any positive integer k and n, 

(a)	 γn = Fk,nd + Fk,n-1c,

(b)	 α2n = (Fk,2n+1 + Fk,2n -1)d + (Fk,2n + Fk,2n-1-1)c + a,

(c)	 β2n = (Fk,2n+1 + Fk,2n -1)d + (Fk,2n + Fk,2n-1-1)c + b,

(d)	 α2n-1 = (Fk,2n + Fk,2n-1 -1)d + (Fk,2n-1 + Fk,2n-2-1)c + 
b,

(e)	 β2n-1 = (Fk,2n + Fk,2n-1 -1)d + (Fk,2n-2 + Fk,2n-3+ (Fk,2-1)
c + a.

	 The third set of sequences has the form for n ≥ 
0,

	 γn+1 = kγn + 

   
 

  

                   

  (Pakapongpun & Kongson, 2022) 

introduced three combined sequences related to 

k  Fibonacci sequences. Let , , ,a b c d  be arbitrary 

real numbers and , 0{ }k n nF 
  be the k   Fibonacci 

sequence. The first set of sequences has the form 

for 0n  ,  

2 1n n nk      

1n n nk      

1 ,n n nk      
where 0 0 0 1    .   , , ,a b c d        From these 

sequences the result are the following theorem 1.1. 

Theorem 1.1. For any positive integer k and n ,  
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The second set of sequences has the form for 

0n  ,  

2 1 ,n n nk      

1 1 ,n n nk      

1 1 ,n n nk      

where 0 0 0 1    .   , , ,a b c d        From these 

sequences the result are the following theorem 1.2. 

Theorem 1.2. For any positive integer k and n ,  
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The third set of sequences has the form for 0n  , 

1 ,
2

n n
n nk

 
 


   

1 ,n n nk      

1 ,n n nk      
where 0 0 0    2 , 2 , .a b c      From these 

sequences, the result are the following theorem 1.3. 

Theorem 1.3. For any positive integer k and n ,  
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   

 

In this paper, we introduce a new three set 

of combined sequences which are more general 

context related to k Fibonacci sequences. 

 

Main Results 
We applied those three sets of sequences 

from (Pakapongpun & Kongson, 2022) work as 

follows. Let a , b , c , d  and s  be arbitrary real 

numbers with 0.s   The first set of sequences 
has the form for 0n  , 

2 1 ,n n nk      

1 ,n n nks      

1 ,n n nks      
where 0 0 0   ,  ,a b c      and 1 d  .  

From these sequences, we generate the first few 

members of the sequences 0 0 { } { } ,n n n n  
   and 

0{ }n n 
  with respect to n  represented in Table 1, 

Table 2 and Table 3 respectively. 

 

 

	 αn+1 = kγn + βn,

	 βn+1 = kγn + αn.

	 where α0 = 2a, β0 = 2b, γ0 = c. From these  
sequences, the result are the following theorem 1.3.

	 Theorem 1.3. For any positive integer k and n, 

(a)	 γn+1 = γn (Fk,2 + Fk-1) = γ1 (Fk,2 + Fk-1)
n,

(b)	 α2n = γ1 (Fk,2 + Fk-1)
2n-1 + a - b,

(c)	 α2n-1 = γ1 (Fk,2 + Fk-1)
2n-2 + b - a.

	 In this paper, we introduce a new three set of 
combined sequences which are more general context 
related to k-Fibonacci sequences.

Main Results
	 We applied those three sets of sequences from 
(Pakapongpun & Kongson, 2022) work as follows. Let a, 
b, c, d and s be arbitrary real numbers with s � 0. The first 
set of sequences has the form for n ≥ 0,

	 γn+2 = kγn+1 + γn,

	 αn+1 = ksγn+1 + βn,

	 βn+1 = ksγn+1 + αn.

	 where α0 = a, β0 = b, γ0 = c and γ1 = d. 

