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dependent variable for classification model

Abstract

Noisy data is a major problem often encountered in datasets. When noise affects the dependent variable, it can lead
to incorrect group in classification. Therefore, it is essential to handle noise before analyzing and classifying the data.
This research aims to compare the effectiveness of class noise handling method in classification model between
noise removal methods using four noise filter: Condensed Nearest Neighbor (CNN), Edited Nearest Neighbors (ENN),
Cross-Validated Committees Filter (CVCF), and Iterative Partitioning Filter (IPF), and relabel methods that utilize noise
filter from noise removal methods along with multiple imputation from three methods: polytomous regression (polyreg),
random forest (rf), and multiple imputation through XGBoost (mixgb). The study is conducted through Monte Carlo
simulation under the scenario with sample sizes of 100, 500, and 1,000 units, and noise level of 10%, 20%, 30%,
and 40%. The performance of noise handling methods is evaluated based on the F1 score of four data classification
models: k-NN, Random Forest, Naive Bayes, and Support Vector Machine. Comparison is done through N-Way
analysis of variance (N-Way ANOVA). The study found that the class noise handling methods have an interaction
effect with all factors, including sample size, noise level, and classification model, affecting the F1 score significantly
at the .05 level of significance. For small sample sizes (n = 100), relabel method tended to perform better than remove
method. However, as sample size increased, both methods showed similar performance. Overall, the combination of
ENN noise filter with polytomous regression imputation tended to yield the highest F1 score in most cases, except for
sample sizes of 1,000 units where ENN alone showed the highest performance. The findings of this research provide

insights into appropriate class noise handling methods for different data classification scenarios.

Keywords: Noisy data, classification, multiple imputation, machine learning, noise filter
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Table 1 Combination between noise filter and multiple

imputation for relabel method.

Multiple imputation method

Noise

filter polyreg rf mixgb
CNN CNN + polyreg CNN + rf CNN + mixgb
ENN ENN + polyreg ENN + rf ENN + mixgb

CVCF CVCF + polyreg CVCF + rf CVCF + mixgb
IPF IPF + polyreg IPF + rf IPF + mixgb
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Table 2  Comparison of the effect size from Partial eta
squared for each factor influencing the F1
score.
Effect '”’2 p - value
Model 0.03 < .001
Sample size 0.01 <.001
Noise level 0.31 <.001
Noise handling 0.63 <.001
Noise handling * Model 0.01 <.001
Noise handling * Sample size 0.12 <.001
Noise handling * Noise level 0.01 <.001
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Figure 1 The average F1 score of each noise handling methods overall.
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Table 3  The average F1 score of each noise handling method when considering with sample size.
Sample size
method
n =100 n =500 n =1000
None NONE 64.61 64.75 64.80
CNN 52.57 59.18 61.53
ENN 67.91 71.08 74.19
Remove
CVCF 62.48 65.18 66.79
IPF 66.22 76.15 73.96
CNN + polyreg 60.79 60.26 59.53
CNN + rf 58.13 58.48 57.18
CNN + mixgb 54.19 54.39 52.60
ENN + polyreg 79.02 76.53 72.92
ENN + rf 76.17 72.35 71.93
ENN + mixgb 72.52 72.87 72.07
Relabel
CVCF + polyreg 71.03 70.50 71.04
CVCF + rf 69.48 69.96 69.39
CVCF + mixgb 67.60 68.04 67.96
IPF + polyreg 70.85 68.07 69.81
IPF + rf 71.57 73.16 71.92
IPF + mixgb 70.10 70.15 69.24
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msﬂ‘s“uméhLLﬂJimuﬁﬁmﬂ%ﬁamaﬁTaga ENN vi#aa
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piadayasuniu uwazldlseininwlndidesnuisnig
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Table4 The average F1 score of each noise handling methods when considering with noise levels.
Noise level
method

10% 20% 30% 40%
None NONE 67.55 66.08 64.11 61.13
CNN 61.50 58.70 56.15 54.70
ENN 75.38 71.99 69.35 67.51

Remove
CVCF 69.26 65.76 63.07 61.18
IPF 75.81 72.68 70.67 69.27
CNN + polyreg 65.40 60.62 58.96 55.79
CNN + rf 63.88 57.21 55.80 54.84
CNN + mixgb 59.65 53.45 51.83 49.99

Relabel
ENN + polyreg 81.51 76.71 75.13 71.28
ENN + rf 79.39 73.12 71.85 69.57
ENN + mixgb 78.18 72.38 70.57 68.82
CVCF + polyreg 76.58 70.56 69.25 67.05
CVCF + rf 75.06 69.45 67.96 65.97
CVCF + mixgb 73.31 67.67 66.29 64.20

Relabel
IPF + polyreg 75.16 69.40 68.01 65.73
IPF + rf 77.76 72.10 70.64 68.37
IPF + mixgb 75.25 69.90 68.13 66.05
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ENN + polyreg, ENN + rf a2 IPF enu&1ay

NIHAMUL Naive Bayes L8z Support Vector
Machine Wuin 33msifianseansnm F1 gdﬁqm‘flu‘i%
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Table 5 The average F1 score of each noise handling methods when considering with classification models.
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Model
Method
k-NN RF NB SVM
None NONE 65.98 64.26 63.57 65.06
CNN 57.84 58.68 56.50 58.03
ENN 72.46 73.12 69.37 69.28
Remove
CVCF 65.16 65.80 63.48 64.84
IPF 73.45 74.11 70.48 70.39
CNN + polyreg 60.73 60.90 59.08 60.07
CNN + rf 58.69 58.99 56.43 57.61
CNN + mixgb 53.65 55.03 52.56 53.67
ENN + polyreg 76.29 77.48 74.94 75.93
ENN + rf 73.96 74.45 72.08 73.43
ENN + mixgb 73.02 73.48 71.24 72.22
Relabel
CVCF + polyreg 71.23 71.83 69.59 70.79
CVCF + rf 70.00 70.62 68.31 69.50
CVCF + mixgb 68.39 68.79 66.48 67.81
IPF + polyreg 69.91 70.71 68.23 69.46
IPF + rf 72.66 73.16 70.82 72.22
IPF + mixgb 70.37 70.79 68.49 69.68
aEﬂLLag%aqigﬁuanqiﬁﬁg Table 6 Summary of the most effective class noise
NnuanalIsunsulseintanweesisnig handling methods for each situation.
ﬁlﬂﬂ’]i“ﬂayjaiUﬂ’J%ﬂLﬂ(ﬂ“ﬂ%sLuﬂ’JLLﬂi@]’]SJ“lJ?N@]’JLL'U‘LI
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Suunndudoyailalianuwmaniuesrwianlagng Uiunm
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M. ad a v dnq a “ a o a 6 o Sample
Wudn ANI9amsleyaTuNIuNBNIWAL JEuWusnU size 200 ENN + polyreg
nnilaae ldun auaaiatng USunadayasuniu uazdn 1,000 ENN
wuUMIusnNsIraliedsz@nnn F1 uaneenuadned 10% ENN + polyreg
Eﬂmmymaaﬁmi:@:u ;05 1a Uaﬁu{malgmﬁmsmmi Noise  20% ENN + polyreg
ToyasunIwildszininmwgsgaluudazaniunisnt level 300, ENN + polyreg
¢@s Table 6
40% ENN + polyreg
k-NN ENN + polyreg
RF ENN + polyreg
Model
NB ENN + polyreg
SVM ENN + polyreg
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