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ABSTRACT

The Wilcoxon test is commonly used to test whether two independent samples are
drawn from the same population distributions. In many practical situations, the data
in each sample are clustered. The clustered rank sum test was developed for testing
the differences of location parameters from two samples with clustered data.
However, the critical value of the clustered rank sum test for a data set depends on
the sums of observation ranks within clusters. In a balanced design, the data sets
with same numbers of clusters in two samples may use different critical values.
This study proposed adjusted rank test (T) that makes adjustments to sums of
observation ranks in two independent samples. This test used the same critical
values for data sets with equal numbers of clusters. Two tests for the equivalence
distributions of three or more populations were also considered using samples with
clustered data and referred to as modified rank test (T1) and adjusted rank test (Tz).
The simulation study showed that the adjusted rank tests can maintain the sizes of
the tests for all situations. For a small number of clusters and correlation coefficients
between observations in a cluster, the T was the best choice. The empirical power
of the T2 was higher than that of the Kruskal-Wallis test, based on a mean cluster.
The powers of the adjusted tests increased when the number of clusters, number
of observations per cluster, and effect size increased. However, the powers of these
tests decreased when the size of the correlation coefficients between observations
in a cluster increased.

Keywords: clustered data; independent samples; ranks sum test; power of the test

test (Wilcoxon, 1945), which is a nonparametric procedure,
can be used for two independent samples. Mood (1954)

In certain situations, researchers are interested in testing
the null hypothesis that two or more independent samples
are drawn from the same population. In parametric statistics,
the independent samples t-test is widely used to test the
differences between two independent populations. The one-
way analysis of variance F-test is also used to test the null
hypothesis that three or more samples are drawn from
populations with equal means. These tests require random
samples to be drawn from normal distributed populations.
If the assumption of these tests cannot be met, the Wilcoxon
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showed that for very large samples, the power efficiency
of the Wilcoxon test relative to t-tests approaches 95.5%.
The Kruskal-Wallis test is a useful nonparametric tool for
comparing three or more independent samples (Kruskal
and Wallis, 1952). Hodges and Lehmann (1956) showed
that under certain conditions, the relative efficiency of the
Kruskal-Wallis test relative to the usual parametric F-test
may be greater than 1. A common assumption of the t-test,
F-test, Wilcoxon test, and Kruskal-Wallis test is that all
observations are independent.
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In numerous studies, a sample may have clusters of
correlated observations. Examples of clustered data include
the repeated measure of blood pressure of a single unit,
the socioeconomic characteristics of households in a block,
and the mass index of siblings. The test statistic used to
analyze correlated data as independent data is known to
have an inflated probability of making a Type I error. In
parametric approaches, different procedures are used
to test hypotheses with correlated clustered data. Most
theoretical research for clustered data assumes a parametric
model. The adjusted F-test statistic was developed by
using intracorrelation so that the adjusted statistic has
approximately the F distribution with the same degrees of
freedom as those of the F-test statistic (Wu et al.,, 1988). A
two-stage general least squares test was proposed by
transforming observations into uncorrelated ones (Rao
et al, 1993). The two aforementioned tests depend on the
unknown intracorrelation. Lahiri and Yan (2009) proposed
an alternative test that does not require the estimation
of intracorrelation. As for nonparametric approaches,
the relevant literature that incorporates clustered data
is limited. Rosner and Grove (1999) considered the
combination of clustered data in the Mann-Whitney U test.
The estimates of correlation parameters have been used to
correct the estimated variance of the test statistic. The
simulation results showed that the test has an appropriate
Type I error rate in a balanced design with as few as 20
clusters per sample. However, the study did not consider
large sample theory. A large sample randomization test for
clustered data were introduced by applying the approach
of the Wilcoxon test. This refers to as the Rosner, Glynn,
and Lee (RGL) test (Rosner et al,, 2003). The signed rank test
was also developed to compare the parameters under
clustered data settings (Rosner et al.,, 2006). However, under
different data sets with equal numbers of clusters in
samples for a balanced design, the critical values of the
RGL test may be different. In practice, the RGL test requires
researchers to find a critical value for one data set.

