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บทคัดย่อ
ปัจจุบนัจ�ำนวนสตัว์เลีย้งในประเทศไทยมจี�ำนวนสูงมากขึน้ในทกุปี ปัญหาทีเ่กิดขึน้กับการเลีย้งสตัว์คือการทีสั่ตว์เลีย้งสญูหายหรอื
พลดัหลง แมวเป็นหนึง่ในสัตว์เลีย้งท่ีมคีวามนยิม มอีตัราพลดัหลงแล้วกลบัมาเพยีงร้อยละ 64 นอกจากนัน้อตัราของการเสียชวีติ 
ระหว่างสูญหายของแมวยังสูงกว่าสุนัขถึง 2 เท่า การระบุตัวตนแมวสามารถช่วยท�ำให้ระบุต�ำแหน่ง หรือให้ข้อมูลเก่ียวกับ 
แมวทีพ่ลดัหลงได้ โดยวธิกีารระบตุวัตนแมวแบบเดิม เช่น การสักหู การฝังชิป มข้ีอจ�ำกัดหลายประการ ไม่ว่าจะเป็นความรนุแรง
ต่อสตัว์ ความเส่ียงต่อการตดิเชือ้ หรอืโอกาสทีอ่ปุกรณ์จะสญูหาย บทความนีน้�ำเสนอวธิกีารระบตุวัตนของแมวด้วย ซึง่เป็นวธิกีาร
ไม่รุนแรงและมีต้นทุนต�่ำ โดยเป็นการประยุกต์ใช้วิธีจากการระบุตัวตนด้วยใบหน้าของมนุษย์ โดยได้น�ำเสนอวิธีการรู้จ�ำใบหน้า
แมวโดยประกอบไปด้วย 3 ขั้นตอน 1) ขั้นตอนการตรวจจับใบหน้าแมวในภาพ ซึ่งสามารถตรวจจับใบหน้าและต�ำแหน่งของ  
หู ตา และจมูกของแมวได้ 2) ขั้นตอนตรวจสอบใบหน้า เพื่อเรียนรู้คุณลักษณะจากภาพใบหน้าคู่เหมือนของแมวตัวเดียวกัน 
และคู่ต่างของแมวคนละตัว 3) ขั้นตอนการระบุตัวตน เป็นกระบวนการที่จะน�ำคุณลักษณะที่สกัดได้จากใบหน้าแมวมาใช้เพื่อจัด
เรียงหรือเปรียบเทียบข้อมูลชุดอื่นๆ โดยใช้วิธีการ K-NN เพื่อหาจ�ำนวนใบหน้าคล้ายคลึงและระบุว่าเป็นแมวตัวใดในฐานข้อมูล 
ผลการทดลองพบว่า แบบจ�ำลองส�ำหรับการตรวจจับใบหน้าที่พัฒนาขึ้น มีค่า mAP เท่ากับ 0.995 โดยขั้นตอนการระบุตัวตน  
5 อันดับแรก โดยมีความแม่นย�ำอยู่ที่ 89%

ค�ำส�ำคัญ:	 การรู้จ�ำใบหน้าแมว, การระบุตัวแมว, การเรียนรู้เชิงลึก

Abstract
Currently, the number of pets in Thailand is increasing every year. Unfortunately, these pets may get lost or lost. Cats 
are one of the most popular pets. The rate of cats getting lost and returning is only 64 percent. In addition, the death 
rate of lost cats is twice as high as that of dogs. Cat identification can help to locate them or provide information 
about lost cats. Traditional cat identification methods, such as ear tattooing and microchipping, have many limitations. 
Among them are violence against animals, the risk of infection, or the possibility of the device being lost. This article 
introduces the development of cat face recognition to identify lost cats by their faces. This is a non-violent and low-cost 
method. It is an application of a method based on human facial identification. The method for recognizing cat faces 
consists of 3 steps: 1) A step for detecting cat faces in images, which can detect the face and the position of the ears, 
eyes, and nose. 2) A step to learn features from facial images of identical pairs of the same cat and different pairs 
of different cats. 3) An identification step is a process in which features extracted from cat faces are used to sort or 
compare other data sets using the K-NN method to find the number of similar faces and identify which cat is in the 
database. The experimental results found that the developed model for face detection has a mAP value of 0.995 by 
the top-5 identification process. The Identification has been shown to be 89% accurate. 
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บทน�ำ
ในประเทศไทย การเลี้ยงสัตว์เลี้ยงเพิ่มขึ้นเนื่องจากการ
เปลี่ยนแปลงทางสังคม เช่น จ�ำนวนคนโสด จ�ำนวนคู่ไม่มีบุตร  
และจ�ำนวนผูส้งูอายท่ีุเพิม่ขึน้ การแพร่หลายของสือ่โซเชยีลมเีดีย  
อตัราการเกิดลดลงในขณะท่ีการเลีย้งสตัว์เลีย้งเพิม่ขึน้ สะท้อน
ให้เห็นแนวโน้มการเลี้ยงสัตว์เลี้ยงเป็นสมาชิกในครอบครัว 
ปัญหาหลักของการเลี้ยงสัตว์เลี้ยง คือสัตว์เลี้ยงสูญหายหรือ
พลัดหลง และการเพิ่มขึ้นของจ�ำนวนสัตว์จรจัด จากสถิติของ 
Kantar Worldpanel (2022) พบว่าแมวเป็นหนึ่งในสัตว์เลี้ยง 
ยอดนยิมและมอัีตราเตบิโตเพิม่สงูขึน้อย่างต่อเนือ่งในประเทศไทย 
(Figure1) ซึง่หากแมวสญูหายหรอืพลดัหลงจะพบยาก เนือ่งจาก
ความรักอิสระและระมัดระวังตัว

งานวิจัยที่เกี่ยวข้อง
	 การระบุตัวตนสัตว์เลี้ยง 
	 หลายงานวิจัยได้กล่าวถึงความเป็นเมืองอัจฉริยะ 
หรือการเปลี่ยนผ่านเข้าสู่ยุคดิจิทัล (Kumar & Singh, 2018; 
Moreira et al., 2017) สิ่งที่มักเกิดขึ้นกับผู้เลี้ยงสัตว์ คือ  
การพลัดหลงกับสัตว์เลี้ยงหรือหลุดหายไป ท�ำให้มีการศึกษา
เก่ียววิธีการที่จะระบุตัวตนของสัตว์ว่าจะใช้วิธีการใด จาก
การศึกษางานวิจัยด้านวิธีการระบุตัวตนสัตว์เลี้ยงในปัจจุบัน
พบว่าวิธีการระบุตัวตนสัตว์แบบเดิมแบ่งออกเป็น 3 ประเภท
ได้แก่ การระบุตัวตนแบบถาวร การระบุตัวตนแบบก่ึงถาวร 
และการระบตุวัตนแบบชัว่คราว ซึง่ตวัอย่างของการระบตุวัตน 
แต่ละแบบได้แก่ การระบุตัวตนแบบถาวร เช่น การสักใบหู 
การฝังไมโครชิป การเจาะหูหรือการตัดหู การประทับร้อน 
การประทับเย็น ตัวอย่างการระบุตัวตนแบบก่ึงถาวร เช่น  
การติดป้ายที่หู การใส่ปลอกคอ ซึ่งจะพบว่าวิธีการแบบถาวร
และก่ึงถาวรนั้นเป็นวิธีการที่รุนแรงกับร่างกายของสัตว์ ต้อง
ใช้ผู้เชี่ยวชาญหรือผู้ที่มีประสบการณ์ และมีความเสี่ยงในการ
ติดเชื้อขึ้นกับสัตว์ ตัวอย่างการระบุตัวตนแบบชั่วคราว เช่น 
การย้อมสี การแขวนป้าย RFID วิธีการแบบชั่วคราวจะมีการ
ปฏสัิมพนัธ์กับร่างกายของสัตว์น้อยกว่าเนือ่งจากเป็นการสวมใส่ 
อุปกรณ์ท�ำให้ไม่มีการใช้ความรุนแรง แต่ก็เป็นวิธีที่สามารถ
สลาย หรือสูญหายได้ ปัญหาเรื่องการระบุตัวตนจึงเป็นสิ่ง 
ที่ท้าทายในงานวิจัยด้านนี้ ซึ่งมีงานวิจัยได้น�ำเสนอวิธีการ 
แก้ปัญหาโดยใช้ ชีวมาตรสัตว์ โดยแบ่งออกเป็น 4 วิธีดังนี้ 
1) การระบุจากจุดบนจมูก 2) การระบุจากรูปแบบดวงตา  
3) การระบุจากใบหน้า 4) การระบุจากหลอดเลือดจอประสาท
ตา ดิจทิลั (Kumar & Singh, 2018) ซึง่วธิกีารระบตุวัตนโดยใช้
ชวีมาตรสตัว์จะสามารถลด ความรนุแรง ความเสีย่งท่ีจะเกิดโรค 
และโอกาสสูญหายของอุปกรณ์ได้ ทั้งนี้วิธีการระบุตัวตนสัตว์
ด้วยใบหน้านัน้ สามารถประยกุต์ใช้กับการค้นหาแมวทีส่ญูหาย
ได้ดี เนื่องจากสามารถใช้ภาพถ่ายในมุมกว้าง เช่น ภาพจาก
กล้องโทรทศัน์วงจรปิดได้ งานวจิยันีจ้งึเลอืกใช้วธิกีารดังกล่าว

