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A development of cat face recognition model using deep learning
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Abstract

Currently, the number of pets in Thailand is increasing every year. Unfortunately, these pets may get lost or lost. Cats
are one of the most popular pets. The rate of cats getting lost and returning is only 64 percent. In addition, the death
rate of lost cats is twice as high as that of dogs. Cat identification can help to locate them or provide information
about lost cats. Traditional cat identification methods, such as ear tattooing and microchipping, have many limitations.
Among them are violence against animals, the risk of infection, or the possibility of the device being lost. This article
introduces the development of cat face recognition to identify lost cats by their faces. This is a non-violent and low-cost
method. It is an application of a method based on human facial identification. The method for recognizing cat faces
consists of 3 steps: 1) A step for detecting cat faces in images, which can detect the face and the position of the ears,
eyes, and nose. 2) A step to learn features from facial images of identical pairs of the same cat and different pairs
of different cats. 3) An identification step is a process in which features extracted from cat faces are used to sort or
compare other data sets using the K-NN method to find the number of similar faces and identify which cat is in the
database. The experimental results found that the developed model for face detection has a mAP value of 0.995 by

the top-5 identification process. The Identification has been shown to be 89% accurate.
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Figure 1 Household growth in the 3rd quarter
of 2021 and 2022
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Figure 4 Examples of cat faces presented
in Lin and Kou'’s research
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Figure 5 Sample image of the results of

cat face landmark and alignment
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Figure 6 Example image of cat face training
with Triplet Network
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Figure 7 Process of feature extraction and
cat face identification
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Table 2  Confusion Matrix
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Figure 9 mAP results from testing a model
for cat face detection

Figure 10 Cat face detection and landmarking
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Figure 11 Example of cat face results in a dataset
for identification
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Figure 12 Loss in training dataset for face classification
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Figure 13 Example distribution of cat face data that has
been processed and reduced to 3D
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Table 3  Model accuracy when adjusting M and k.
Identification accuracy
M k
Average Minimum Maximum

1 1 75.9% 1% 80%
2 3 85.2% 78% 89%
3 4 86.8% 84% 89%
4 5 82.8% 78% 87%

Figure 14 Example of prediction when M=1 and K=5
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Figure 15 Result of Confusion Matrix size 24x24
of 24 classes of cats
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