	 From these sequences, we generate the first 
few members of the sequences {γn}

∞
n=0, {αn}

∞
n=0 and 

{βn}
∞

n=0 with respect to n represented in Table 1, Table 
2 and Table 3 respectively.

Table 1	 This table shows first 8 members of {γn}
∞

n=0  

from the first set of sequences.

n {γn}∞n=0

0 c

1 d

2 kd + c

3 k2d + kc + d

4 k3d + k2c + c + 2kd + c

5 k4d + k3c + 3k2d + 2kc + d

6 k5d + k4c + k3d + 3k2c + 3kd + c

7 k6d + k5c + 5k4d + 4k3c + 6k2d + 3kc + d
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Table 2	 This table shows first 8 members of {αn}
∞

n=0 
from the first set of sequences.

n {αn}∞n=0

0 a

1 ksc + b

2 ks(c+d) + a

3 k2sd + ks(2c+d) + b

4 k3sd + k2s(c+d) + ks(2c+2d) + a

5 k4sd + k3s(c+d) + k2s(c+3d) + ks(3c+2d) + b

6
k5sd + k4s(c+d) + k3s(c+4d) + k2s(3c+3d) + 
ks(3c+3d) + a

7
k6sd + k5s(c+d) + k4s(c+5d) + k3s(4c+4d) + 
k2s(3c+6d) + ks(4c+3d) + b

Table 3	 This table shows first 8 members of {βn}
∞

n=0 
from the first set of sequences.

n {βn}∞n=0 

0 b

1 ksc + a

2 ks(c+d) + b

3 k2sd + ks(2c+d) + a

4 k3sd + k2s(c+d) + ks(2c+2d) + b

5 k4sd + k3s(c+d) + k2s(c+3d) + ks(3c+2d) + a

6
k5sd + k4s(c+d) + k3s(c+4d) + k2s(3c+3d) + 
ks(3c+3d) + b

7
k6sd + k5s(c+d) + k4s(c+5d) + k3s(4c+4d) + 
k2s(3c+6d) + ks(4c+3d) + a

	 Theorem 2.1. For any positive integer k and n, 

(a)	 γn = Fk,nd + Fk,n-1c,

(b)	 α2n = (Fk,2n + Fk,2n-1 -1)sd + (Fk,2n-1 + Fk,2n-2 +Fk,2n-1)
sc + a,

(c)	 β2n = (Fk,2n + Fk,2n-1 -1)sd + (Fk,2n-1 + Fk,2n-2 + Fk,2 

-1)sc + b,

(d)	 α2n-1 = (Fk,2n-1 + Fk,2n-2 -1)sd + (Fk,2n-2 + Fk,2n-3 + Fk,2 

-1)sc + b, for n ≥ 2,

(e)	 β2n-1 = (Fk,2n-1 + Fk,2n-2 -1)sd + (Fk,2n-2 + Fk,2n-3 + Fk,2 

-1)sc + a, for n ≥ 2.

	 Proof. we will prove (a) by mathematical  
induction. 

	 Let P(n) be a statement γn = Fk,nd + Fk,n-1c for  n 
≥ 1, we will show that P(1) is true.

	 Since Fk,1d + Fk,0c = (1)d + (0)c = d = γ1, then 
P(1) is true. Let m ≥ 1, assume that P(1), P(2),...,P(m-1), 
P(m) are true that is,γn = Fk,id + Fk,i-1c, where 1 ≤ i ≤ m.

	 We will show that P(m+1) is true. 

	 consider,

	 γm+1 = kγm + γm-1

		  = k(Fk,md + Fk,m-1c) + Fk,m-1d + Fk,m-2c

		  = k(Fk,m + Fk,m-1)d + (kFk,m-1 + Fk,m-2)c

	 γm+1 = Fk,m+1d + Fk,mc.

	 Then P(m+1) is true. 

	 By mathematical induction, the statement P(n) 
is true for all n ≥ 1.

	 Next, we will prove (b) by mathematical induction.