	 การระบุตัวตนสัตว์ด้วยใบหน้า
	 กระบวนการระบุตัวตนสัตว์เลี้ยงด้วยใบหน้าจะถูก 
แบ่งออกเป็น 3 ขั้นตอนคือ 1) การระบุใบหน้า 2) การระบุ
คุณลักษณะ 3) การระบุตัวตน ซึ่งเมื่อเปรียบเทียบในแต่ละ 
ขั้นตอนจะมีรายละเอียดดังนี้ ขั้นตอนการระบุใบหน้า เป็น 
ขัน้ตอนแรกเริม่ของการรูจ้�ำใบหน้า เพือ่ทีจ่ะค้นหาใบหน้าของ
สิ่งที่สนใจก่อนจะน�ำมาสกัดคุณลักษณะ ซึ่งการระบุใบหน้าจะ
แบ่งเป็น 2 ประเภท คอื Feature-Based และ Deep Learning-
Based ประเภท Feature-Based อาทิ งานของมอเรราห์และ
คณะ (Moreira et al., 2017) ได้ใช้ EigenFace และ Fisher 
Face ในการตรวจจบัใบหน้าสนุขั งานของหลวนและคณะ (Ruan 
et al., 2014) เลือกใช้ Deformable Parts Model (DPM) ซึ่ง

	 วธิกีารระบตุวัตนสตัว์เลีย้งมหีลายแบบ ตัง้แต่ชัว่คราว
ไปจนถึงถาวร เช่น ปลอกคอ, การประทับเย็น, การสักหู และ
การฝังไมโครชปิ นอกจากนัน้ยงัมงีานวจิยัทีพ่ยายามใช้ชวีมาตร
เพื่อลดค่าใช้จ่ายและความรุนแรงในการระบุตัวตน (Kumar 
& Singh, 2018) ท้ังนี้การศึกษาวิธีการรู้จ�ำใบหน้าแมวยังมี
ความท้าทายเช่นการจ�ำแนกแมวที่มีลักษณะเฉพาะท่ีผิวหน้า 
มีลวดลายและพื้นที่ผิวน้อย จะท�ำให้การระบุตัวตนได้ยาก  
เพราะต้องใช้คุณลักษณะบนใบหน้าในการระบุตัวตน เช่น  
ความหนาแน่นของลายบนหน้าผาก ต�ำแหน่งของตุ่มบนจมูก 
และเนื้อผิวรอบดวงตา (Lin & Kao, 2018)

	 งานวิจัยนี้มุ่งเน้นการรู้จ�ำใบหน้าแมว ซึ่งเป็นเทคนิค
ใหม่ในการระบตุวัแมว โดยการพฒันาขัน้ตอนวธิแีละประยกุต์
ใช้ระบบการเรียนรู้เครื่องเพื่อระบุตัวตนแมวท่ีหายไป โดย
งานวิจัยนี้น�ำเสนอโมเดลรู้จ�ำใบหน้าแมว 3 ขั้นตอน โดยใช้
สถาปัตยกรรม YoLoV5-Face และ Triplet Neural Network 
ซึ่งมีศักยภาพในการลดค่าใช้จ่ายจากการใช้อุปกรณ์เพื่อระบุ
ตัวตนและเพิ่มความแม่นย�ำในการระบุตัวตนแมว เพื่อช่วยให้
สัตว์เลี้ยงที่หายไปสามารถกลับคืนสู่เจ้าของได้

  

  

  

Abstract 

Currently, the number of pets in Thailand is increasing every year.  Unfortunately, these pets may get lost or lost.  

Cats are one of the most popular pets.  The rate of cats getting lost and returning is only 64 percent.  In addition, 

the death rate of lost cats is twice as high as that of dogs.  Cat identification can help to locate them or provide 

information about lost cats.  Traditional cat identification methods, such as ear tattooing and microchipping, have 

many limitations.  Among them are violence against animals, the risk of infection, or the possibility of the device 

being lost.  This article introduces the development of cat face recognition to identify lost cats by their faces.  This 

is a non-violent and low-cost method.  It is an application of a method based on human facial identification.  The 

method for recognizing cat faces consists of 3 steps: 1) A step for detecting cat faces in images, which can detect 

the face and the position of the ears, eyes, and nose.  2) A step to learn features from facial images of identical 

pairs of the same cat and different pairs of different cats.  3) An identification step is a process in which features 

extracted from cat faces are used to sort or compare other data sets using the K-NN method to find the number of 

similar faces and identify which cat is in the database.  The experimental results found that the developed model 

for face detection has a mAP value of 0.995 by the top-5 identification process.  The Identification has been shown 

to be 89% accurate.  

Keywords: cat face recognition, cat identification, deep learning

บทนํา 

ในประเทศไทย การเลี�ยงสตัวเ์ลี�ยงเพิ�มขึ�นเนื�องจาก

การเปลี�ยนแปลงทางสงัคม เช่น จํานวนคนโสด จาํนวน

คู่ไม่มบุีตร และจาํนวนผูสู้งอายุที�เพิ�มขึ�น การแพร่หลาย

ของสื�อโซเชยีลมเีดยี อตัราการเกดิลดลงในขณะที�การ

เลี�ยงสตัวเ์ลี�ยงเพิ�มขึ�น สะทอ้นใหเ้หน็แนวโน้มการเลี�ยง

สตัว์เลี�ยงเป็นสมาชกิในครอบครวั ปัญหาหลกัของการ

เลี�ยงสตัว์เลี�ยง คอืสตัว์เลี�ยงสูญหายหรอืพลดัหลง และ

การเพิ�มขึ�นของจาํนวนสตัว์จรจดั จากสถิตขิอง Kantar 

Worldpanel (2022) พบว่าแมวเป็นหนึ�งในสัตว์เลี�ยง

ยอดนิยมและมอีตัราเตบิโตเพิ�มสูงขึ�นอย่างต่อเนื�องใน

ประเทศไทย (Figure1) ซึ�งหากแมวสูญหายหรอืพลดั

หลงจะพบยาก เนื�องจากความรกัอิสระและระมดัระวงั

ตวั 

 

Figure 1 Household growth in the 3rd quarter of 

2021 and 2022 

วิธีการระบุตัวตนสัตว์เลี�ยงมีหลายแบบ ตั �งแต่

ชั �วคราวไปจนถงึถาวร เช่น ปลอกคอ, การประทบัเยน็, 

การสักหู และการฝังไมโครชิป นอกจากนั �นยังมี

งานวิจัยที�พยายามใช้ชีวมาตรเพื�อลดค่าใช้จ่ายและ

ความรุนแรงในการระบุตวัตน (Kumar & Singh, 2018) 