To use the same critical value for different data sets,
the RGL test for two independent samples in a balanced
design was adjusted. Under such balanced design, two
tests for testing the differences among three or more
independent samples with clustered data were also considered.
Through a simulation study, the performance of the two
tests was studied in terms of their power and their
capability of controlling the probability of Type I errors.
The efficiency of the proposed tests was compared with
that of alternative tests.

2. MATERIALS AND METHODS

2.1 RGL test for two samples with clustered data
Let X;jx be the k-th observation in the j-th cluster of the
i-th sample for i = 1,2, j = 1,2,...,n;, and k = 1,2,...,m;j,
where n; is the number of clusters in the i-th sample and
my;j is the cluster size of the j-th cluster in the i-th sample.
The indicator §;; denotes the group of the samples;
Siji = 1 if X;j, belongs to the first sample, and 65, = 0
if X;j, belongs to the second sample. The data are presented
in the form of (X, 6) = {(Xijk,&-jk): k=12,..,my,j=
1,2, ..,n;,i =12}

We assumed that clusters are independent and that the
observations within clusters are not. The hypothesis to be
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tested herein is that no difference exists between the
location parameters of two populations. In this work, we
considered a case of balanced design, i.e., the same number
of clustered sizes (mi]- = m) foralli=1,2 andj=1,2,..,n.

Rosner, Glynn, and Lee (2003) proposed the RGL
Wilcoxon rank sum test for clustered data. Let R;; be the
rank of X;j based on the combined samples of all
observations. The sum of ranks from the first sample is
assigned as the test statistic. Let §;; = & for all j =
1,2,...,mand; = 1,2,..,ni. The RGL test statistic can be defined
as:

2 nytn,

W, = Z 8ijRij+,

i=1 j=1

where R;j, = Y}L; R;ji is the sum of observation ranks in
the j-th cluster of the i-th sample.

The RGL method assumes that the observations in a
given cluster are exchangeable. The exact distribution of
W is considered on the basis of random permutation
conditioning on the sum of observation ranks in the j-th
cluster of the i-th sample, R;;,. In deriving the distribution
of the test under a null hypothesis, if n; + n, is small, then
the distribution of W, conditioning on R;;; can be
generated by combining all possible permutations of R,
between two samples. The total number of permutations is

("lr:nz). If ny +mn, is large, then the computation is
intensive. The RGL asymptotic test statistic is:

W,—mn4/(mN-1)

Z = \/Var—(WC) ~N(0,1),
. mn, 2 n; _ M 2
where Var(W,) = NN-1) i=12j=1 [Rif+ 2 ] and

N = n1+n2.

Under mild conditions, the test statistic Z has an
asymptotic standard normal distribution. For unequal
numbers of clusters between two samples (n; # n,),
Rosner et al. (2003) showed that the test statistic may
result in low efficiency.

Note that in the case of different data sets with equal
numbers of clusters in two samples, the set of R;;, in each
data set may be different, although Y2, Zz}il R;j4 of these
data sets are equal. Therefore, if n; + n, is small, then the
critical values of statistic W, for these data sets are
different. To use the same critical values in Section 2.2, one
adjusts the Wilcoxon test to the sums of observation ranks
from clusters as the raw data.

2.2 Adjusted rank test for two samples with
clustered data
Let X;j, and R;j, be the same as those defined in Section
2.1. The balanced design is also considered in this
section. After assigning the ranks to the observations, let
Rij+ = Xi.q Rijk be the sum of observation ranks in the
j-th cluster of the i-th sample. To obtain the same critical
values of the test statistic for different data sets with the same
numbers of clusters, we proposed an adjusted test statistic.
To compute the observed value of the adjusted test
statistic, we combined the two samples and assigned new
ranks to all R;;, in ascending order. The mean of new
ranks is given to the sums of observations with ties. Let Z;;
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be the new rank of R;j,. Let §; = 1 if R;;, belongs to the
first sample and §; = 0 if R;;; belongs to the second
sample. The adjusted rank test-T can be defined as