Let P(n) be a statement,

	 α2n = (Fn-2n + Fk,2n-1 -1)sd 

		  + (Fk,2n-1 + Fk,2n-2 + Fk,2-1)sc + a, for n ≥ 1.

	 We will show that  P(1) is true.

	 Now consider,

	 (Fk,2(n) + Fk,2(1)-1 -1)sd

	 + (Fk,2(1)-1 + Fk,2(1)-2 + Fk,2-1)sc + a

	 = (Fk,2 + Fk,1 -1)sd + (Fk,1 + Fk,0 + Fk,2 -1)sc + a

	 = (k+1-1)sd + (1+0+k-1)sc + a

	 = ksd + ksc +a

	 = ks(c+d) + a = α2(1).

	 Then P(1) is true.

	 Let m ≥ 1, assume that P(m) is true that is,

	 α2n = (Fk-2m + Fk,2n-1 -1)sd 

		  + (Fk,2m-1 + Fk,2m-2 + Fk,2-1)sc + a.
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	 We will show that P(m+1) is true.

	 Consider,

	 α2m+2	 = ksγ2m+1 + β2m+1

			   = ks(Fk,2m+1d + Fk,2mc) + ksγ2m + α2m

			   = ks(Fk,2m+1d + Fk,2mc) + ks(Fk,2md + Fk,2m-1c)  
			   + (Fk,2m + Fk,2m-1-1)sd + (Fk,2m-1 + Fk,2m-2 +  
			   Fk,2-1)sc + a

			   = [(kFk,2m+1 + Fk,2m)sd + (kFk,2m + Fk,2m-1) 
			   sd-sd] + [(kFk,2m + Fk,2m-1)sc + (kFk,2m-1  
			   + Fk,2m-2)sc + Fk,2sc-sc] + a

			   = (Fk,2m+2 + Fk,2m+1-1)sd + (Fk,2m+1 + Fk,2m   
			   + Fk,2 - 1)sc + a

	 α2(m+1)	 = (Fk,2(m+1) + Fk,2(m+1)-1 -1)sd

			   + (Fk,2(m+1)-1 + Fk,2(m+1)-2 + Fk,2 -1)sc + a.

	 Then P(m+1) is true.

	 By mathematical induction the statement P(n) is 
true for all n > 1.

	 The proof of (c) is similar to (b). 

	 To prove equation (d) for n ≥ 2, using (a) and (c) 
we have,

	 α2n-1	= ksγ2n-2 + β2n-2

		  = ks(Fk,2n-2d + Fk,2n-3c) + (Fk,2n-2 + Fk,2n-3 -1)sd

		  + (Fk,2n-3 + Fk,2n-4 + Fk,2 -1)sc + b

		  = [(kFk,2n-2 + Fk,2n-3)sd + (Fk,2n-2sd-sd] +  
		  [(kFk,2n-3 + Fk,2n-4)sc + (Fk,2n-3sc + Fk,2sc-sc]  
		  + b

		  = (Fk,2n-1 + Fk,2n-2 -1)sd + (Fk,2n-2 + Fk,2n-3  
		  + Fk,2 - 1)sc + b,

	 then 

	 α2n-1	= (Fk,2n-1 + Fk,2n-2 -1)sd

		  + (Fk,2n-2 + Fk,2n-3 + Fk,2 -1)sc + b.

	 is true.

	 By (a), (b), and the proof is similar to (d), then 
we have (e). 

	 The proof is complete.

	 Next, we present the second sequences.

	 The second set of sequences has the form for 
n ≥ 0,

	 γn+2 = kγn+1 + γn,

	 αn+1 = kγn+1 + βn,

	 βn+1 = kγn+1 + αn.

	 where α0 = a, β0 = b, γ0 = c and γ1 = d.

	 From these sequences, we generate the first 
7 members of the sequences {αn}

∞
n=0 and {βn}

∞
n=0 

with respect to n represented in Table 4, and Table 5  
respectively.