ทั �งนี�การศกึษาวธิกีารรูจ้ําใบหน้าแมวยงัมคีวามทา้ทาย

เช่นการจําแนกแมวที�มีลักษณะเฉพาะที�ผิวหน้ามี

ลวดลายและพื�นที�ผิวน้อย จะทําให้การระบุตัวตนได้

ยาก เพราะต้องใช้คุณลกัษณะบนใบหน้าในการระบุ

ตัวตนเช่น  ความหนาแน่นของลายบนหน้าผาก 

ตําแหน่งของตุ่มบนจมกู และเนื�อผวิรอบดวงตา (Lin & 

Kao, 2018) 

Figure 1 Household growth in the 3rd quarter  
of 2021 and 2022
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มีจุดเด่นคือความรวดเร็วและเข้าใจได้ง่าย แต่มีข้อจ�ำกัด เรื่อง
แบบจ�ำลองส�ำหรบัการสกดัคณุลกัษณะไม่มคีวามยดืหยุน่ ท�ำให้
ใช้งานต่อได้ยาก ต้องใช้มนุษย์เป็นผู้ก�ำหนดคุณลักษณะด้วย
ตัวเองท�ำให้ต้องใช้ทรัพยากรเช่นผู้ที่มีความรู้ในการก�ำหนด
คุณลกัษณะและเวลาทีใ่ช้ในการก�ำหนดคุณลกัษณะ ท้ังนีใ้นระยะ
หลัง วธิกีารเรยีนรูด้้วยเทคนคิการเรยีนรูเ้ชงิลกึ (Montenegro 
et al., 2022) นั้นได้รับความนิยมมากขึ้น เนื่องจากปัจจัยทาง
ด้านฮาร์ดแวร์ท่ีมีประสิทธิภาพมากขึ้นและซอฟต์แวร์ที่มีการ
พัฒนาเครื่องมือใหม่ๆ ให้สามารถใช้งานได้ง่ายขึ้น งานวิจัย
ของยูนและคณะ (Yoon et al., 2021) ได้เลือกใช้ ResNet-like 
ลนิและเคา (Lin & Kao, 2018) ได้ใช้ Faster R-CNN แบบสอง
ขั้นตอนในการค้นหาบริเวณที่น่าสนใจและใบหน้า อดัม ไคล์น 
(Klein, 2019) ได้ใช้ YOLOv3 ในการตรวจจบัใบหน้า ซึง่วธิกีาร
เรียนรู้เชิงลึก มีข้อดี คือ ความสามารถในการให้คอมพิวเตอร์
เป็นผูค้้นหาคุณลกัษณะข้อมลูเองได้ มคีวามยดืหยุน่และสะดวก 
สามารถน�ำไปใช้งานต่อในงานใกล้เคียงได้ แต่ก็ต้องใช้พลัง 
ในการประมวลผลค่อนข้างสูง ซึ่งโดยสรุปแล้วแต่ละวิธีนั้น 
ก็จะมีข้อดีและข้อเสียที่แตกต่างกัน 

	 ดังนัน้งานวจิยันีจ้งึเลอืกใช้ YOLOv5-Face ท่ีพฒันา
โดยชแีละคณะ (Qi et al., 2022) เนือ่งจากเป็นวธิกีารการเรยีนรู้ 
เชงิลกึ ซึง่มคีวามสามารถในการตรวจจบัใบหน้าได้ในหลากหลาย 
สภาพแวดล้อม มกีารท�ำงานทีร่วดเรว็และสามารถระบจุดุส�ำคัญ 
บนใบหน้าได้

	 ขัน้ตอนการสกัดคณุลกัษณะ เป็นขัน้ตอนทีค่อมพวิเตอร์
จะเรียนรู้ลักษณะของภาพ เช่นเดียวกับขั้นตอนระบุใบหน้า 
การสกัดคุณลักษณะสามารถท�ำได้ 2 วิธี คือ Feature-Based 
และ Deep Learning-Based ซึ่งจากการทบทวนวรรณกรรม
แต่ละงานวิจัย จะมีการเลือกใช้วิธีการท่ีแตกต่างกัน อาทิ 
กลุ่มงานวิจัยท่ีเลือกใช้วิธีการแบบ Feature-Based ได้แก่  
คุมาร์และซิง (Kumar & Singh, 2018) ได้น�ำเสนอวิธีการสกัด
คณุลกัษณะแบบ Fisher Linear Projection and Preservation  
(FLPP) ที่เป็นกระบวนสกัดคุณลักษณะของใบหน้าสุนัข
พร้อมกระจายชุดข้อมูลระหว่างคลาส งานวิจัยของ หลินและ
เคา (Lin & Kao, 2018) เลือกใช้โครงข่ายประสาทเทียมแบบ 
คอนโวลชูนัในการระบตุวัตน โดยเลอืกใช้ EigenFace เพือ่สกัด
คุณลักษณะบนใบหน้าแมวจากชิ้นส่วนใบหน้า กลุ่มงานวิจัย 
ทีเ่ลอืกใช้วธิกีารแบบ Deep Learning Based ได้แก่ ไลและคณะ 
(Lai et al., 2019) ได้ใช้โครงข่ายประสาทเทียมแบบคอนโวลชูนั  
สถาปัตยกรรม Faster R-CNN ในการเรียนรู้คุณลักษณะของ
ภาพโดยน�ำกระบวนการแบบ Coarse-to-fine โดยใช้แบบจ�ำลอง
สองตัว แบบจ�ำลองตัวแรกเพื่อท�ำนายพันธุ์ของสุนัขและ แบบ
จ�ำลองตวัท่ีสองเพือ่สกัดคุณลกัษณะของใบหน้าเพือ่ระบตุวัตน  
งานวิจัยของมูเก้ตและคณะ (Mougeot et al., 2019) ไม่มี 
ขั้นตอนของการระบุใบหน้า แต่ใช้การสกัดคุณลักษณะจาก 

ภาพใบหน้าสุนัขที่ผ่านการประมวลผลมาแล้วด้วยการใช้  
โครงข่ายประสาทเทยีมแบบแฝดสามคูกั่บฟังก์ชนั Triplet Loss 
เพือ่เรยีนรูค้ณุลกัษณะของใบหน้า เช่นเดียวกับงานของ ไคล์น  
(Klein, 2019) และยูนและคณะ (Yoon et al., 2021) ซึ่ง 
งานวิจัยนี้เลือกใช้วิธีการแบบ Deep Learning Based โดย
เลือกใช้โครงข่ายประสาทเทียมแบบแฝดสามกับฟังก์ชัน  
Triplet Loss มาใช้ในการพัฒนา เนื่องจากเป็นกระบวนการ 
ที่ได้รับความนิยมและได้รับการพัฒนาวิธีการอย่างต่อเนื่อง  
จึงง่ายต่อการพัฒนาและต่อยอดทั้งในปัจจุบันและอนาคต 

	 ขั้นตอนการระบุตัวตนเป็นขั้นตอนที่จะน�ำข้อมูลที่ 
ถูกสกัดคุณลักษณะมารวบรวมไว้ เพื่อเปรียบเทียบกับภาพ
ใบหน้าเป้าหมายท่ีถกูน�ำเข้ามาเพือ่ระบตุวัตน ซึง่กระบวนการ
ที่นิยมนั้นมีหลากหลายเทคนิคดังนี้ เทคนิค Support Vector 
Machine (SVM) ถกูใช้ในงานวจิยัของ หลนิและเคา (Lin & Kao, 
2018) เพือ่เปรยีบเทยีบค่าคณุลกัษณะโดยใช้การลากผ่านของ
ค่าข้อมูล เทคนิค K-Nearest Neighbor(K-NN) ถูกใช้ในงาน
ของยนูและคณะ ไคล์น และมเูก้ตและคณะ (Yoon et al., 2021; 
Klein, 2019; Mougeot et al., 2019) โดยใช้การเปรียบเทียบ 
ค่าจากข้อมูลในต�ำแหน่งโดยรอบ ซึ่งจุดเด่นของเทคนิคนี้  
คือ ความสามารถในการปรับค่าข้อมูลน�ำเข้า และจ�ำนวน 
เพื่อนบ้านใกล้เคียงได้ ท�ำให้มักถูกน�ำมาวัดผลการท�ำนาย 1 
อันดับจนถึง 5 อันดับได้

