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Abstract
This research aimed to examine game reviews and compare the characteristics of classification models using Thai

language data, particularly in contexts with limited resources. The experiment evaluates the performance of machine
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learning models, including Naive Bayes, support vector machines, and 1D-CNN, and compares them with transformer-
based models, namely BERT Multilingual and WangchanBERTa, in analyzing game-related reviews using a dataset
primarily consisting of Thai-language comments. This research employs Bag of words, TF-IDF, and word2vec
techniques to generate text transformations for machine learning models and CNN model. In contrast, transformer
models employ pre-trained embeddings. The experimental results indicate that WangchanBERTa achieves the highest
overall performance, with an accuracy of 82.16%, a precision of 87.06%, a recall of 86.18%, and an F1-score of
86.62%. Meanwhile, the support vector machine method employing the Bag of Words technique demonstrates the
best performance among the machine learning models, with an accuracy of 81.26%. The experimental findings within
the text transformation methods indicate that feature extraction is a critical factor in optimizing the performance of
machine learning models. The study reveals that feature extraction methods focusing exclusively on individual words,
such as Bag-of-Words and TF-IDF, demonstrate greater effectiveness in feature extraction compared to context-aware
approaches such as word2vec. An analysis of the experimental results reveals that the accuracy of the best-performing
models in both categories differs by approximately 1%. The machine learning models achieve accuracy levels
comparable to those of the transformer models while requiring fewer resources, making them well-suited for resource-

constrained environments.

Keywords: Sentiment analysis, machine learning, feature extraction, natural language processing, game reviews
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Word segmentation techniques Word segmentation

[, Aunn’, a3y, saw, e, oy, aw, Ay, e, UM, N

newmm < A A & @
[lw, e, @, @, B, ‘@nar, ‘creative’, ‘&3, LW, e, 6w, LUy, 2, d]
[naunasy, waw, o, oy, aw, Ay, Liew, GULR LY
Multi_cut - 44 - .
[lw, i, @, B, e, ‘creative’, ‘aw’, lw, nudw, ‘wuw, ‘2, d]
[onar, @, a3y, saw, e, oy, Law, Ay, wilew), GUME !
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[, o, W, @, 1, @, ‘creative’, /Y, LW, e, Gw, LU, 2d]

ANR false 91UIU 9,865 W7 iald
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Wi G9usesh Figure 3 33m1s RUS tuiEnsaasuan
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Figure 3 Graph after performing Random Oversampling
(ROS) technique
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Figure 4 Graph after performing Random Undersam-

pling (RUS) technique
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W07 Waz AR false S1WI% 9,865 U0 Lilald RUS uda
gafnzauaziiiiwin 19,730 und landaaa true U
9,865 L7 WAz ARNE false ITWIW 9,865 LDIYINN 619
Figure 4
3. miﬁﬁ‘ﬂ@mﬁﬂﬂmzﬁtﬂw(Feature Extraction)
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Table 4 Examples of stop word removal.

words words + stop words

LAY, &, 970, AU, 1w, 16, 817, NN, @, L8u, e, Liau,

LA, NU, WD, &N, 1N Py

[&%N, NN, 10, A, Lo, 8%, U6, [FUN, NN, A%, B, LA,
fa, 719, o, aenn, 1au, de, uz, V0309]

VD34, 8]

Table 5 Data splitting.

Dataset Instances True False
Training set 30,505 20,640 9,865
Test set 13,074 8,762 4,312

WAL AN LA AN AW 7S]
anuEdgiluenaInimuavaIzatays
Term Frequency (TF) (dudfiuan

anudzasadwindnngluenss asgunish 1

-
Fwauasaiisidnd € dsingluenans d (1

TF(t,d) =

2
Sunudmanualuends d
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Inverse Document Frequency (IDF)
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Top 10 Most Frequent Words
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Figure 5 Top 10 most frequent words
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Context = {Wi_¢, We—c41s s Wem1, Wit oo s Weac (4)
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4.3 1D-CNN (1D Convolutional Neural
Networks)
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Figure 6 The structure of the BERT model
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Figure 7 The structure of Mask Language Model
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Table 6 Performance comparison of different imbalanced
data handling methods for Naive Bayes classifi-

cation using bag of words representation.
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Table 8 Performance comparison of transformer models.

Evaluation metrics

Evaluating model performance for sentiment analysis on game reviews

Transformer
Model 5-CV F1-
odels Accuracy Precision Recall
(STD) Score
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Table 9 Performance comparison of 1D-CNN model.

Evaluation metrics
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Figure 13 Comparative analysis of the accuracy performance across the three model categories
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Figure 14 Comparison of accuracy and training time across the best-performing model categories

Table 10 A comparison of the training time of sentiment

analysis models

Models Training time (seconds)
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