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ABSTRACT 
 
The Wilcoxon test is commonly used to test whether two independent samples are 
drawn from the same population distributions. In many practical situations, the data 
in each sample are clustered. The clustered rank sum test was developed for testing 
the differences of location parameters from two samples with clustered data. 
However, the critical value of the clustered rank sum test for a data set depends on 
the sums of observation ranks within clusters. In a balanced design, the data sets 
with same numbers of clusters in two samples may use different critical values. 
This study proposed adjusted rank test (T) that makes adjustments to sums of 
observation ranks in two independent samples. This test used the same critical 
values for data sets with equal numbers of clusters. Two tests for the equivalence 
distributions of three or more populations were also considered using samples with 
clustered data and referred to as modified rank test (T1) and adjusted rank test (T2). 
The simulation study showed that the adjusted rank tests can maintain the sizes of 
the tests for all situations. For a small number of clusters and correlation coefficients 
between observations in a cluster, the T was the best choice. The empirical power 

of the T2 was higher than that of the Kruskal-Wallis test, based on a mean cluster. 

The powers of the adjusted tests increased when the number of clusters, number 
of observations per cluster, and effect size increased. However, the powers of these 
tests decreased when the size of the correlation coefficients between observations 
in a cluster increased. 
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1. INTRODUCTION                                    
 

In certain situations, researchers are interested in testing 
the null hypothesis that two or more independent samples 
are drawn from the same population. In parametric statistics, 
the independent samples t-test is widely used to test the 
differences between two independent populations. The one-
way analysis of variance F-test is also used to test the null 
hypothesis that three or more samples are drawn from 
populations with equal means. These tests require random 
samples to be drawn from normal distributed populations. 
If the assumption of these tests cannot be met, the Wilcoxon 

test (Wilcoxon, 1945), which is a nonparametric procedure, 
can be used for two independent samples. Mood (1954) 
showed that for very large samples, the power efficiency 
of the Wilcoxon test relative to t-tests approaches 95.5%. 
The Kruskal-Wallis test is a useful nonparametric tool for 
comparing three or more independent samples (Kruskal 
and Wallis, 1952). Hodges and Lehmann (1956) showed 
that under certain conditions, the relative efficiency of the 
Kruskal-Wallis test relative to the usual parametric F-test 
may be greater than 1. A common assumption of the t-test, 
F-test, Wilcoxon test, and Kruskal-Wallis test is that all 
observations are independent. 
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      In numerous studies, a sample may have clusters of 
correlated observations. Examples of clustered data include 
the repeated measure of blood pressure of a single unit, 
the socioeconomic characteristics of households in a block, 
and the mass index of siblings. The test statistic used to 
analyze correlated data as independent data is known to 
have an inflated probability of making a Type I error. In 
parametric approaches, different procedures are used 
to test hypotheses with correlated clustered data. Most 
theoretical research for clustered data assumes a parametric 
model. The adjusted F-test statistic was developed by 
using intracorrelation so that the adjusted statistic has 
approximately the F distribution with the same degrees of 
freedom as those of the F-test statistic (Wu et al., 1988). A 
two-stage general least squares test was proposed by 
transforming observations into uncorrelated ones (Rao 
et al., 1993). The two aforementioned tests depend on the 
unknown intracorrelation. Lahiri and Yan (2009) proposed 
an alternative test that does not require the estimation 
of intracorrelation. As for nonparametric approaches, 
the relevant literature that incorporates clustered data 
is limited. Rosner and Grove (1999) considered the 
combination of clustered data in the Mann-Whitney U test. 
The estimates of correlation parameters have been used to 
correct the estimated variance of the test statistic. The 
simulation results showed that the test has an appropriate 
Type I error rate in a balanced design with as few as 20 
clusters per sample. However, the study did not consider 
large sample theory. A large sample randomization test for 
clustered data were introduced by applying the approach 
of the Wilcoxon test. This refers to as the Rosner, Glynn, 
and Lee (RGL) test (Rosner et al., 2003). The signed rank test 
was also developed to compare the parameters under 
clustered data settings (Rosner et al., 2006). However, under 
different data sets with equal numbers of clusters in 
samples for a balanced design, the critical values of the 
RGL test may be different. In practice, the RGL test requires 
researchers to find a critical value for one data set. 
      To use the same critical value for different data sets, 
the RGL test for two independent samples in a balanced 
design was adjusted. Under such balanced design, two 
tests for testing the differences among three or more 
independent samples with clustered data were also considered. 
Through a simulation study, the performance of the two 
tests was studied in terms of their power and their 
capability of controlling the probability of Type I errors. 
The efficiency of the proposed tests was compared with 
that of alternative tests. 
 