	 การศึกษางานวิจัยด้านวิธีการระบุตัวตนสัตว์เลี้ยง
ในแง่ผลภาพรวมของวิธีการมีรายละเอียดดังนี้ เฉินและคณะ 
(Chen et al., 2016) ได้น�ำเสนอวิธีการระบุตัวตนแมวโดยใช้
ลกัษณะของจมกู เนือ่งจากลกัษณะจมกูของสตัว์ส่วนใหญ่จะมี
ลักษณะเหมือนลายนิ้วของคน เช่นเดียวกับปศุสัตว์ โดยได้มี
การทดลองใช้รูปจมูกแมวกว่า 700 รูป จากแมว 70 ตัว เพื่อ
ระบุตัวตนของแมว แต่อย่างไรก็ตาม งานวิจัยดังกล่าวไม่ได้
ระบผุลการทดลองเชิงปรมิาณอย่างชัดเจน หลวิและคณะ (Liu  
et al., 2012) ได้ใช้การตรวจจับใบหน้าสุนัขเพื่อคัดแยก 
สายพันธุ์โดยใช้สไลดิงวินโดวส์ (Sliding window) เพื่อระบุ
จมกูและตาเพือ่อ้างองิไปยงัจดุท่ีเป็นหแูละส่วนประกอบทีเ่หลอื 
จากนั้นจึงวิเคราะห์ฮิสโตแกรม (Histogram) และใช้ เอสไอ
เอฟที (SIFT: Scale Invariant Feature Transform) ในการ
วิเคราะห์เพื่อหาจุดเด่นของรูปภาพท่ีได้รับเข้ามา ซึ่งมีความ
แม่นย�ำ 67% จากสุนัข 133 สายพันธุ์ จ�ำนวน 8,351 รูปภาพ 
งานวิจัยของ ลินและเคา (Lin & Kao, 2018) พัฒนาระบบรู้จ�ำ 
ใบหน้าแมวโดยใช้การเรียนรู้เชิงลึกแบบฟาสต์เตอร์อาร์- 
ซีเอ็นเอ็น (Faster R-CNN) โดยศึกษาจากรูปภาพของแมว
จ�ำนวน 150 ตัว ซึ่งในการพัฒนา ผู้วิจัยได้แบ่งแบบจ�ำลอง
ออกเป็นสองส่วน คือ ส่วนส�ำหรบัการตรวจจบัใบหน้า และส่วน
ส�ำหรับการระบุส่วนประกอบบนใบหน้า ได้แก่ หน้าผาก ตา 
จมูก และปาก จากนั้นจึงใช้เอสวีเอ็ม (SVM) ในการวิเคราะห์
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ลักษณะของส่วนประกอบเพื่อคัดแยกแมวแต่ละตัว ซึ่งในการ
ทดลองสามารถระบตุวัตน โดยมคีวามแม่นย�ำภาพ 94.1% แต่
อย่างไรก็ตามยงัมข้ีอจ�ำกัดด้านสภาพแสงและแมวบางลกัษณะ 

เช่น แมวด�ำ ที่ไม่สามารถแยกคุณลักษณะเฉพาะออกมา 
เพื่อคัดแยกได้ งานวิจัยที่เกี่ยวข้องสามารถสรุปแสดงดัง 
Table 1

Table 1	 Research process comparison

Author Method1 Face Detection 
Method

Face Detection Feature
Feature  

Extraction Method
Identification 

MethodMultiple 
Face

Face 
Landmark

Face  
Alignment

Adam Klein D YOLO ✓    
Triplet Neural 
Network+GOR+Triplet 
Mining

KNN

Lin, Kao H
Faster  
R-CNN

✓ ✓   Eigen Face SVM

Lai et al. D
Faster  
R-CNN

✓ ✓ ✓ CNN CNN(Prediction)

Mougeot et al. D        
Triplet Neural Network 
+Triplet Mining

RANSAC

Moreira et al. H         Eigen Face+LBP +CNN SVM

Kumar, Singh M         LBP SVM+LDA

Chen et al. M         HOG SVM

Ruan et al. M DPM   ✓   HOG  

This Research D YOLOv5-Face ✓ ✓ ✓
Triplet Neural 
Network+GOR+Triplet 
Mining

KNN+FAISS

1	 D = Deep Learning (การเรียนรู้เชิงลึก), 
	 H = Hybrid (วิธีการแบบผสมผสาน),
	 M = Manual (วิธีการสกัดคุณลักษณะด้วยมือ)

แบบจ�ำลองการรู้จ�ำใบหน้าแมว 
	 สถาปัตยกรรมของแบบจ�ำลอง
	 การออกแบบระบบรูจ้�ำใบหน้าสตัว์เลีย้งด้วยการเรยีน
รู้เชิงลึกประกอบด้วยสามขั้นตอนหลัก ได้แก่ 1) การตรวจจับ
ใบหนา้แมวภายในภาพ ซึง่มคีวามท้าทายจากสภาพแวดลอ้ม
ทีห่ลากหลาย อาท ิระยะห่าง แสง และเงา 2) การเปรยีบเทยีบ
ใบหน้า ซึง่ใช้กระบวนการสกัดคุณลกัษณะและฝึกฝนแบบจ�ำลอง
เพื่อแยกคุณลักษณะของแมวแต่ละตัว และ 3) การระบุตัวตน, 
โดยการสร้างชดุเวกเตอร์ของข้อมลูและใช้พืน้ทีก่ารฝังตวัข้อมลู 
(Embedding Space) เพื่อเปรียบเทียบกับข้อมูลในฐานข้อมูล 
โดยใช้วิธีการ KNN เพื่อระบุตัวตนของแมว (Figure 2)

2. ชุดข้อมูลน�ำเข้า
	 ชุดข้อมูลน�ำเข้าในงานวิจัยชิ้นนี้ ประกอบด้วย 2 ชุด 
ได้แก่ ชุดข้อมูลจากแคกเกิล (Kaggle) ซึ่งประกอบไปด้วย
ข้อมลูใบหน้าของแมว 9,993 รปูภาพ โดยแบ่งเป็น 7,284 ภาพ
ส�ำหรบัการฝึกฝนและ 2,709 ภาพส�ำหรบัการทดสอบ (Figure 
3) ชุดข้อมูลดังกล่าว เป็นชุดข้อมูลเพื่อใช้ส�ำหรับการฝึกแบบ
จ�ำลองให้สามารถตรวจจบัใบหน้าของแมวได้ ชุดข้อมลูชุดท่ีสอง 
เป็นชุดข้อมลูใบหน้าของแมวจากในงานวจิยัหลนิและเคา (Lin 
& Kao, 2018) (Figure 4) ซึ่งได้รวบรวมใบหน้าแมว 519 ตัว 
จากสถานรับเลี้ยงสัตว์ ซึ่งแมวแต่ละตัวจะมีภาพไม่ต�่ำกว่า 10 
ภาพมมุท่ีแตกต่าง โดยจากข้อมลูดิบจ�ำนวน 13,536 ภาพ เมือ่
คดัแยกรปูภาพท่ีมคีวามละเอยีดต�ำ่ มภีาพน้อยกว่า 5 รปู ภาพ
ซ�้ำ ภาพเบลอ และไมส่มบรูณอ์ื่นๆ มภีาพแมวคงเหลือจ�ำนวน 
396 ตัว โดยแบ่งเป็นชุดส�ำหรับฝึกฝนจ�ำนวน 328 ตัว 8,125 
ภาพ ชุดส�ำหรับการตรวจสอบ 68 ตัว 2,258 ภาพ เพื่อน�ำมา
ใช้ฝึกและทดสอบแบบจ�ำลอง เพื่อให้สามารถรู้จ�ำใบหน้าแมว
แต่ละตัวได้ และใช้ชุดข้อมูลดังกล่าวส�ำหรับการทดสอบความ
แม่นย�ำในการท�ำนายผล