Table 4	 This table shows first 7 members of {αn}
∞

n=0 
from the second set of sequences.

n {αn}∞n=0

0 a

1 ksd + a

2 k2sd + ks(c+d) + a

3 k3sd + k2s(c+d) + ks(c+2d) + b

4 k4sd + k3s(c+d) + k2s(c+3d) + ks(2c+2d) + a

5
k5sd + k4s(c+d) + k3s(c+4d) + k2s(3c+3d) + 
ks(2c+3d) + b

6
k6sd + k5s(c+d) + k4s(c+5d) + k3s(4c+4d) + 
k2s(3c+6d) + ks(3c+3d) + a

Table 5	 This table shows first 7 members of {βn}
∞

n=0 
from the second set of sequences.

n {βn}∞n=0

0 b

1 ksd + a

2 k2sd + ks(c+d) + b

3 k3sd + k2s(c+d) + ks(c+2d) + a

4 k4sd + k3s(c+d) + k2s(c+3d) + ks(3c+2d) + b

5
k5sd + k4s(c+d) + k3s(c+4d) + k2s(3c+3d) + 
ks(2c+3d) + a

6
k6sd + k5s(c+d) + k4s(c+5d) + k3s(4c+4d) + 
k2s(3c+6d) + ks(3c+3d) + b
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	 Theorem 2.2. For any positive integer k and n,

(a)	 γn = Fk,nd + Fk,n-1c,

(b)	 α2n = (Fk,2n+1 + Fk,2n -1)sd + (Fk,2n + Fk,2n-1 -1)sc + 
a,

(c)	 β2n = (Fk,2n+1 + Fk,2n -1)sd + (Fk,2n + Fk,2n-1 -1)sc + 
b,

(d)	 α2n-1 = (Fk,2n + Fk,2n-1 -1)sd + (Fk,2n-1 + Fk,2n-2 -1)sc 
+ b,

(e)	 β2n-1 = (Fk,2n + Fk,2n-1 -1)sd + (Fk,2n-1 + Fk,2n-2 -1)sc 
+ a.

	 Proof. The proofs are similar to theorem 2.1.

	 Finally, the last sequences in our work. 

	 The third set of sequences has the form for  
n ≥ 0,

	 γn+1 = kγn + 

   
 

  

                   

n  0{ }n n 
  

5 
5 4 3 2( ) ( 4 ) (3 3 )

(2 3 )
k sd k s c d k s c d k s c d
ks c d b

     
  

 

6 
6 5 4 3

2

( ) ( 5 ) (4 4 )

(3 6 ) (3 3 )

k sd k s c d k s c d k s c d
k s c d ks c d a

     

    
 

 

 

 

 

 

Table 5 This table shows first 7 members of 

0{ }n n 
  from the second set of sequences. 

n  0{ }n n 
  

0 b  
1 ksd a  
2 2 ( )k sd ks c d b    

3 3 2 ( ) ( 2 )k sd k s c d ks c d a      

4 4 3 2( ) ( 3 ) (2 2 )k sd k s c d k s c d ks c d b        

5 
5 4 3 2( ) ( 4 ) (3 3 )

(2 3 )
k sd k s c d k s c d k s c d
ks c d a

     
  

 

6 
6 5 4 3

2

( ) ( 5 ) (4 4 )

(3 6 ) (3 3 )

k sd k s c d k s c d k s c d
k s c d ks c d b

     

    
 

 

Theorem 2.2. For any positive integer k and n , 

, , 1

,2 1 ,2

,2 ,2 1

,2

2

12

2

,

1

2

,2 ,2 1

,2 ,2 1

(

 

(

(

(

a)     ,

(b)    1)

              ( 1) ,

(c)    1)

             ( 1) ,

(d)    1)

         

n k n k n

k n k n

k n k n

k n k n

k n k n

k n k n

n

n

n

F d F c
F F sd

F F sc a
F F sd
F F sc b
F F sd























 

 

   

 

   









,2 1 ,2 2

,2 ,2 1

,2 1 ,2 2

2 1

      ( 1) ,

(e)    1)

               ( 1) .