 

2. MATERIALS AND METHODS    
 

2.1 RGL test for two samples with clustered data 
Let 𝑋𝑖𝑗𝑘  be the k-th observation in the j-th cluster of the 

i-th sample for i = 1,2, j = 1,2,…,𝑛𝑖 , and k = 1,2,…,𝑚𝑖𝑗 , 

where 𝑛𝑖  is the number of clusters in the i-th sample and 
𝑚𝑖𝑗 is the cluster size of the j-th cluster in the i-th sample. 

The indicator 𝛿𝑖𝑗𝑘  denotes the group of the samples; 

𝛿𝑖𝑗𝑘 = 1  if 𝑋𝑖𝑗𝑘   belongs to the first sample, and 𝛿𝑖𝑗𝑘 = 0 

if 𝑋𝑖𝑗𝑘  belongs to the second sample. The data are presented 

in the form of (X, δ) =  {(𝑋𝑖𝑗𝑘 , 𝛿𝑖𝑗𝑘): 𝑘 = 1,2, … , 𝑚𝑖𝑗 , 𝑗 =

1,2, … , 𝑛𝑖 , 𝑖 = 1,2} 

      We assumed that clusters are independent and that the 
observations within clusters are not. The hypothesis to be 

tested herein is that no difference exists between the 
location parameters of two populations. In this work, we 
considered a case of balanced design, i.e., the same number 

of clustered sizes (𝑚𝑖𝑗 = 𝑚) for all i = 1,2  and j = 1,2,…,ni. 

      Rosner, Glynn, and Lee (2003) proposed the RGL 
Wilcoxon rank sum test for clustered data. Let 𝑅𝑖𝑗𝑘 be the 

rank of 𝑋𝑖𝑗𝑘  based on the combined samples of all 

observations. The sum of ranks from the first sample is 
assigned as the test statistic. Let 𝛿𝑖𝑗 =  𝛿𝑖𝑗𝑘  for all j = 

1,2,…,m and j = 1,2,…,ni. The RGL test statistic can be defined 
as: 
 

𝑊𝑐 =  ∑ ∑ 𝛿𝑖𝑗𝑅𝑖𝑗+

𝑛1+𝑛2

𝑗=1

2

𝑖=1

, 

 

where 𝑅𝑖𝑗+ =  ∑ 𝑅𝑖𝑗𝑘
𝑚
𝑘=1  is the sum of observation ranks in 

the j-th cluster of the i-th sample. 
      The RGL method assumes that the observations in a 
given cluster are exchangeable. The exact distribution of 
Wc is considered on the basis of random permutation 
conditioning on the sum of observation ranks in the j-th 
cluster of the i-th sample, 𝑅𝑖𝑗+. In deriving the distribution 

of the test under a null hypothesis, if 𝑛1 + 𝑛2 is small, then 
the distribution of 𝑊𝑐 conditioning on 𝑅𝑖𝑗+ can be 

generated by combining all possible permutations of 𝑅𝑖𝑗+ 

between two samples. The total number of permutations is 

(𝑛1+𝑛2
𝑛1

). If 𝑛1 + 𝑛2 is large, then the computation is 

intensive. The RGL asymptotic test statistic is: 
 

𝑧 =  
𝑊𝑐−𝑚𝑛1/(𝑚𝑁−1)

√𝑉𝑎𝑟(𝑊𝑐)
~𝑁(0,1), 

 

where 𝑉𝑎𝑟(𝑊𝑐) =
𝑛1𝑛2

𝑁(𝑁−1)
∑ ∑ [𝑅𝑖𝑗+ −

𝑚(1+𝑛𝑀)

2
]

2
𝑛𝑖
𝑗=1

2
𝑖=1 and 

𝑁 =  𝑛1 + 𝑛2. 
       