T =S, ni(n, + 1)'
2

—1 Zn itz 5 iZjj is the sum of the new ranks
from the first sample When the hypothesis about the
difference between two location parameters is tested, the
null hypothesis is rejected for either a sufficiently small or
a sufficiently large value of T. Therefore, we rejected the
null hypothesis at the significance level of a if the
computed value of T is less than or equal to the critical
value of wg /, or greater than or equal to the critical value
of wi_g/,. When the null hypothesis is true, Theorem 1

shows that the sampling distribution for each of (nlrflnz)

permutation of the observation (211, ...,Zlnl) is equally
likely. It should be noted that, under the null hypothesis,
the random vectors (Xn, s X1n1) and (X21, ...,XZHZ) have
the same distribution, with X;; = (X;j, ..., Xijm) consisting
of m exchangeable random variables.

Theorem 1: Let Xi,..,X1pn;X51,.,X2n, be
independently distributed according to a common
continuous distribution. Let Z,, ..., Z1, denote the ranks
of Ryy, ..., Rypn, + in the combined ranking of all ny + n, of
R;j+. Then, the probability of observing (Zy,...,Z15,) is
equal to

where S; =

1
P(le =711, ---,Zln1 = Zlnl) = (n1+n2)
ny

Proof: Rosner et al. (2003) considered the set of R;;,
belonging to the first sample as a random sample of size n,;
from the population {Rij+:i =12;j=1,2,. nl} Thus,
the probability of obtaining Ry14 = 71, - R1n1+ Tin, 1S
equally likely. The new rank Z;; of R;j, is the rank
transformation in which the number of distinct values and
the number of replicated values of Z;; are equivalent to

that of R;j,. Therefore, an observation (rn, s 7’1n1) leads
to the observation (zn,.. Zlnl) The probability of

obtaining (21, ..., Z1,, ) is also equal to W
ny

The adjusted rank test statistic (T) is a mapping from
the original space of W, to a new space of T. As I, is a
discrete random variable, the probability mass function
for the T'is

P(T=1t)= P(W, = w,),
WESTH(E)

where f~! is an inverse mapping from subsets of the
spaces of T to subsets of the space of W..

The procedure for deriving the T is equivalent to that
for the Wilcoxon test statistic and that their distributions
are identical. The critical values of the proposed test
statistic can be easily found in the table of critical values of
the Wilcoxon test statistic. For the T, the critical value is
the same for all data sets when many data sets have
equal numbers of clusters.
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2.3 Rank tests for three or more samples with
clustered data

In this section, we proposed the procedure for the case
in which observations are collected from three or more
independent samples with clustered data. It is assumed
that the observations consist of p > 3 samples. We are
interested in testing the null hypothesis that several
samples are drawn from the same population. Let X be
the k-th observation in cluster j of the i-th sample for i =
12,..,p, j=12,..,n,,and k = 1,2, ..., m;;, where n; is
the number of clusters in the i-th sample and m;; is the
cluster size of the j-th cluster in the i-th sample. The case
of balanced design was also considered, i.e., the same
number of clustered sizes (mij = m,) foralli=12,..,p
and j=1,2,..,n;

To compute the proposed test statistics, we replaced
each observation X;j, with its rank R;;, relative to all
observations in p samples. We assigned rank 1 to the
smallest observation, rank 2 to the next higher
observation, and so on. In the case of ties, the average of
the ranks was assigned. After assigning the ranks to the
observations, let R;j, = Xji;R;j be the sum of
observation ranks in the j-th cluster of the i-th sample.
Corresponding to sample i, i = 1,2, ..., p the sum of ranks
in a sample is computed by W; = Z;.l;l Rij4. The
expectation of the sum of ranks in a sample is equal to

EW) =530 3t U+=w' where N =

P . The modified test- T7 is given by

12 » 1[
—|w; -

_ nim(mN+1) 2
= N(N+1) Zi=1p, ]