(
k n k n

k n k n

k n k n

n

F F sc b
F F sd

F F sc a
 

 



 



   

 

   

 

Proof. The proofs are similar to theorem 2.1.       �  

Finally, the last sequences in our work.  

The third set of sequences has the form for 
0n  , 

1 ,
2

n n
n nk

s
 

 


   

1 ,n n nks      

1 ,n n nks      
where 0 0 2  , 2as sb    and 0 .c   

The first 7 members of the sequences 

0 0 { } { } ,n n n n  
   and 0{ }n n 

  are show in Table 6, 

Table 7, and Table 8 respectively. 

 
Table 6 This table shows first 7 members of 

0{ }n n 
  from the third set of sequences. 

n  0{ }n n 
  

0 c  
1 kc a b   
2 2 ( )k c k a b c a b      

3 3 2 ( 2 ) (2 2 )k c k a b c k a b c a b         

4 
4 3 2( 3 ) (3 3 3 )

(3 3 )
k c k a b c k a b c
k a b c a b
     

    
 

5 
5 4 3

2

( 4 ) (4 4 6 )

(6 6 4 ) (4 4 )

k c k a b c k a b c
k a b c k a b c a b
     

       
 

6 

6 5 4

3 2

( 5 ) (5 5 10 )

(10 10 10 ) (10 10 5 )
(5 5 )

k c k a b c k a b c
k a b c k a b c
k a b c a b

     

     
    

 

 

Table 7 This table shows first 7 members of 

0{ }n n 
  from the third set of sequences. 

n  0{ }n n 
  

0 2as  
1 2ksc bs  
2 2 ( ) 2k sc ks a b c as     

3 3 2 ( 2 ) (2 2 ) 2k sc k s a b c ks a b c bs        

4 
4 3 2( 3 ) (3 3 3 )

(3 3 ) 2
k sc k s a b c k s a b c
ks a b c as

     
   

 

5 
5 4 3

2

( 4 ) (4 4 6 )

(6 6 4 ) (4 4 ) 2

k sc k s a b c k s a b c
k s a b c ks a b c bs

     

      
 

	 αn+1 = ksγn + βn,

	 βn+1 = ksγn + αn.

	 where α0 = 2as, β0 = 2sb and γ0 = c.

	 The first 7 members of the sequences {γn}
∞

n=0, 
{αn}

∞
n=0 and {βn}

∞
n=0 are show in Table 6, Table 7, and 

Table 8 respectively.

Table 6	 This table shows first 7 members of {γn}
∞

n=0 

from the third set of sequences.

n {γn}∞n=0 

0 c

1 kc + a + b

2 k2c + k(a+b+c) + a + b

3 k3c + k2(a+b+2c) + k(2a+2b+c) + a + b

4
k4c+ k3(a+b+3c) + k2(3a+3b+3c) + 
k(3c+3b+c) + a + b

5
k5c + k4(a+b+4c) + k3(4c+4b+6c) + 
k2(6a+6b+4c) + k(4a+4b+c) + a + b

6
k6c + k5(a+b+5c) + k4(5a+5b+10c) + 
k3(10a+10b+10c) + k2(10a+10b+5c) + 
k(5a+5b+c) + a + b

Table 7	 This table shows first 7 members of {αn}
∞

n=0 
from the third set of sequences.

n {αn}∞n=0

0 2as

1 ksc + 2bs

2 k2sc + ks(a+b+c) + 2as

3 k3sc + k2s(a+b+2c) + ks(2a+2b+c) + 2bs

4
k4sc+ k3s(a+b+3c) + k2s(3a+3b+3c) + 
ks(3a+3b+c) + 2as

5
k5sc + k4s(a+b+4c) + k3s(4c+4b+6c) + 
k2s(6a+6b+4c) + ks(4a+4b+c) + 2bs

6
k6sc + k5s(a+b+5c) + k4s(5a+5b+10c) + 
k3s(10a+10b+10c) + k2s(10a+10b+5c) + 
ks(5a+5b+c) + 2as