  

  

  

แบบจาํลองการรู้จาํใบหน้าแมว  

สถาปัตยกรรมของแบบจาํลอง 

 การออกแบบระบบรู้จําใบหน้าสัตว์เลี�ยงด้วยการ

เรยีนรู้เชงิลกึประกอบด้วยสามขั �นตอนหลกั ได้แก่ �) 

การตรวจจบัใบหน้าแมวภายในภาพ ซึ�งมคีวามทา้ทาย

จากสภาพแวดล้อมที�หลากหลาย อาท ิระยะห่าง แสง 

และเงา �) การเปรยีบเทยีบใบหน้า ซึ�งใชก้ระบวนการ

สกัดคุณลักษณะและฝึกฝนแบบจําลองเพื�อแยก

คุณลกัษณะของแมวแต่ละตวั และ �) การระบุตวัตน, 

โดยการสรา้งชุดเวกเตอร์ของขอ้มูลและใช้พื�นที�การฝัง

ตัวข้อมูล (Embedding Space) เพื�อเปรียบเทียบกับ

ขอ้มูลในฐานขอ้มูล โดยใชว้ธิีการ KNN เพื�อระบุตวัตน
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	 กระบวนการตรวจสอบใบหน้า
	 แบบจ�ำลองทีใ่ช้ในขัน้ตอนตรวจสอบใบหน้าแมวนี ้ได้
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	 งานวจิยันีใ้ช้การถ่ายโอนความรู ้(Transfer Learning) 
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นั้นผลลัพธ์จะถูกใช้ฟังก์ชัน L2 เพื่อ Normalize ข้อมูล
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กระบวนการตรวจจบัใบหน้า 
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R-CNN ซึ�งเป็นเทคนิคเดียวกันกับงานวิจัยของ Lin 

และ Kou ซึ�งมขีอ้จาํกดัเรื�องสถาปัตยกรรมถูกออกแบบ

มาเพื�อใหร้ะบุ Bounding Box ของใบหน้าเท่านั �น หาก

ต้อ งการระ บุจุ ด สําคัญบนใบหน้าจะต้องพัฒนา

แบบจําลองเพิ�มสําหรับการประมวลผลซึ�งจะต้องใช้

เวลาและทรพัยากรในการประมวลผลเพิ�มขึ�น 
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ดงันั �นงานวิจยันี�จ ึงเลือกใช้สถาปัตยกรรมตระกูล 

YOLO ที�มีจุดเด่นในเรื�องความเร็วและความแม่นยํา

เช่นเดียวกับ Faster R-CNN โดยแบบจําลองได้ถูก

ออกแบบมาเพื�อใช้สําหรบัการค้นหาบรเิวณที�น่าจะมี

วตัถุและสร้าง Bounding Box ขึ�นมารอบวตัถุเท่านั �น 

โดยงานวิจัยนี�จึงเลือกใช้ YOLOv5-Face ในเวอร์ชัน

ย่อยที� ได้รับการปรับปรุง ให้สามารถใช้การระบุ

จุดสาํคญับนใบหน้าได ้(Figure 5) 

 

 
Figure 5 Sample image of the results of cat face 

landmark and alignment 

 

กระบวนการตรวจสอบใบหน้า 

แบบจําลองที�ใชใ้นขั �นตอนตรวจสอบใบหน้าแมวนี� 

ได้พฒันาในรูปแบบโครงข่ายประสาทเทยีมแบบแฝด

สาม (Triplet Neural Network) ซึ�ง เ ป็นแบบจําลอง

สามารถรบัขอ้มูลนําเข้าทั �งหมด � ชุด และมีการแชร์

นํ�าหนัก (Weight) กันภายในแบบจําลอง เพื�อให้ภาพ

เดยีวกนัไดผ้ลลพัธอ์อกมาเหมอืนกนั (Figure 6) 

งานวิจัยนี� ใ ช้กา รถ่ าย โอนความรู้  (Transfer 

Learning) เ ข้ามาช่ ว ย เพื� อ ใ ห้ป ระหยัด เ วลาและ

ทรพัยากรในการพฒันา โดยแบบจําลองที�เลือกใช้จะ

เป็นแบบจาํลอง EfficientNetV2S ซึ�งโมเดลที�ถูกฝึกฝน

ไว้ล่วงหน้า (Pre-trained Model) โดยจะไม่ใช้เลเยอร์

ช ั �นสุดท้าย แต่จะใช้เพียงเลเยอร์รองสุดท้ายเพราะ

ต้องการผลลพัธ์ขอ้มูลในลกัษณะของเวกเตอร์ โดยจะ

เชื�อมเลเยอร์ต่อท้ายเพื�อปรบัผลลพัธ์ให้เป็นเวกเตอร์

ขนาด ��� จากนั �นผลลพัธ์จะถูกใช้ฟังก์ชนั L� เพื�อ 

Normalize ขอ้มลู 

 
Figure 6 Example image of cat face training with 

Triplet Network 

 

    และเมื�อไดผ้ลลพัธแ์บบเวกเตอรแ์ล้ว ผลลพัธ์

ดงักล่าวกจ็ะถูกนําไปใชใ้นฟังกช์นั Triplet Loss เพื�อ

ทาํใหภ้าพใบหน้าของแมวตวัเดยีวกนัอยู่ในกลุ่ม

เดยีวกนั และแมวที�แตกต่างกนัจะกระจายตวัจากกนั 

(Figure 7) 

 

 
Figure 7 Process of feature extraction and cat 

face identification 

 