2

We conducted an a-level test of the null hypothesis that
the p samples are drawn from the same population. The
statistical value of T; can be compared with the (1 —
@)100%-th percentile of T; under Ho, so that the null
hypothesis is rejected if the observed value of T; is greater
than or equal to this percentile. The exact distribution of
T, is considered on the basis of the permutation procedure
conditioning on the sum of observation ranks in the j-th
cluster of the i-th sample, R;;,. To derive the distribution
of T;, we assumed that the observations in a cluster are
exchangeable. Under the null hypothesis, if N = Zfﬂni is
small, then the distribution of T; conditioning on R;;, can
be generated by combining all possible permutations of
R;j,between p samples. An exhaustive permutation

number of R;j, is . Many data sets have the same

N!
H?:lni!
numbers of clusters for all p samples, the percentiles of T;
may differ between data sets. To obtain the same
percentile of a test statistic, we proposed an adjusted test-
T2.

From the sum of the observation ranks of the j-th
cluster in the i-th sample R;;,, let Z;; be the rank of R;;,

among R11+, ey R1n1+, . R21+, ey R22+, e RP1+' ey anp .
That is, let Z;; be the rank of the pooled samples of N =

Zleni. Let Zizz;l;lZ” be the rank of the sums

associated with the i-th sample for i = 1,2, ...,p. The Tz is
given by the following statistic:
N(N+1)Zl 1 ng 30D
3
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The critical value corresponding to the a-level of statistic
Tz is denoted by t, and is the upper (1 — a)100%-th
percentile under the null hypothesis. Therefore, the null
hypothesis is rejected when the computed value of Tz is
greater than or equal to t,. Similar to the idea of Theorem

1, the probability for each ole permutations of Z;; is

I, ni!
equally likely.

The procedure for constructing the Tz statistic is equivalent
to the Kruskal-Wallis test statistic. Thus, the critical value
of the T2 is obtained by using the critical values for the
Kruskal-Wallis test statistic. In addition, the same critical
values are adopted in using the T for the different data
sets with the same numbers of clusters in p samples.

2.4 Simulation study
A simulation study was conducted to analyze the properties
of the T and Tz, i.e., robustness and power of the test. In
this study, the robustness evaluation was based on Bradley’s
criterion (0.0250, 0.0750) for the significance level of
0.05 (Bradley, 1978). We considered the situation in which
all the observations of a cluster belong to only one sample.
The study was constructed under two and three samples. Let
ni, nz, and nz denote the number of clusters from the first,
second, and third samples, respectively. When the
sample sizes in each sample are equal, the power of the
test is usually high. Thus, we set n1 = nz, in the case of
two samples and nz = nz = nz in the case of three samples.
We generated data X;j, = exp(YL-jk) + (i — 1)d, where
Y= (Yijlr Yijo- .,Yijm) is independent multivariate
normal with mean vector 0 and exchangeable covariance
matrix ), = (1 — p)I + p1, where I is the identity matrix of
size m x m and 1 is the m x m matrix of all elements equal
to 1. This procedure creates log-normal distribution data
with usually skewed distributions, for which rank procedures
are often used.

In the case of two samples, the numbers of clusters in
samples (nz,nz) are equal to (5,5), (7,7), and (10,10) with
cluster sizes m of 2, 4, and 6, respectively. In addition, we
computed the ordinary Wilcoxon rank sum test based on
the cluster means of observations. This test is called the
cluster mean test and denoted it as Twm.

In the case of three samples, the numbers of clusters in
samples (n1,n2,n3) are equal to (4,4,4), (6,6,6), and (8,8,8)
with cluster sizes m of 2, 4, and 6, respectively. In this case,
the Kruskal-Wallis test based on mean cluster observations
was also computed and denoted as Tkw.

For each case involving two and three samples, the
coefficient of correlation between observations in a cluster
(p) was set to be 0.1, 0.3, 0.5, 0.7, and 0.9. The effect size
(d) is equal to 0.0, 0.3, and 0.5. The significance level of
0.05 was used for all tests. For each situation, the rejection
rate was obtained from 10,000 replicates.

