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Machine learning for predicting the severity of restrictive lung defect among factory
workers
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Abstract
Restrictive lung disease such as pneumoconiosis is the most common disease among people working in dusty
environment such as mines and in industry. The gold standard diagnosis for this disease is spirometry, which is used

to evaluate the lung performance. However, this tool has certain limitations such as high service costs, limited access
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restrictive lung defect among factory workers

to the device, and availability of specialists. These limitations impede early detection of this disease. The objective
of this study is to utilize machine learning algorithms to predict the severity of restrictive lung defects among factory
workers, aiding in early identification before proceeding to the spirometry test. Three severity classes considered. -
Normal, Mild, and Moderate or Severe. By using spirometry’s results and behavioral data among 685 workers from a
cross-sectional study in a furniture factory in Thailand, six machine learning algorithms were developed. They were
Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, XGBoost and Support Vector Machine (SVM).
The best model was Random Forest with Synthetic Minority Oversampling (SMOTE) to deal with imbalance class and
Recursive Feature Elimination (RFE) to select most important features. The important features for prediction were
weight, height, age, education, hours of work, smoking and mask wearing at the f1-score = 0.746, precision = 0.743,
recall = 0.756, and accuracy = 0.75. The model was deployed through a web application for ease of use and the
application was used among the factory workers for early screening of the disease. The users were satisfied with the

application for its effectiveness, ease of use, time, and cost savings.

Keywords: Restrictive lung disease, factory workers, spirometry, machine learning, web application
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Machine learning for predicting the severity of
restrictive lung defect among factory workers
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Table 2  Results of the 3 groups training experiment using lung performance data.
Model f1-score f1-score f1-score Training time
Normal group Mild group Moderate+Severe group
Logistic Regression 0.68 0.17 0.00 78 ms
Decision Tree 0.63 0.28 0.07 34 ms
Random Forest 0.75 0.20 0.00 299 ms
Gradient Boosting 0.72 0.21 0.22 920 ms
XGBoost 0.71 0.27 0.13 1270 ms
SVM 0.70 0.19 0.07 51 ms
Table 3  Amount of data in 3 groups comparism before and after oversampling of lung performance test data.
Lung Function No. of Raws before No. of Raws after
Test oversampling oversampling
Normal 432 432
Mild 208 432
Moderate and Severe 45 432

Table 4  Results of the 3 groups training experiment using lung performance data.
Model f1-score f1-score f1-score Training time
Normal group Mild group Moderate and Severe group
Logistic Regression 0.69 0.61 0.84 124 ms
Decision Tree 0.59 0.65 0.84 24 ms
Random Forest 0.76 0.78 0.95 310 ms
Gradient Boosting 0.72 0.69 0.92 1500 ms
XGBoost 0.72 0.73 0.94 729 ms
SVM 0.72 0.63 0.85 105 ms
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Table 5 Results after hyperparameter adjustment.
Model Optimal hyperparameter value Everage f1-score
Logistic Regression Solvers = Ibfgs 0.70023
Decision Tree Max depth = 32, Max features = 20, Min sample leaf = 15 0.674431
Random Forest Max features = 15, Min samples leaf = 2, 0.745796
Min samples split = 10, Max depth = 64
Gradient Boosting n_Estimators = 500, Max depth = 9, Learning rate = 1 0.731759
XGBoost Max depth = 7, Gamma = 2, Min child weight = 4 0.714132
SVM Kernel = rbf, Decision function shape = ovo, Gamma = scale 0.739056
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Table 6 Results of 3 groups training with selecting variables in data.

Model Everage f1-score

Logistic Regression 0.59

Decision Tree 0.62

Random Forest 0.74

Gradient Boosting 0.72

XGBoost 0.68

SVM 0.5
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Factory Workers

This website is a demo for the paper
Machine Learning for Prediction the Severity of Restrictive Defect among Factory Workers" (Theamngoen et al. (2023))
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