อย่างไรกต็ามการใช ้Triplet Neural Network 

และ Triplet Loss ยงัไม่สามารถสร้างการกระจายตัว

ของขอ้มูลไดด้เีพยีงพอ เพราะบางครั �งลกัษณะใบหน้า

แมวในคลาสอื�น ก็อาจจะมีค่าระยะทางที�ใกล้กว่า

ใบหน้าแมวในคลาสเป้าหมาย งานวจิยันี�จงึประยุกตใ์ช้

วิธีการในการช่วยเลือกข้อมูลและการปรับค่า Loss 

ของข้อมูลเพื�อให้แบบจําลองเรียนรู้คุณลักษณะที�

เหมอืนและแตกต่างกนัมากขึ�นโดยกระบวนการ Hard 

Batch ที�ถูกนําเสนอโดย เฮอรแ์มนและคณะ (Hermans 

et al., 2012) คือการทํา Triplet Mining ซึ�งจะช่วยทํา
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	 และเมือ่ได้ผลลพัธ์แบบเวกเตอร์แล้ว ผลลพัธ์ดงักล่าว
ก็จะถกูน�ำไปใช้ในฟังก์ชัน Triplet Loss เพือ่ท�ำให้ภาพใบหน้า
ของแมวตวัเดียวกนัอยูใ่นกลุม่เดียวกัน และแมวทีแ่ตกต่างกัน
จะกระจายตัวจากกัน (Figure 7)
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	 อย่างไรก็ตามการใช้ Triplet Neural Network และ 
Triplet Loss ยังไม่สามารถสร้างการกระจายตัวของข้อมูลได้
ดีเพียงพอ เพราะบางครั้งลักษณะใบหน้าแมวในคลาสอื่น ก็
อาจจะมีค่าระยะทางที่ใกล้กว่าใบหน้าแมวในคลาสเป้าหมาย 
งานวิจัยนี้จึงประยุกต์ใช้วิธีการในการช่วยเลือกข้อมูลและการ
ปรับค่า Loss ของข้อมูลเพื่อให้แบบจ�ำลองเรียนรู้คุณลักษณะ
ทีเ่หมอืนและแตกต่างกันมากขึน้โดยกระบวนการ Hard Batch 
ที่ถูกน�ำเสนอโดย เฮอร์แมนและคณะ (Hermans et al., 2012) 
คือการท�ำ Triplet Mining ซึ่งจะช่วยท�ำให้แบบจ�ำลองได้เรียน
รู้ภาพของคลาสที่มีความใกล้เคียงกัน โดยเมื่อน�ำ Triplet 
Mining แบบ Hard Batch มาใช้ ในกระบวนคัดเลือกรูปภาพ
แต่ละรอบ โดยสุ่มคลาสจากจ�ำนวน BatchSize/4 คลาส จาก
นั้นหนึ่งคลาสจากท่ีสุ่มมาจะถูกเลือกเพื่อเป็นภาพ Anchor 
และภาพ Positive คลาสที่เหลือจะถือว่าเป็นภาพ Negative 
ในการเลือกภาพ จะค�ำนวณระยะทางด้วยวิธีการ Euclidian 
Distance ระหว่างภาพ Anchor กับทุกภาพที่เหลือในคลาส
และจะเลือกภาพที่มีระยะทางสูงสุด (Farthest Positive) เพื่อ
ใช้หาภาพแมวตัวเดียวกันที่มีความแตกต่างกันมากที่สุด จาก
นัน้คลาสทีเ่หลอืทีเ่ป็น Negative จะถกูสุม่เลอืกมาและหาภาพ
ที่มีความคล้ายกับภาพ Anchor ที่สุดโดยการค�ำนวณหาระยะ
ทางใกล้ที่สุด (Nearest Negative) จากนั้นค่าจะน�ำค่าที่ได้ไป
ค�ำนวณและปรับค่า Loss ท�ำให้ข้อมูลมีการกระจายตัวที่ดียิ่ง
ขึ้น (Figure 8)

	 นอกจากนีภ้ายใน Triplet Loss Function ได้มกีารน�ำ 
Generalized Outlier Rejection (GOR) ทีเ่สนอโดยจางและคณะ 
(Zhang et al., 2017) มาประยกุต์ใช้เพือ่ปรบัปรงุประสทิธภิาพ
ของแบบจ�ำลอง โดย GOR จะท�ำหน้าที่เป็น Regularization 
ภายใน Triplet Loss Function ซึง่ปกตจิะใช้ในการลดค่า Loss 
ทีเ่กิดจากการเรยีนรูข้องข้อมลู Anchor, Positive และ Negative  
อย่างไรก็ตาม การเพิ่ม GOR เข้าไปจะช่วยเพิ่มโทษให้กับ 
คูข้่อมลู Anchor และ Negative ท่ีมรีะยะห่างไม่เพยีงพอ ท�ำให้
โมเดลมีความสามารถในการแยกแยะระหว่าง Anchor กับ 
Negative ได้ดีขึ้น 

	 GOR จะช่วยกระจายตัวข้อมูลให้ดีขึ้นและลดความ
เสีย่งของการเกดิ overfitting โดยการเพิม่โทษให้กับค่าท่ีไม่ได้
มีความแตกต่างอย่างชัดเจนระหว่าง Anchor และ Negative 
ซึ่งกระบวนการนี้จะส่งผลให้ Triplet Loss Function สามารถ
แยกแยะข้อมูลได้ดีขึ้น ท�ำให้โมเดลสามารถเรียนรู้ได้อย่างมี
ประสิทธิภาพมากขึ้นและสามารถ generalize ได้ดียิ่งขึ้นเมื่อ
ทดสอบกับข้อมูลใหม่ที่ไม่เคยเห็นมาก่อน 
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สู งสุด  (Farthest Positive) เพื� อใช้ห าภาพแมวตัว
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เหลอืที�เป็น Negative จะถูกสุ่มเลอืกมาและหาภาพที�มี
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การกระจายตวัที�ดยีิ�งขึ�น (Figure 8) 

 

 
Figure 8 Example of comparison between Hard 

Triplet 
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ทําใหโ้มเดลสามารถเรยีนรู้ได้อย่างมปีระสทิธภิาพมาก
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ขอ้มลูใหม่ที�ไม่เคยเหน็มาก่อน  
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เพื�อเพิ�มโทษให้กับคู่ข้อมูลที�มีระยะห่างไม่

เพยีงพอ การใช้ GOR ช่วยให้ข้อมูลมกีารกระจายตวั

ในมิติที�มากขึ�น ส่งผลให้การเรียนรู้มีประสิทธิภาพ

สูงขึ�นและโมเดลสามารถ generalize ได้ดียิ�งขึ�นเมื�อ

ทดสอบกบัขอ้มลูใหม่ที�ไม่เคยเหน็มาก่อน 

 

กระบวนการระบุตวัตน 

เมื� อได้ผลลัพธ์เ ป็นคุณลักษณะของใบหน้าใน

รปูแบบเวกเตอร์แลว้ ในขั �นการระบุตวัตน งานวจิยันี�จะ

ใ ช้  Facebook AI Similarity Search (FAISS) เ พื� อ

ค้นหาตามความคล้ายคลึงกัน ด้วยจุดเด่นคือด้าน

ความเร็วและความสามารถในการจดักลุ่มของขอ้มลูใน

รูปแบบ Vector โดยในงานวจิยันี� จะใช้แบบจําลองใน

ขั �นตอน Verification สร้างเวกเตอร์จากใบหน้าแมวใน
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	 (1)

	 เพื่อเพิ่มโทษให้กับคู่ข้อมูลที่มีระยะห่างไม่เพียงพอ 
การใช้ GOR ช่วยให้ข้อมูลมีการกระจายตัวในมิติที่มากขึ้น 
ส่งผลให้การเรียนรู้มีประสิทธิภาพสูงขึ้นและโมเดลสามารถ 
generalize ได้ดียิ่งขึ้นเมื่อทดสอบกับข้อมูลใหม่ที่ไม่เคยเห็น
มาก่อน

	 กระบวนการระบุตัวตน
	 เมือ่ได้ผลลพัธ์เป็นคณุลกัษณะของใบหน้าในรปูแบบ
เวกเตอร์แล้ว ในขั้นการระบุตัวตน งานวิจัยนี้จะใช้ Facebook 
AI Similarity Search (FAISS) เพือ่ค้นหาตามความคล้ายคลงึ
กัน ด้วยจดุเด่นคือด้านความเรว็และความสามารถในการจดักลุม่
ของข้อมลูในรปูแบบ Vector โดยในงานวจิยันี ้จะใช้แบบจ�ำลอง
ในขั้นตอน Verification สร้างเวกเตอร์จากใบหน้าแมวในฐาน
ข้อมูล และใช้ FAISS เพื่อสร้าง Index ของใบหน้าแมวเก็บไว้
ในหน่วยความจ�ำ เพือ่การเรยีกใช้งาน เมือ่มกีารส่งใบหน้าแมว
เข้ามาใหม่ จะประมวลผลด้วยแบบจ�ำลอง ก่อนจะน�ำเวกเตอร์
ทีไ่ด้มาเปรยีบเทยีบกับใบหน้าทีถ่กูท�ำ Index ไว้ในหน่วยความ
จ�ำ ด้วยวิธีการ KNN ซึ่งจะถูกใช้ในการท�ำนายใบหน้าจ�ำนวน 
M รูป ซึ่งค่า K ถูกใช้ในกระบวนการทดสอบ คือ 1,3,4 และ 5