3. RESULTS AND DISCUSSION

3.1 Simulation study results

Tables 1 and 2 respectively present the results of the
comparison of the estimated probabilities of Type I
errors and power among T, W,, and Tum for testing the
differences in the location parameters of two populations at
two different effect sizes at the nominal significance
level of 0.05.

When the numbers of clusters in each sample are
equal to (5, 5), (7, 7), and (10, 10), the estimated
probabilities of Type [ errors for all three tests are close to
the significance level of 0.05 and lie in Bradley’s criterion
for all situations (Table 1). Hence, the T, W, and Tu can
control the probabilities of Type I errors for all situations
in this study.

Table 1. Estimated probabilities of Type I errors of adjusted rank test (T), RGL test (W), and cluster mean test (Tu) at

nominal alpha of 0.05

m P (n1,n2)=(5,5) (n1,n2)=(7,7) (n1,n2)=(10,10)
T w, Tu T W, v T W, Tm

2 0.1 0.0479 0.0411 0.0559 0.0466 0.0459 0.0532 0.0481 0.0453 0.0524
0.3 0.0496 0.0442 0.0568 0.0461 0.0455 0.0512 0.0463 0.0458 0.0515
0.5 0.0473 0.0437 0.0542 0.0497 0.0479 0.0531 0.0496 0.0478 0.0532
0.7 0.0527 0.0486 0.0574 0.0519 0.0498 0.0575 0.0521 0.0488 0.0515
0.9 0.0532 0.0479 0.0576 0.0467 0.0463 0.0495 0.0521 0.0503 0.0546

4 0.1 0.0530 0.0431 0.0556 0.0486 0.0435 0.0525 0.0466 0.0426 0.0501
0.3 0.0554 0.0460 0.0568 0.0497 0.0465 0.0532 0.0495 0.0471 0.0510
0.5 0.0525 0.0439 0.0549 0.0519 0.0478 0.0529 0.0499 0.0470 0.0524
0.7 0.0525 0.0447 0.0535 0.0521 0.0474 0.0550 0.0500 0.0469 0.0509
0.9 0.0537 0.0468 0.0555 0.0514 0.0472 0.0525 0.0518 0.0471 0.0521

6 0.1 0.0521 0.0410 0.0554 0.0543 0.0477 0.0540 0.0511 0.0477 0.0512
0.3 0.0552 0.0435 0.0572 0.0560 0.0502 0.0572 0.0488 0.0444 0.0512
0.5 0.0586 0.0482 0.0587 0.0556 0.0497 0.0565 0.0548 0.0496 0.0531
0.7 0.0553 0.0454 0.0558 0.0553 0.0495 0.0555 0.0508 0.0459 0.0530
0.9 0.0543 0.0453 0.0547 0.0492 0.0449 0.0512 0.0527 0.0482 0.0521
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Table 2. Empirical powers of adjusted rank test (T), RGL test (W), and cluster mean test (Tu) at effect size (d) of 0.3, 0.5

Sangngam, P. and Laoarun, W.

