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Abstract

The primary issues arising from the disruption of traditional face-to-face examinations in the exam room and the shift
to online exams are the unique facial expressions and behaviors of students, which are difficult for humans to
understand. The purposes of this research were to 1) develop a model of educational innovation for the assessment
of fraudulent conduct during online exams, using Atrtificial Intelligence (Al) based on an Automatic Student Facial
Expression Recognition (ASFER) system; 2) evaluate the effectiveness of the model through metrics such as

accuracy, precision, recall, and F-measure; and 3) evaluate the effectiveness of the model in assessing fraudulent
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conduct during online exams, using Al based on an ASFER system during its actual use. The results revealed that
1) the model that was developed addressed the problem based on a deep learning method in artificial intelligence,
consisting of six steps: data collection from online exam videos, data preparation by extracting frames, development
of the Automatic Student Facial Expression Recognition Model, also known as STOU-ASFER using two algorithms:
a convolutional neural network (CNN) and a multilayer perceptron (MLP) for classifying the results into those exhibiting
a regular face and those exhibiting a face showing signs of fraudulent conduct, evaluation of the model using the four
main metrics of accuracy, precision, recall, and F-measure, parameter optimization, and deployment for real-time alerts
and summary reporting. 2) The evaluation of the model showed an accuracy value of 86.2%, a precision value of
77.34%, a recall value of 95.7%, and an F-measure of 85.6%, and 3) the evaluation of the model performed well in
predicting fraudulent behavior in the simulated examination environment. However, the model needs to be improved

for face detection when faces are randomly positioned and when small image sizes are encountered.

Keywords: Facial expressions, online examination, artificial intelligence, convolutional neural network, multi-layer

perceptron
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Figure 6 The video preprocessing step

97N Figure 6 MIkunNINaLEwNTlasns
waslngaalelwmiwnsudesarinsunsd (ixed frame
rate) Garnnuali@andy 25 Wsudadwnd s mFuii
UszAnSuansansnmsuaadaanuuluninlaasnamnany
au uasvimMIauwset i Fowioaamssluns
fwim N IaTasulunside Mediapipe Lﬁ‘aizq
awnsslurinluudasinsy uazuoniamzainvadluni
Waldlumsiaey &9 Figure 7

Figure 7 Cropped face images extracted

from individual frames
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Landmark Detection)
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m@hLﬁumiﬁ'mu@mimn%‘uqﬂé’am@musl,maﬁ'l 33
fiwuad 68 90 §IMIUNIATI 1) NN (jawline) lag
ff’mu@ﬁ;ﬂﬁdm@%ﬂu@im‘uﬁ 0-16 Lﬁ‘ari’muﬂgﬂiwwaa
m’manng‘ﬁnmﬁa“l,ﬂ Fa8ndnanits 2) A (eyebrows) lag
ﬁmuﬂg@é’amﬁé’amﬂﬁamam 17-21 uazmghodeLa
22-26 3) 34N (nose) Iﬂﬂﬁmuﬂﬁ;@%\ﬁmmaﬁmgnéﬁsJ
189 27-30 WazILUNIIFIYNEIBLAY 31-35 4) AN (eyes)
laumMUAIAFINAVINNT NI 36-41 Uaza1Ey
AR 42-47 Lﬁ:auamgﬂiwwaamam uazlfiiansa
SumaaenlnireinisnniansnIzwiuan 5) 1an
(mouth) la slri’mu@ﬁ;@éhmmﬁgﬂmﬁuﬂmnﬁmuanﬁasl
18 48-59 uazUnsdatihnduludqoiay 60-67 e
amvumstadaulnivassuilinn wu MINANLAUYAAA
A o Figure 8

589



590 Walisa Romsaiyud, Supawadee Theerathammakorn,

Pimpaka Prasertsilp and Pirom Konglerd

Figure 8 Setting up facial landmark detection with 68

points on the face

4. mIaNaAmMansMe (Feature extraction)
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Figure 9 The Feature Extraction Step
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7. MIETNILRARIFDL (Post-exam report)
Lﬂu%umauq@ﬁm Fagnannslariinms
FINTUIUFTUNINITFOVUAZWOANTINGG 9 VDY
Tn@nwudazan aaea 3 $alug %aﬁs:nau@"’m%ga
wnAN®A ’5’]%'.1%@]%\‘]"Uadﬂﬂi°qﬁ]%@ LAZLIAN