Table 8	 This table shows first 7 members of {βn}
∞

n=0 
from the third set of sequences.

n {βn}∞n=0

0 2bs

1 ksc + 2as

2 k2sc + ks(a+b+c) + 2bs

3 k3sc + k2s(a+b+2c) + ks(2a+2b+c) + 2as

4
k4sc+ k3s(a+b+3c) + k2s(3a+3b+3c) + 
ks(3a+3b+c) + 2bs

5
k5sc + k4s(a+b+4c) + k3s(4c+4b+6c) + 
k2s(6a+6b+4c) + ks(4a+4b+c) + 2as

6
k6sc + k5s(a+b+5c) + k4s(5a+5b+10c) + 
k3s(10a+10b+10c) + k2s(10a+10b+5c) + 
ks(5a+5b+c) + 2bs

	 Theorem 2.3. For any positive integer k and n,

(a)	 γn+1 = γn(Fk,2+Fk,1) = γ1(Fk,2+Fk,1)
n,

(b)	 α2n = γ1s(Fk,2+Fk,1)
2n-1 + as - bs,

(c)	 β2n = γ1s(Fk,2+Fk,1)
2n-1 + bs - as,

(d)	 α2n-1 = γ1s(Fk,2+Fk,1)
2n-2 + bs - as,

(e)	 β2n-1 = γ1s(Fk,2+Fk,1)
2n-2 + as - bs.
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	 Proof. To prove (a) we will show that γn+1 = 
γn(Fk,2+Fk,1) since, γn+1 = kγn + 

   
 

  

                   

n  0{ }n n 
  

6 

6 5 4

3 2

( 5 ) (5 5 10 )

(10 10 10 ) (10 10 5 )
(5 5 ) 2

k sc k s a b c k s a b c
k s a b c k s a b c
ks a b c as

     

     
   

 

 

Table 8 This table shows first 7 members of 

0{ }n n 
  from the third set of sequences. 

n  0{ }n n 
  

0 2bs  
1 2ksc as  
2 2 ( ) 2k sc ks a b c bs     

3 3 2 ( 2 ) (2 2 ) 2k sc k s a b c ks a b c as        

4 
4 3 2( 3 ) (3 3 3 )

(3 3 ) 2
k sc k s a b c k s a b c
ks a b c bs

     
   

 

5 
5 4 3

2

( 4 ) (4 4 6 )

(6 6 4 ) (4 4 ) 2

k sc k s a b c k s a b c
k s a b c ks a b c as
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m m

m

m

m

m
k k

k
k k k

s k
s k k k k as bs

s k as bs
s F F as bs

as bs
ks ks

as bs

 











 







 

 





  

 

     

  

 















 

	 Since γn = kγn-1 + 

   
 

  

                   

n  0{ }n n 
  

6 

6 5 4

3 2

( 5 ) (5 5 10 )

(10 10 10 ) (10 10 5 )
(5 5 ) 2

k sc k s a b c k s a b c
k s a b c k s a b c
ks a b c as

     

     
   

 

 

Table 8 This table shows first 7 members of 

0{ }n n 
  from the third set of sequences. 

n  0{ }n n 
  

0 2bs  
1 2ksc as  
2 2 ( ) 2k sc ks a b c bs     

3 3 2 ( 2 ) (2 2 ) 2k sc k s a b c ks a b c as        

4 
4 3 2( 3 ) (3 3 3 )

(3 3 ) 2
k sc k s a b c k s a b c
ks a b c bs

     
   

 

5 
5 4 3

2

( 4 ) (4 4 6 )

(6 6 4 ) (4 4 ) 2

k sc k s a b c k s a b c
k s a b c ks a b c as

     

      
 

6 

6 5 4

3 2

( 5 ) (5 5 10 )

(10 10 10 ) (10 10 5 )
(5 5 ) 2

k sc k s a b c k s a b c
k s a b c k s a b c
ks a b c bs

     

     
   

 

 

Theorem 2.3. For any positive integer k and n , 

1 ,2 ,1 1 ,2

2

,1

2 1
1 ,2 ,1

2 1
1 ,2 ,1

2

2

2 1

2

2
1 ,2 ,1

2 2
1 ,2 ,11

( )     ( ) ( ) ,

( )     ) ,

( )     ) ,

( )     ) ,

( )     )

(

.