and nominal alpha of 0.05
d m 1% (n1,n2)=(5,5) (n1,n2)=(7,7) (n1,n2)=(10,10)
T W, Tn T W, Tn T W, Tu
0.3 2 0.1 0.1046 0.0950 0.0883 0.1280 0.1258 0.0997 0.1676 0.1696 0.1210
0.3 0.0934 0.0893 0.0874 0.1205 0.1217 0.1022 0.1467 0.1525 0.1203
0.5 0.0894 0.0842 0.0822 0.1114 0.1076 0.1002 0.1373 0.1397 0.1193
0.7 0.0880 0.0820 0.0888 0.1041 0.1029 0.1018 0.1285 0.1297 0.1196
0.9 0.0896 0.0810 0.0933 0.0973 0.0929 0.0987 0.1226 0.1222 0.1247
4 0.1 0.1455 0.1263 0.0911 0.1946 0.1894 0.1091 0.2618 0.2647 0.1338
0.3 0.1184 0.1060 0.0900 0.1442 0.1418 0.0990 0.1921 0.1935 0.1239
0.5 0.1015 0.0895 0.0854 0.1244 0.1163 0.0960 0.1665 0.1675 0.1253
0.7 0.0909 0.0797 0.0815 0.1106 0.1059 0.0993 0.1363 0.1341 0.1175
0.9 0.0845 0.0727 0.0821 0.1061 0.0996 0.1037 0.1261 0.1212 0.1210
6 0.1 0.1785 0.1515 0.0965 0.2389 0.2308 0.1171 0.3217 0.3210 0.1426
0.3 0.1267 0.1066 0.0857 0.1617 0.1556 0.1064 0.2155 0.2161 0.1256
0.5 0.1122 0.0974 0.0927 0.1361 0.1311 0.1014 0.1709 0.1745 0.1210
0.7 0.0960 0.0856 0.0879 0.1137 0.1056 0.0974 0.1413 0.1410 0.1123
0.9 0.0875 0.0768 0.0842 0.1025 0.0943 0.0977 0.1267 0.1207 0.1188
0.5 2 0.1 0.1878 0.1772 0.1413 0.2584 0.2565 0.1810 0.3495 0.3594 0.2371
0.3 0.1647 0.1582 0.1374 0.2239 0.2285 0.1781 0.3123 0.3223 0.2395
0.5 0.1502 0.1452 0.1317 0.1980 0.2008 0.1738 0.2712 0.2781 0.2239
0.7 0.1416 0.1366 0.1392 0.1886 0.1869 0.1758 0.2511 0.2579 0.2298
0.9 0.1363 0.1297 0.1450 0.1726 0.1677 0.1751 0.2350 0.2365 0.2327
4 0.1 0.2881 0.2616 0.1559 0.3962 0.3939 0.1998 0.5420 0.5550 0.2696
0.3 0.2162 0.1978 0.1417 0.2892 0.2871 0.1818 0.4034 0.4133 0.2464
0.5 0.1835 0.1648 0.1355 0.2347 0.2310 0.1732 0.3308 0.3404 0.2390
0.7 0.1537 0.1414 0.1309 0.2069 0.2008 0.1751 0.2743 0.2762 0.2282
0.9 0.1366 0.1234 0.1332 0.1811 0.1751 0.1729 0.2400 0.2367 0.2274
6 0.1 0.3588 0.3276 0.1692 0.4963 0.4923 0.2249 0.6453 0.6582 0.2975
0.3 0.2393 0.2183 0.1420 0.3359 0.3272 0.1915 0.4504 0.4641 0.2520
0.5 0.1988 0.1800 0.1447 0.2578 0.2518 0.1782 0.3536 0.3600 0.2402
0.7 0.1631 0.1476 0.1347 0.2075 0.2014 0.1692 0.2844 0.2846 0.2273
0.9 0.1398 0.1254 0.1326 0.1796 0.1702 0.1698 0.2452 0.2411 0.2283

As shown in Table 2, when (nz, nz) = (5,5) and (7,7), with
the correlation coefficient being less than 0.7, the T
achieves the highest empirical power, followed by the W.
However, for (ni, nz) = (10,10), the W, has the highest
empirical power, which is slightly higher than that of the T.

For a given number of clusters (ni, nz), the number of
observations in each cluster (m), the effect size (d), and the
estimated powers of the T and W, decrease as the
correlation coefficients (p) of the observations increase.
However, for a fixed number of clusters, number of
observations in a cluster, and correlation coefficient, the
powers of all three tests increase when the effect size
increases. For a fixed number of observations, coefficient
of correlation, and effect size, the estimated powers of all
three tests increase as the number of cluster increases.
When the number of clusters, coefficient of correlation, and
effect size are given, the estimated power of the T'increases
as the number of observations increases.

Tables 3 and 4 respectively present the results of the
comparison of the estimated probabilities of Type I errors
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and powers of the T2 and Kruskal-Wallis test based on mean
cluster (Tkw) for comparing the location parameters of
three or more populations at two different effect sizes at the
nominal significance level of 0.05.