NANIIALAINN
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e 120 98 ussldnasey 3 Flus sny
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uin 3.10.15 lagmwualilu 1 nihvenssey waad
FUMWUDLANT9IUNIA 5x5 = 25 Tad (NI 25 A) UAT
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Nmmuémﬁwﬁ'@ﬁa)
2. MIMABAAINITALADTVBILARZANDI SN

Table 1 Example of Parameter Settings for the CNN and
MLP Algorithms

Algorithms Types Settings
CNN Conv1 32 filters, kernel size (3, 3), ReLU
MaxPool1 Pool size (2, 2)
Conv2 64 filters, kernel size (3, 3), ReLU
MaxPool2 Pool size (2, 2)
Conv3 128 filters, kernel size (3, 3), ReLU
MaxPool3 Pool size (2, 2)
Dropout 0.25 after pooling layers
MLP Dense1 512 units, ReLU
Dropout 0.5
Dense2 256 units, ReLU
Dropout 0.3
Dense3 128 units, ReLU
Dropout 0.3

Final Dense 1 unit, sigmoid

layer (for binary classification)

97 Table 17 CNN layer MAHATIUIUY D
MINTBIGUAURA 32, 64 UaZ 128 INTDI UAZTNAUATUNA
mamaﬁdlﬂu 2*2 YoIuARZTH Convolution WazAi MLP
layer L’éwﬁuﬁ’mummuﬁqmﬁﬂwmzﬁ 512, 256 LLaz 128
wihe wazludu final layer 15ari4u sigmoid iU luw3
ARR

3. NIKLITEYA
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MM cross validation 184 5-fold cross-validation Lﬁia
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aa9 (nnwuatili 10-fold cross validation ¥in A I
Tuusaz fold tdntinly G’f;awaﬁvl@i‘hjgﬂﬁadwhﬁu 5-fold
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NMIUTHAUHALLLTINDIGIE 4 dana3du
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Lﬁmﬁaoﬁuamgﬂwnm 9119ana358 RNN Uaz LSTM
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e 4 wesnlaun fANugNaad AANNLAKIN A1
ATUNIU @9 Figure 10

Performance Comparison of Algorithms

o
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Figure 10 Compares four algorithms using a confusion

matrix
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270 Figure 10 Az1AnlaindanaIdsn CNN+
MLP fidnanugnead = 85.5% A1ANNUIREN = 75.0%
FANNATUTIN = 94.9% UazA1UIeENINalausIN =
83.7% gmiwﬁana%’%wé"u Faiuwnuideiiadenldanesi
CNN+MLP 8% TURIILUUINRD

5. nmsdSunanidiaas

WuuuNaesnaiumMIUsuudsm e
@199 628 GridSearchCV W91 Optimizer choices NM#AKA
vl adam, conv_filter = 32, dense_units = 512, drop-
out_rate = 0.3, epochs = 200 %aﬁﬂﬁuum"maaﬁ
U3 EnBraatue Table 2

Table 2 Hyperparameter tuning for CNN+MLP models

CNN+MLP

Before Hyperparameter After Hyperparameter

tuning tuning
Accuracy 85.5 86.2
Precision 75.0 77.3
Recall 94.9 95.7
F1 83.7 85.6

27N Table 2 MadIpuifsulse@nualuy
RN aULAZHAINNMTUTULANITAaeT waaslFidAu
'5'1Lmua"maaﬁﬂs:aw%mga%u I@mi'lmmgn@”aa =
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wazAUszANSNalas TN = 85.6%
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WuuUsIaasiU U imeditouses
m@f’nﬁunﬁﬂi:lﬁu@i’m'ﬁgmL%ﬂ (loss) wazenAWYN
@ad283uday epoch laumuuaatdu 50, 100, 200 waz
500 @4 Figure 11
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Train and Validation Accuracy
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Figure 11 Test Loss and Accuracy for Each Epoch (50,
100, 200, 500)
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Table 3 compares the model performance results with

four courses

Course ID

2 c

g 2 =

< o 14 "l
96408 85.4 76.1 95.2 84.6
99419 87.4 79.4 96.5 87.1
99420 84.5 78.2 92.7 84.9
96412 87.5 76.0 98.7 85.8
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