Under mild conditions, the test statistic Z has an 
asymptotic standard normal distribution. For unequal 
numbers of clusters between two samples (𝑛1 ≠ 𝑛2), 
Rosner et al. (2003) showed that the test statistic may 
result in low efficiency. 
      Note that in the case of different data sets with equal 
numbers of clusters in two samples, the set of 𝑅𝑖𝑗+ in each 

data set may be different, although ∑ ∑ 𝑅𝑖𝑗+
𝑛𝑖
𝑗=1

2
𝑖=1  of these 

data sets are equal. Therefore, if 𝑛1 + 𝑛2 is small, then the 
critical values of statistic 𝑊𝑐 for these data sets are 
different. To use the same critical values in Section 2.2, one 
adjusts the Wilcoxon test to the sums of observation ranks 
from clusters as the raw data. 
 

2.2 Adjusted rank test for two samples with 
clustered data 
Let 𝑋𝑖𝑗𝑘  and 𝑅𝑖𝑗𝑘 be the same as those defined in Section 

2.1. The balanced design is also considered in this 
section. After assigning the ranks to the observations, let 
𝑅𝑖𝑗+ =  ∑ 𝑅𝑖𝑗𝑘

𝑚
𝑘=1  be the sum of observation ranks in the 

j-th cluster of the i-th sample. To obtain the same critical 
values of the test statistic for different data sets with the same 
numbers of clusters, we proposed an adjusted test statistic. 
      To compute the observed value of the adjusted test 
statistic, we combined the two samples and assigned new 
ranks to all 𝑅𝑖𝑗+ in ascending order. The mean of new 

ranks is given to the sums of observations with ties. Let 𝑍𝑖𝑗  



Sangngam, P. and Laoarun, W. 

   
3 

be the new rank of 𝑅𝑖𝑗+. Let 𝛿𝑖 = 1 if 𝑅𝑖𝑗+ belongs to the 

first sample and 𝛿𝑖 = 0 if 𝑅𝑖𝑗+ belongs to the second 

sample. The adjusted rank test-T can be defined as  
 

𝑇 = 𝑆𝑅 −
𝑛1(𝑛1 + 1)

2
, 

 

where 𝑆𝑅 = ∑ ∑ 𝛿𝑖𝑍𝑖𝑗
𝑛𝑖+𝑛2
𝑗=1

2
𝑖=1  is the sum of the new ranks 

from the first sample. When the hypothesis about the 
difference between two location parameters is tested, the 
null hypothesis is rejected for either a sufficiently small or 
a sufficiently large value of T. Therefore, we rejected the 
null hypothesis at the significance level of 𝛼 if the 
computed value of T is less than or equal to the critical 
value of 𝑤𝛼/2 or greater than or equal to the critical value 

of 𝑤1−𝛼/2. When the null hypothesis is true, Theorem 1 

shows that the sampling distribution for each of (𝑛1+𝑛2
𝑛1

) 

permutation of the observation (𝑧11, … , 𝑧1𝑛1
) is equally 

likely. It should be noted that, under the null hypothesis, 

the random vectors (X11, … , X1n1
) and (X21, … , X2n2

) have 

the same distribution, with Xij = (𝑋𝑖𝑗𝑙 , … , 𝑋𝑖𝑗𝑚) consisting 

of 𝑚 exchangeable random variables. 
      Theorem 1: Let X11, … , X1𝑛1

; X21, … , X2𝑛2
 be 

independently distributed according to a common 
continuous distribution. Let Z11, … , Z1𝑛1

denote the ranks 

of R11, … , R1𝑛1+ in the combined ranking of all 𝑛1 + 𝑛2 of 

𝑅𝑖𝑗+. Then, the probability of observing (Z11 , … , Z1𝑛1
) is 

equal to 
 

P(Z11 = z11, … , Z1𝑛1
= z1𝑛1

) =
1

(𝑛1+𝑛2
𝑛1

)
 