Table 3 shows that when the numbers of clusters in
each sample are equal to (4,4,4), (6,6,6), and (8,8,8), the
estimated probabilities of Type I errors of both tests are
close to the significance level of 0.05 and lie in Bradley’s
criterion for all situations. Hence, the T2 and Tkw can
control the probabilities of Type I errors for all situations
in this study.

Table 4 shows that, for a given number of clusters (n1,
nz, n3), number of observations in each m, and d, the
empirical powers of the T2 and Txkw tend to decrease to their
corresponding limiting values as p increase. The power of
each test increases with an increase in the number of
observations, effect size, and number of clusters. For all
situations, the T2 is significantly more powerful than Txw,
and their powers tend to one for a large number of clusters
with a large number of observations and low correlation.
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Table 3. Estimated probabilities of Type I errors of adjusted rank test (72) and Kruskal-Wallis test based on the mean
cluster (Tkw) at nominal alpha of 0.05

m P (n1,n2,n3)=(4,4,4) (n1,n2,n3)=(6,6,6) (n1,nz,n3)=(8,8,8)
T Tkw T: Tkw Tz Tkw
2 0.1 0.0459 0.0480 0.0482 0.0445 0.0505 0.0491
0.3 0.0499 0.0495 0.0488 0.0468 0.0533 0.0527
0.5 0.0480 0.0480 0.0517 0.0494 0.0485 0.0485
0.7 0.0508 0.0489 0.0489 0.0455 0.0536 0.0542
0.9 0.0471 0.0482 0.0569 0.0552 0.0497 0.0497
4 0.1 0.0486 0.0485 0.0502 0.0505 0.0523 0.0495
0.3 0.0509 0.0464 0.0479 0.0474 0.0506 0.0508
0.5 0.0472 0.0483 0.0481 0.0487 0.0476 0.0497
0.7 0.0496 0.0497 0.0546 0.0520 0.0514 0.0522
0.9 0.0446 0.0458 0.0515 0.0514 0.0485 0.0491
6 0.1 0.0455 0.0469 0.0493 0.0495 0.0536 0.0520
0.3 0.0462 0.0486 0.0441 0.0452 0.0541 0.0559
0.5 0.0460 0.0466 0.0463 0.0467 0.0472 0.0468
0.7 0.0495 0.0496 0.0506 0.0515 0.0529 0.0514
0.9 0.0501 0.0517 0.0468 0.0466 0.0494 0.0502

Table 4. Empirical powers of adjusted rank test (T2) and Kruskal-Wallis test based on mean cluster (Txw) at effect size (d)
of 0.3, 0.5 and nominal alpha = 0.05

d m P (n1,n2,n3)=(4,4,4) (n1,n2,n3)=(6,6,6) (n1,n2,n3)=(8,8,8)
T Txw T2 Txkw T2 Txw

0.3 2 0.1 0.1409 0.1051 0.2224 0.1433 0.3001 0.1938
0.3 0.1292 0.1021 0.1975 0.1439 0.2689 0.1968

0.5 0.1235 0.1056 0.1836 0.1485 0.2331 0.1851

0.7 0.1175 0.1097 0.1602 0.1395 0.2099 0.1882

0.9 0.1078 0.1088 0.1552 0.1455 0.1987 0.1872

4 0.1 0.2170 0.1206 0.3543 0.1702 0.4738 0.2233
0.3 0.1630 0.1107 0.2478 0.1477 0.3475 0.1961

0.5 0.1335 0.1019 0.1984 0.1390 0.2786 0.1866

0.7 0.1198 0.1064 0.1793 0.1512 0.2311 0.1874

0.9 0.1099 0.1061 0.1546 0.1454 0.1968 0.1849

6 0.1 0.2756 0.1253 0.4462 0.1766 0.6000 0.2500
0.3 0.1846 0.1130 0.2869 0.1553 0.3960 0.2080