	 กระบวนการวัดผล

	 งานวจิยันีป้ระเมนิประสิทธภิาพของแบบจ�ำลองในการ
ตรวจจับและระบุตัวตนของแมวโดยใช้ค่า Confusion Matrix 
ดังที่แสดงใน Table 2 โดยจะใช้การวิเคราะห์ค่าความแม่นย�ำ 
(Precision) และค่าความระลึก (Recall) ค่าความแม่นย�ำ
ค�ำนวณจากอัตราการท�ำนายถูกต้องต่อการท�ำนายท้ังหมด 
ในขณะท่ีค่าความระลึกคือจ�ำนวนที่ท�ำนายถูกต้องต่อจ�ำนวน
ที่มีจริง การวัดประสิทธิภาพจะพิจารณาจากค่าความแม่นย�ำ
เฉลี่ย (AP) และค่าความแม่นย�ำเฉลี่ยโดยรวม (mAP) ส�ำหรับ
แต่ละคลาส โดยมเีป้าหมายท่ีจะท�ำนายการระบตุวัตนของแมว
ในสภาพแวดล้อมที่มีวัตถุอื่นๆ อย่างแม่นย�ำ
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	 โดย 

	 n คือจ�ำนวนครั้งที่ท�ำการประเมิน

ผลการทดลองและอภิปรายผล 
		  งานวจิยันีไ้ด้ทดสอบประสิทธภิาพของแบบจ�ำลอง
ที่พัฒนาขึ้นโดยแบ่งเป็นสองส่วน คือ การตรวจจับใบหน้าและ
การระบุตัวตนของแมว ขั้นตอนการตรวจจับใบหน้ามุ่งเน้นท่ี
การหาใบหน้าแมวในภาพ รวมถงึการระบจุดุส�ำคญับนใบหน้า 
เช่น หู, ตา, และจมูก ส่วนการระบุตัวตนจะปรับแต่งค่า Hyper 
Parameter เพื่อเพิ่มประสิทธิภาพการตรวจจับ ข้อมูลที่ใช้ใน
การทดสอบประกอบด้วย 2,709 ภาพใบหน้าแมวจาก Kaggle 
พร้อมแฟ้มข้อมลูคุณลกัษณะท่ีระบตุ�ำแหน่งจดุส�ำคัญบนใบหน้า

การทดสอบการตรวจจับใบหน้า
	 แบบจ�ำลองส�ำหรับการตรวจจับใบหน้าได้ถูกฝึกฝน
เป็นจ�ำนวน 300 epoch เมื่อทดสอบมีค่า mAP อยู่ที่ 0.995 
(Figure 9) โดยข้อมูลใบหน้าแมวจากหลากหลายขนาดถูกน�ำ
เข้า เพือ่ตรวจจบัใบหน้าโดยมค่ีา Threshold 0.5 พบว่าใบหน้า
แมวสามารถตรวจจบัได้แม้อยูใ่นต่างมมุ สภาพแวดล้อมหรอืมี
การบดบัง นอกจากนี้ยังสามารถระบุจุดส�ำคัญบนใบหน้าของ
แมวแต่ละตัวได้ (Figure 10)

การทดสอบการระบุตัวตน
	 ในการทดสอบการระบตุวัตน โดยใช้ข้อมลูชดุทดสอบ
จากงานวิจัยของ Lin และ Kou ซึ่งเป็นภาพใบหน้าของแมว  
69 ตัว จ�ำนวน 2,258 ภาพ ประกอบไปด้วยภาพของแมวที่มี
ทั้งลักษณะที่คล้ายกันและแตกต่างกัน ใบหน้าของแมวถูกน�ำ
เข้าในแบบจ�ำลองตรวจจบัใบหน้าเพือ่ให้ได้เฉพาะส่วนใบหน้า
ของแมว และปรับต�ำแหน่งของใบหน้าให้อยู่ในลักษณะหน้า
ตรง โดยให้ดวงตาอยู่ในระนาบเดียวกันเพื่อให้ข้อมูลใบหน้า
ของแมวอยูใ่นลกัษณะเดยีวกนั ต�ำแหนง่ภาพทีห่ลดุจากเฟรม
ใบหน้าแมวจะถูกแทนท่ีด้วยสีด�ำ จากนั้นปรับขนาดภาพมี
ขนาด 224x224 เพื่อใช้ในการประมวลผลต่อไป (Figure 11) 
แบบจ�ำลองส�ำหรับการระบุตัวตนจากใบหน้าได้ถูกฝึกฝนเป็น
จ�ำนวน 150 epoch ซึ่งมีค่า Loss จากการฝึกฝนอยู่ที่ 1.86 
และการทดสอบอยู่ที่ 2.43 (Figure 12) 
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ขั �นตอนการตรวจจบัใบหน้ามุ่งเน้นที�การหาใบหน้า

แมวในภาพ รวมถึงการระบุจุดสําคัญบนใบหน้า 

เช่น ห,ู ตา, และจมกู ส่วนการระบุตวัตนจะปรบัแต่ง

ค่า Hyper Parameter เพื�อเพิ�มประสิทธิภาพการ

ตรวจจับ ขอ้มูลที�ใช้ในการทดสอบประกอบด้วย 

2,709 ภ า พ ใ บ ห น้ าแ มว จ า ก  Kaggle พ ร้ อ ม

แฟ้มขอ้มูลคุณลกัษณะที�ระบุตําแหน่งจุดสําคญับน
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 แบบจําลองสําหรบัการตรวจจบัใบหน้าได้ถูก

ฝึกฝนเป็นจํานวน 300 epoch เมื�อทดสอบมีค่า 

mAP อยู่ที� 0.995 (Figure 9) โดยขอ้มลูใบหน้าแมว

จากหลากหลายขนาดถูกนําเข้า เพื�อตรวจจับ

ใบหน้าโดยมคี่า Threshold 0.5 พบว่าใบหน้าแมว

สามารถตรวจจบัไดแ้มอ้ยู่ในต่างมุม สภาพแวดลอ้ม

หรือมีการบดบัง  นอกจากนี� ย ังสามารถระบุ

จุดสําคัญบนใบหน้าของแมวแต่ละตัวได้ (Figure 

10) 

 

Figure 9 mAP results from testing a model for cat 

face detection 

 

 

Figure 10 Cat face detection and landmarking 

 

การทดสอบการระบุตวัตน 

 ในการทดสอบการระบุตวัตน โดยใช้ข้อมูลชุด

ทดสอบจากงานวจิยัของ Lin และ Kou ซึ�งเป็นภาพ

ใบหน้าของแมว �� ตัว  จํานวน � ,��� ภาพ 
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Loss จากการฝึกฝนอยู่ที� 1.86 และการทดสอบอยู่

ที� 2.43 (Figure 12)  
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Figure 12 Loss in training dataset for face 