 

      Proof: Rosner et al. (2003) considered the set of 𝑅𝑖𝑗+ 

belonging to the first sample as a random sample of size 𝑛1 

from the population {𝑅𝑖𝑗+: 𝑖 = 1,2; 𝑗 = 1,2, … , 𝑛𝑖}. Thus, 

the probability of obtaining 𝑅11+ = 𝑟11, … , 𝑅1𝑛1+ = 𝑟1𝑛1
is 

equally likely. The new rank 𝑍𝑖𝑗  of 𝑅𝑖𝑗+ is the rank 

transformation in which the number of distinct values and 
the number of replicated values of 𝑍𝑖𝑗  are equivalent to 

that of 𝑅𝑖𝑗+. Therefore, an observation (𝑟11, … , 𝑟1𝑛1
) leads 

to the observation (𝑧11, … , 𝑧1𝑛1
). The probability of 

obtaining (𝑧11, … , 𝑧1𝑛1
) is also equal to 

1

(𝑛1+𝑛2
𝑛1

)
. 

      The adjusted rank test statistic (T) is a mapping from 
the original space of 𝑊𝑐 to a new space of T. As 𝑊𝑐 is a 
discrete random variable, the probability mass function 
for the T is 
 

P(𝑇 = 𝑡) = ∑ 𝑃(𝑊𝑐 = 𝑤𝑐),

𝑤𝑐∈𝑓−1(𝑡)

 

 
where 𝑓−1 is an inverse mapping from subsets of the 
spaces of T to subsets of the space of 𝑊𝑐 . 
      The procedure for deriving the T is equivalent to that 
for the Wilcoxon test statistic and that their distributions 
are identical. The critical values of the proposed test 
statistic can be easily found in the table of critical values of 
the Wilcoxon test statistic. For the T, the critical value is 
the same for all data sets when many data sets have 
equal numbers of clusters. 
 

2.3 Rank tests for three or more samples with 
clustered data 
In this section, we proposed the procedure for the case 
in which observations are collected from three or more 
independent samples with clustered data . It is assumed 
that the observations consist of 𝑝 ≥ 3 samples. We are 
interested in testing the null hypothesis that several 
samples are drawn from the same population. Let 𝑋𝑖𝑗𝑘  be 

the k-th observation in cluster j of the i-th sample for 𝑖 =
1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑛𝑖 , , and 𝑘 = 1,2, … , 𝑚𝑖𝑗 , where 𝑛𝑖   is 

the number of clusters in the i-th sample and 𝑚𝑖𝑗 is the 

cluster size of the j-th cluster in the i-th sample. The case 
of balanced design was also considered, i.e., the same 

number of clustered sizes (𝑚𝑖𝑗 = 𝑚, ) for all 𝑖 = 1,2, … , 𝑝 

and  𝑗 = 1,2, … , 𝑛𝑖 . 
      To compute the proposed test statistics, we replaced 
each observation 𝑋𝑖𝑗𝑘  with its rank 𝑅𝑖𝑗𝑘 relative to all 

observations in p samples. We assigned rank 1 to the 
smallest observation, rank 2 to the next higher 
observation, and so on. In the case of ties, the average of 
the ranks was assigned. After assigning the ranks to the 
observations, let 𝑅𝑖𝑗+ =  ∑ 𝑅𝑖𝑗𝑘

