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Abstract

This research focused on evaluating the effectiveness of the Decision Tree Algorithm in classifying breast cancer, as
well as investigating the associated risk factors. The study employed medical record data from breast mass patients
at Mahasarakham University’s Faculty of Medicine, spanning 2010 to 2022. The dataset, post-cleansing, comprised
1,524 records, with 1,343 representing low-risk breast cancer patients and 181 representing high-risk cases. The
study indicates that the Decision Tree Algorithms, specifically C4.5, C5.0, and Random Forest, had substantial
classification accuracy. However, their area under the ROC curve (AUC) values were relatively low due to insufficient
class separation, which stems from class imbalance. This issue was addressed by employing oversampling to
augment the minority class instances and undersampling to reduce the majority class instances. The outcomes
revealed that both C4.5 and C5.0 Decision Trees yielded comparable results, while Random Forest demonstrated

a superior AUC and recall, approximately 15-20% higher than C4.5 and C5.0.

Keywords: Breast cancer, decision tree, class-imbalance
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Table 3  The accuracy, area under the curve (AUC), and recall values of the models using the decision tree
algorithms C4.5, C5.0, and the Random Forest method, with data split into 75% for training and 25%
for testing.

Implement Accuracy AUC Recall
C4.5 0.8770 0.5463 0.0208
C5.0 0.8976 0.5000 0.0000
Random forest 0.8635 0.5271 0.0208
Oversampling 30% + C4.5 0.7203 0.6468 0.1719
Oversampling 30% + C5.0 0.6970 0.5391 0.0151
Oversampling 30% + Random forest 0.7394 0.7100 0.3721
Oversampling 35% + C4.5 0.6963 0.7200 0.3452
Oversampling 35% + C5.0 0.6639 0.5620 0.0807
Oversampling 35% + Random forest 0.7267 0.7648 0.4593
Combining Random Oversampling and Undersampling + C4.5 0.6540 0.7026 0.3629
Combining Random Oversampling and Undersampling + C5.0 0.6138 0.5538 0.0145
Combining Random Oversampling and Undersampling + Random forest 0.7142 0.7612 0.4571




Vol 43. No 5, September-October 2024

Classification of people at risk for breast cancer using decision tree

algorithm, A case study of Suddhavej Hospital, Mahasarakham University

90 Table 3 uaAIAIANYNGad (accuracy),
ALNTUM LN 3YINMWE AUC (area under ROC curve) Lay
f1ANTEAN (recall) TasUuULSaafiEnHuswsana3fia
dulaiaaaula c4.5, C5.0 ez Random forest lagnuy
Toyasanidusasdin 75% niumsrnuas 25% il
MINAFaL Wuin eanasiuduliaagula c4.5, C5.0 uas
3% Random forest Iﬁmmwgnﬁamauﬁ’mga WAL AT
lumsviiue AUC uazdA1ANNTEan (recall) daudnasn
Lﬁadmﬂmiﬁ’]mﬂIumavaimmsmmﬂmju (class) 'l
dna luasenavhmgaasdsinsnuariorinumsiia
wm@’lummmnummﬁmad‘ﬁagaﬁﬁfi’uﬁau HI98Yinmg
a;wﬁagmﬁu (oversampling) 30% W&z 35% AzLAKINAN
AUC uazenanus=an (recall) snnaanidslalarins
ﬁ;ml,ﬁw mnffuﬁwmsaiuﬁagaLﬁ'mmza@]ﬁaga (combining
random oversampling and undersampling) W‘].l’jﬂumaﬁ'
vl@i’fwhmwgﬂﬁao, fin AUC Uazfnauszan (recall) ol
1ummwﬁﬁawahLLa:Uau%'uVL@TI@U%%ﬁiﬁwaé'wfaﬁq@ﬁa
27 Random forest iﬁ&ﬁﬂﬂﬂi’sﬁ&l“ﬁagﬂl,ﬁu (oversampling)
35% ﬁnmfupﬁﬁ'ﬂv‘hmimﬁ‘hmuﬁuvlﬁ, ANNANVBIA ba
wae k-fold cross-validation teyszifindszansnwaas
Tuealuudasimniines Sesmuaulifimnueda 50,
75, 100, 150, 200, 300, 400, 500 L&z 1000 AMVANVDI
guwldfitmuadio 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 14, 15
16, 17, 18 e 19 d’mq@]ﬁ’m k-fold cross-validation ‘ﬁl
fuade 3, 5, 7, 9 uaz 10 Fotelvmadszfiniiany
Laﬁmuazgnﬁaamﬂﬁﬁu ‘[ma@gam:ﬂumnmmﬂd
ToYAUUULANIZLIINZAI (specific) AonaAndulunsuii
LWONUWUULAN (train-test split) ﬁl“ﬁmwwqem@aau (test
set) UAAHN (train set) WU DN HaanEuaasly
Lﬁudwmﬁ?}ﬁq@ﬁa Fwruduldivindu 200 du, anuEn
283AulYNAY 14 Waz k-fold cross-validation {¥inAy 7
(k=7) %umaﬂ%’ummﬁﬁma%’mmf:“ﬁ'mlumimuqu
anuTutauvadluiaalasanizanuanuasduld as
Aondrenuanimanzausansadlesiuluaaanms
Souitoyaiiuly (overfitting) wiamisliiousifuiwe
(underfitting) G'f}w:mﬂlﬁT&lmaﬁﬂi:%ﬂ%mwmﬂﬁq@
’Lumw‘hmmﬁagaﬁvlail,ﬂmﬁumn’au FINHININARDIAN
winfaasing 9 lutuaanmstinuasdsmduluassmunn
U TR AILATNINEINT AN TZLIUMTAA W LULAA
lavlidasasouaznaaasmn o dwniwasiiulyle
'ﬁﬁwmﬁuwm’mﬁwﬁmafﬁﬁﬁq@ﬁwmsﬂnua:maau
Tutaa Random forest samslewinfiiaafinanit waz
ﬂi:Lﬁuﬂiz%ﬂ%ﬂ’]W‘ﬂQGI&IL@mI@lUI’E’fJ'a%IaﬁVL&iLﬂﬂLﬁuu’l
Ao Lﬁ'alﬁLLula'jWIsJLmaﬁﬁawuvl@Tﬁﬁq@ WU I AAINw

meTaﬂumiﬁwmﬂﬂma@m 9 uquﬁayawmauﬁ%j
LABLALANTAWLYINAY 72.27% @9 Figure 1 Wazdn AUC
a%iﬁ' 0.76 @9 Figure 2 LaLAAIANNIZAN (recall) 1HiNAL
0.4756 @9 nmslisnunduldanue 200 dwluns
g 19uUUsa89 Random forest vinlwlatladofaanaly
MITUNLIANLTIAUY 5 BUAUKIN oA ANNENNIAT
PoILduuEe9919, Jansfshaiwuunng, founse
qaﬁ?}, WARLTHN LazlATIENIMUN uEGY

Confusion Matrix

250

78 51

Positive

200

150

Predicted label

86
100

Negative

T
Positive Negative

True label

Figure 1 The Confusion Matrix of oversampling data at
a 35% ratio using the Random Forest method with 7-fold
cross-validation.
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Figure 2 ROC curve for oversampling data at a 35% ratio
using the Random Forest method with 7-fold
cross-validation.
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