(

(

(

n
n n k k k k

n
k k

n
k k

n
k

k

n

n

n

n

n

k

k

a F F F F

b s F F as bs

c s F F bs as

d s F F bs as

e s F F as bs

  






























   

  

  











 

  

 

Proof. To prove (a) we will show that  

1 ,2 ,1 ( )n n k kF F     

since,         1 2
n n

n nk
s

 
 


   

and we know that, 

             
1 1 1 1

1 1
1

( ) ( )
2 2

,           
2

   

n n n n n n

n n
n

ks ks
s

k

s

s

     

 


   

 


   





 

so, we have 1 1
1 1 . 

2
 n n
n n n s

k k
 

    
 


   

Since            1 1
1  

2
n n

n n s
k

 
   




   

we get that, 

1

1 ,2 ,1

( 1)
( )

 
.

      
n n n

n

n n k k

k
F

k

F

  


 









 



  

Next, we will show that 1 1 ,2 ,1 ( ) .nn k kF F      

Since 1 ,2 ,1 ( )n n k kF F     

we have that, 

2 1 ,2 ,1

2
3 2 ,2 ,1 1 ,2 ,1

3
4 3 ,2 ,1 1 ,2 ,1

1 1 ,2 ,1

 ( )

 ( ) ( )

 ( ) ( )

      

 ( )

k k

k k k k

k k k k

n
n k k

F F

F F F F

F F F F

F F

 

  

  

 

 

   

   

 



 

thus 1 ,2 ,1 1 ,2 ,1 ( ) ( ) .nn n k k k kF F F F        

We will prove (b) by mathematical induction.  

Let ( )P n be the statement 
2 1

1 ,2 ,12 )( n
k kn s F F as bs     for 1n  . 

We will show that (1)P  is true. 

consider, 
2(1) 1

1 ,2 ,1

2

2
2(1)

)

( )( 1)

( ) 2

( k ks F F as bs
s kc a b k as bs
k sc ksa ksb ksc as bs as bs
k sc ks a b c as





  

     

       

     

 

Then (1)P  is true. 

Let 1m  , assume that ( )P m  is true. 

That is, 2 1
1 ,2 ,12 ) .( m

k km s F F as bs      

We will show that ( 1)P m   is true. 

Consider, 

2( 1) 2 2

2 1 2 1

2 1 2 2

2 2 1
1 ,2 ,1 1 ,2 ,1

2 1
1 ,2 ,1

2 2 1
1 1

1

          
           

          

          

 

( ) ( )

( )

( 1) ( 1)

(

         

          

m m

m m

m m m
m m

k k k k

m
k k

m m

ks
ks ks

ks F F ks F

k

F

s F F as

k

bs

k k
s
s s

 

 
  

 



 



 

 











 

  

   

  











 

2 1

2 1 2 1
1 1

2 1
1

2 1
1

2 1
1

2( 1) 1
1 ,2 ,1

1)

( 1)( 1) ( 1)

( 1)

( 1) ( 1

          

         

          

  (        

      ( 

) 1

1)

   )

m

m m

m

m

m

m
k k

k
k k k

s k
s k k k k as bs

s k as bs
s F F as bs

as bs
ks ks

as bs

 











 







 

 





  

 

     

  

 















 

	 we get that,

	 γn+1	= kγn + γn

		  = γn (k+1)

	 γn+1	= γn (Fk,2+Fk,1).

	 Next, we will show that γn+1 = γn (Fk,2+Fk,1)
n.

	 Since γn = γn-1 (Fk,2+Fk,1)

	 we have that,

	 γ2	 = γn (Fk,2 + Fk,1).