0.5 0.1421 0.1039 0.2124 0.1439 0.2963 0.1902

0.7 0.1234 0.1065 0.1850 0.1512 0.2401 0.1872

0.9 0.1151 0.1110 0.1585 0.1493 0.2058 0.1902

0.5 2 0.1 0.2899 0.1994 0.4674 0.3018 0.6039 0.4170
0.3 0.2526 0.1935 0.4096 0.2998 0.5425 0.4057

0.5 0.2343 0.1953 0.3692 0.2967 0.4836 0.3898

0.7 0.2149 0.1971 0.3227 0.2802 0.4372 0.3849

0.9 0.2041 0.1992 0.3071 0.2873 0.4080 0.3912

4 0.1 0.4617 0.2342 0.6985 0.3667 0.8466 0.4962
0.3 0.3319 0.2092 0.5360 0.3182 0.6859 0.4328

0.5 0.2584 0.1915 0.4280 0.2885 0.5636 0.4041

0.7 0.2245 0.1923 0.3554 0.2864 0.4777 0.3940

0.9 0.2047 0.1943 0.3071 0.2847 0.4155 0.3902

6 0.1 0.5696 0.2570 0.8121 0.4100 0.9285 0.5509
0.3 0.3773 0.2184 0.5947 0.3310 0.7484 0.4643

0.5 0.2837 0.2002 0.4406 0.2947 0.6075 0.4199

0.7 0.2359 0.1978 0.3720 0.2950 0.5012 0.3985

0.9 0.2089 0.1956 0.3117 0.2899 0.4209 0.3931
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3.2 Application to real data

In this section, the T2 was applied to the data set from
Crowder and Hand (1989). This data set was used to
study the effect of a vitamin E diet supplement on the
growth of guinea pigs. For each animal, the body weight
(in grams) was recorded at the end of weeks 1, 3, 4, 5, 6,
and 7. All animals were given a growth-inhibiting substance
during week 1 and vitamin E therapy at the beginning of
week 5. Three groups comprising five animals each
received zero, low, and high doses of vitamin E. The main
issue was the possible difference in the growth profiles
of the groups.

The sum of the observation ranks in each cluster and
the cluster mean of observations are given in Table 5.
Using the T2, we found that the testing statistic was equal
to 0.740 and that the exact p-value was equal to 0.725.
The Txkw was equal to 1.340 with an exact p-value equal
to 0.538. The results of the two tests led to no significant
difference in the growth profiles of the three groups.

Table 5. Sum of observation ranks in each cluster and
cluster mean of observations

Group Animal Cluster Cluster
(Cluster) mean rank sum
1 1 471.83 488
2 561.17 255
3 558.83 253
4 571.17 221
5 532.67 357
2 6 552.00 303
7 512.67 395
8 578.67 224
9 621.67 123
10 596.33 178
3 11 600.33 162
12 560.17 272
13 550.17 296
14 595.50 171
15 524.83 374

4. CONCLUSION

Clustered data are common in scientific research. In this
study, we applied the procedure of the Wilcoxon test to
construct the adjusted rank test for the observation
ranks of clustered data of two independent samples. For
a balanced design, this test uses the same critical values
that benefit researchers in testing the differences between
two central tendency populations. We also considered
the clustered rank tests for three or more populations
with clustered data. In this case, the T: was modified by
using the sums of the observation ranks in a cluster to
compute the test statistic. In addition, the procedure of
the Kruskal-Wallis test was applied to adjust the sums of
the observation ranks with clustered data as the raw

. Silpakorn Universtiy

data, i.e,, the T2. For a balanced design, under data sets
with the same numbers of clusters in samples, the T2 also
uses the same critical values. The simulation study
showed that the adjusted rank tests could maintain the
probabilities of Type I errors for all situations. Given a
small number of clusters (ni, nz) = (5,5) and (7,7) and
correlation coefficients (p < 0.7), the T has the highest
empirical power. The Tz, has higher empirical power
than the Kruskal-Wallis based on mean cluster for all
situations. The powers of the two adjusted rank tests
increase when the effect size, number of clusters, and
number of observations increase. However, the powers
of the adjusted rank tests decrease when the correlation
coefficients between observations in clusters increase.
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