classification 
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	 กระบวนการทดสอบการรูจ้�ำใบหน้า ภาพใบหน้าแมว
ทั้งหมดจะถูกน�ำเข้าและประมวลผลด้วย Verification Model 
และได้ผลลพัธ์ออกเป็นเวกเตอร์ของข้อมลูขนาด 128 มติ ิโดย
ก่อนการประมวลผลภาพใบหน้าแมวท่ีต้องการค้นหาจะถกูสุม่
จากชุดข้อมูล และใบหน้าที่เหลือจะถูกน�ำไปประมวลผลและ
สร้างฐานข้อมูลด้วย FAISS เพื่อใช้ส�ำหรับการท�ำนายคลาส
ทีถ่กูต้องของข้อมลู โดยเมือ่น�ำมาลดมติขิองข้อมลูด้วยเทคนคิ 
UMAP (Uniform Manifold Approximation and Projection) 
ให้เหลือ 3 มิติและแสดงในรูปแบบกราฟ จะเห็นการกระจาย
ตัวใบหน้าแมวแต่ละตัว (Figure 13)
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	 การประเมินผลงานวิจัยชิ้นนี้ใช้วิธีการเดียวกับ
กระบวนการของมูเก็ตและคณะ (Mougeot et al., 2019) โดย
การทดสอบในแต่ละรอบ จะสุ่มคลาสของแมวออกมาจ�ำนวน  
c คลาส และจ�ำนวนรูปของแมวที่ถูกน�ำมาประมวลผล 
ถูกแทนด้วย Nc โดยให้จ�ำนวน M แทนค่าจ�ำนวนใบหน้าของ
แมวต้องการค้นหา เช่น M=2 จะเป็นการน�ำใบหน้าของแมวที่
ต้องการค้นหา 2 รปู ก็จะรวมเวกเตอร์ของท้ังสองรปูเข้าด้วยกัน 
มาใช้ค้นหาข้อมลูท่ีเหลอืในฐานข้อมลู และ k แทนค่าเพือ่นบ้าน
ใน Nearest Neighbor เป็นจ�ำนวนใบหน้าใกล้เคียงที่ต้องการ
ค้นหา โดยค่า k จะเป็นค่าระหว่าง 1 ถึง 5 เท่านั้นเนื่องจาก
การตั้งค่า k ให้เป็นค่าที่สูงเกินไปอาจท�ำให้ประสิทธิภาพของ
โมเดลลดลงและไม่สามารถจ�ำแนกใบหน้าของแมวได้อย่างมี
ประสิทธิภาพ นอกจากนี้การจ�ำกัดค่า k อยู่ระหว่าง 1 ถึง 5 
ยังช่วยให้การประมวลผลมีความรวดเร็วและแม่นย�ำมากยิ่ง
ขึ้น ซึ่งในการทดสอบจะท�ำซ�้ำทั้งหมดจ�ำนวน 500 รอบ โดย
แต่ละรอบจะสุ่มคลาสจากชุดข้อมูล โดยมีค่า c=24 คลาส และ
วัดค่าความถูกต้องใน 100 ครั้ง ตารางที่ 3 แสดงค่าความ
แม่นย�ำเฉลี่ย ค่าสูงสุด ค่าต�่ำสุด โดยที่ M=1 และ k=1 จะเป็น
ตัวแทนของการเรียนรู้แบบ one-shot และส�ำหรับค่าอื่นๆ ค่า 
k=M+1 เสมอ โดยFigure 14 แสดงตวัอย่างผลลพัธ์การท�ำนาย
ด้วยค่า M=1 และ k=5 และผลลัพธ์ค่า Confusion Matrix จาก 
การประเมิน (Figure 15)

Table 3	 Model accuracy when adjusting M and k.

M k
Identification accuracy

Average Minimum Maximum

1 1 75.9% 71% 80%

2 3 85.2% 78% 89%

3 4 86.8% 84% 89%

4 5 82.8% 78% 87%
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ประมวลผลและสรา้งฐานขอ้มูลดว้ย FAISS เพื�อใช้

สําหรบัการทํานายคลาสที�ถูกต้องของข้อมูล โดย

เมื�อนํามาลดมิติของข้อมูลด้วยเทคนิค UMAP 
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Figure 15 Result of Confusion Matrix size 24x24  
of 24 classes of cats

	 โดยแต่ละแถวของเมทริกซ์แทนคลาสจริง ในขณะ
ที่แต่ละสดมภ์แทนคลาสที่ท�ำนาย ค่าท่ีต�ำแหน่ง (i, j) ใน 
เมทรกิซ์แสดงถงึจ�ำนวนตวัอย่างทีเ่ป็นคลาส i และท�ำนายว่าเป็น 
คลาส j หาก i=1 และ j=1 คือค่าที่ต�ำแหน่ง (1,1) ในเมทริกซ์ 
ค่านีแ้สดงถงึจ�ำนวนของ True Positives (TP) ส�ำหรบัคลาสที ่1  
หมายความว่า โมเดลท�ำนายว่าข้อมูลเป็นคลาสท่ี 1 และ
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ความจริงคือตัวอย่างเหล่านั้นอยู่ในคลาสท่ี 1 เช่นกัน ยิ่งค่า 
ท่ีต�ำแหน่ง (1,1) มีค่าสูงเท่าไรก็แสดงว่าโมเดลท�ำนายคลาส 
ที่ 1 อย่างแม่นย�ำมากขึ้น

การอภิปรายผล
	 จากการทดสอบรูจ้�ำใบหน้าโดยแยกออกเป็นสองส่วน
คือกระบวนการตรวจจับใบหน้า และการบวนการระบุตัวตน  
ผลลัพธ์ของการตรวจจับใบหน้ามีค่า mAP อยู่ที่ 0.995 โดย
สามารถระบุใบหน้าได้แม้อยู่ในสภาพแวดล้อมที่แตกต่าง 
และสามารถตรวจจับใบหน้าที่มีหลากหลายขนาดและ 
หลากหลายใบหน้าได้ภายในภาพเดียวกัน

	 ในส่วนของกระบวนการระบุตัวตนผลลัพธ์สามารถ
ระบุตัวตนได้ตั้งแต่ขั้น one-shot recognition โดยเมื่อเพิ่ม
จ�ำนวนภาพท่ีใช้ส�ำหรับการค้นก็ยิ่งเพิ่มความแม่นย�ำมากขึ้น 
โดยสูงสุดเมื่อ M=3 และ k=4 จะมีความแม่นย�ำเฉลี่ย 86.8% 

สรุปและงานวิจัยในอนาคต 
	 บทความนีไ้ด้เสนอแบบจ�ำลองในการรูจ้�ำใบหน้าแมว
โดยกระบวนการรู้จ�ำใบหน้าถูกแบ่งออกเป็น 2 ส่วนคือส่วน
ของแบบจ�ำลองที่ใช้ในการรู้จ�ำใบหน้าและแบบจ�ำลองสกัด
คุณลักษณะเพื่อเปรียบเทียบใบหน้าและน�ำมาระบุตัวตน โดย
ในส่วนของการตรวจใบหน้าจะมุง่เน้นการตรวจหาใบหน้าแมว
ในภาพที่มีสภาพแวดล้อมที่ตรวจจับได้ยาก โดยต้องสามารถ
ตรวจจับได้หลายใบหน้าพร้อมกัน และสามารถที่จะระบุจุด
ส�ำคัญบนใบหน้าได้ ได้แก่ ปลายหูซ้าย ปลายหูขวา ตาซ้าย 
ตาขวา และจมูก เพื่อให้สามารถที่จะน�ำภาพไปจัดเตรียมและ
ประมวลผลในการตรวจจบัได้ใบหน้าได้ ในส่วนของกระบวนการ
ระบุตัวตนนั้น แบบจ�ำลองสามารถสกัดคุณลักษณะและระบ ุ
ตัวตนได้ตั้งแต่ขั้น one-shot recognition โดยเมื่อเพิ่มจ�ำนวน
ภาพท่ีใช้ส�ำหรับการค้นก็ยิ่งเพิ่มความแม่นย�ำมากขึ้น แบบ
จ�ำลองทีส่ร้างขึน้มคีวามแม่นย�ำเฉลีย่สงูสุด 86.8% การพฒันา
แบบจ�ำลองส�ำหรบัตรวจจบัใบหน้าแมวสามารถใช้การถ่ายโอน
ความรู้ได้โดยประหยัดทรัพยากร มีความแม่นย�ำสูง และยัง
สามารถประยุกต์ใช้ร่วมกับงานอื่นๆ เช่น การพัฒนาระบบลง
ทะเบยีนสตัว์เลีย้ง การน�ำไปประยกุต์ใช้ในเมอืงอจัฉรยิะส�ำหรบั
สตัวเ์ลีย้ง หรอืการประยกุตใ์ช้งานวจิยัเช่นด้านอืน่ๆ เช่นการรู้
จ�ำสัตว์ป่า การตรวจจับพฤตกิรรมสัตว์ป่า เป็นต้น อย่างไรกต็าม 
งานวจิยันีย้งัไม่ได้น�ำเสนอผลการเปรยีบเทยีบของการท�ำ Face 
alignment และการเปรยีบเทยีบประสทิธภิาพระหว่างอลักอรทึิม 
ต่างๆ เช่น FAISS, KNN และ SVM ซึง่อาจเป็นประเด็นส�ำหรบั
การศกึษาเพิม่เตมิในอนาคต เพือ่พฒันาประสิทธภิาพของแบบ
จ�ำลองให้ดียิ่งขึ้น
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