	 γ3	 = γ2 (Fk,2 + Fk,1) = γ1 (Fk,2 + Fk,1)
2.

	 γ4	 = γ3 (Fk,2 + Fk,1) = γ1 (Fk,2 + Fk,1)
3.

	 .
	 .
	 .
	 γn+1	= γ1 (Fk,2 + Fk,1)

n.

	 thus γn+1	= γn (Fk,2+Fk,1) = γ1 (Fk,2 + Fk,1)
n.

	 We will prove (b) by mathematical induction. 

	 Let P(n) be the statement  

	 α2n = γ1s(Fk,2+Fk,1)
2n-1 + as - bs for n ≥ 1.

	 We will show that P(1) is true.

	 consider,

	 γ1s(Fk,2+Fk,1)
2(1)-1 + as - bs

	 = s(kc+a+b)(k+1) + as -bs

	 = k2sc + ksa + ksb + ksc + as - bs + as + bs

	 = k2sc + ks(a+b+c) + 2as + α2(1)

	 Then P(1) is true.

	 Let n ≥ 1, assume that P(m) is true.

	 That is, α2m = γ1s(Fk,2+Fk,1)
2m-1 + as - bs.

	 We will show that P(m+1) is true.

	 Consider,

	 α2(m+1)	 = α2m+2

			   = ksγ2m+1 + β2m+1

			   = ksγ2m+1 + β2m+α2m

			   = ksγ1(Fk,2+Fk,1)
2m + ksγ1(Fk,2+Fk,1)

2m-1  
			   + γ1s(Fk,2+Fk,1)

2m-1 + as - bs

			   = ksγ1(k+1)2m + ksγ1(k+1)2m-1 

			   + γ1 s(k+1)2m-1 + as - bs

			   = ksγ1(k+1)(k+1)2m-1 + ksγ1(k+1)2m-1 

			   + γ1s(k+1)2m-1 + as - bs

			   = γ1s(k+1)2m-1 + [k(k+1)+k+1] + as - bs

			   = γ1s(k+1)2m+1 + as - bs

			   = γ1s(Fk,2+Fk,1)
2(m+1)-1 + as - bs

	 then P(m+1) is true. 

	 By mathematical induction the statement P(n) is 
true for all n ≥ 1.

	 The proof of (c) is similar to (b).

	 From (a) and (c) we have (d), and similarly from 
(a) and (b) we also have (e).

Conclusion and Discussion 
	 A new three combined sequences related to 
k-Fibonacci sequences from new types were introduced 
and explicit formulas for their members are given. 

	 From our sequences,

	 the first set of sequences,

	
γn+2 = kγn+1 + γn

	
αn+1 = ksγn + βn

	 βn+1 = ksγn + αn

	 the second set of sequences,

	
γn+2 = kγn+1 + γn

	
αn+1 = ksγn+1 + βn

	 βn+1 = ksγn+1 + αn
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	 the third set of sequences,

	
γn+1 = kγn + 

   
 

  

                   

then ( 1)P m   is true. 

By mathematical induction the statement ( )P n  is 

true for all 1.n   

The proof of (c) is similar to (b). 

From (a) and (c) we have (d), and similarly from (a) 

and (b) we also have (e).                               �     

 
 
 
 
Conclusion and Discussion  

A new three combined sequences related 

to k Fibonacci sequences from new types were 

introduced and explicit formulas for their members 

are given.  

From our sequences, 

the first set of sequences, 

2 1n n nk      

1n n nks      

1n n nks      
the second set of sequences, 

2 1n n nk      

1 1n n nks      

1 1n n nks      
the third set of sequences, 

1 2
n n

n nk
s

 
 


   

1n n nks      

1 .n n nks      
 If 1s  , then the results correspond to the 3 set of 

sequences and the theorem 1.1, 1.2, and 1.3 in 

(Pakapongpun & Kongson, 2022). Other new 

schemes, modifying the standard form of 

k Fibonacci sequences and new combined 

sequences will be discussed in the future. 
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