𝑚
𝑘=1  be the sum of 

observation ranks in the j-th cluster of the i-th sample. 
Corresponding to sample i, 𝑖 = 1,2, … , 𝑝 the sum of ranks 

in a sample is computed by 𝑊𝑖 =  ∑ 𝑅𝑖𝑗+
𝑛𝑖
𝑗=1 . The 

expectation of the sum of ranks in a sample is equal to 

𝐸(𝑊𝑖) =
𝑛𝑖

𝑁
∑ ∑ 𝑅𝑖𝑗+ =

𝑛𝑖𝑚(𝑚𝑁+1)

2

𝑛𝑖
𝑗=1

𝑝
𝑖=1 , where 𝑁 =

∑ 𝑛𝑖
𝑝
𝑖=1 . The modified test- T1 is given by 

 

𝑇1 =
12

𝑁(𝑁+1)
∑

1

𝑛𝑖

𝑝
𝑖=1 [𝑊𝑖 −

𝑛𝑖𝑚(𝑚𝑁+1)

2
]

2
. 

 
      We conducted an 𝛼-level test of the null hypothesis that 
the p samples are drawn from the same population. The 
statistical value of 𝑇1 can be compared with the (1 −
𝛼)100%-th percentile of 𝑇1 under H0, so that the null 
hypothesis is rejected if the observed value of 𝑇1 is greater 
than or equal to this percentile. The exact distribution of 
𝑇1 is considered on the basis of the permutation procedure 
conditioning on the sum of observation ranks in the j-th 
cluster of the i-th sample, 𝑅𝑖𝑗+. To derive the distribution 

of 𝑇1, we assumed that the observations in a cluster are 
exchangeable. Under the null hypothesis, if 𝑁 = ∑ 𝑛𝑖

𝑝
𝑖=1  is 

small, then the distribution of 𝑇1 conditioning on 𝑅𝑖𝑗+ can 

be generated by combining all possible permutations of 
𝑅𝑖𝑗+between p samples. An exhaustive permutation 

number of 𝑅𝑖𝑗+ is 
𝑁!

∏ 𝑛𝑖!
𝑝
𝑖=1

. Many data sets have the same 

numbers of clusters for all p samples, the percentiles of 𝑇1 
may differ between data sets. To obtain the same 
percentile of a test statistic, we proposed an adjusted test-
T2. 

      From the sum of the observation ranks of the j-th 
cluster in the i-th sample 𝑅𝑖𝑗+, let 𝑍𝑖𝑗  be the rank of 𝑅𝑖𝑗+ 

among 𝑅11+, … , 𝑅1𝑛1+, . 𝑅21+, … , 𝑅22+, … , . 𝑅𝑝1+, … , 𝑅p𝑛𝑝+. 

That is, let 𝑍𝑖𝑗  be the rank of the pooled samples of 𝑁 =

∑ 𝑛𝑖
𝑝
𝑖=1 . Let 𝑍𝑖 = ∑ 𝑍𝑖𝑗

𝑛𝑖
𝑗=1  be the rank of the sums 

associated with the i-th sample for 𝑖 = 1,2, … , 𝑝. The T2 is 
given by the following statistic: 
 

𝑇2 =
12

𝑁(𝑁+1)
∑

𝑍𝑖
2

𝑛𝑖

𝑝
𝑖=1 − 3(𝑁 + 1). 
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      The critical value corresponding to the 𝛼-level of statistic 
T2 is denoted by 𝑡𝛼 and is the upper (1 − 𝛼)100%-th 
percentile under the null hypothesis. Therefore, the null 
hypothesis is rejected when the computed value of T2 is 
greater than or equal to 𝑡𝛼. Similar to the idea of Theorem 

1, the probability for each of 
𝑁!

∏ 𝑛𝑖!
𝑝
𝑖=1

  permutations of 𝑍𝑖𝑗  is 

equally likely. 
      The procedure for constructing the T2 statistic is equivalent 
to the Kruskal-Wallis test statistic. Thus, the critical value 
of the T2 is obtained by using the critical values for the 
Kruskal-Wallis test statistic. In addition, the same critical 
values are adopted in using the T2 for the different data 
sets with the same numbers of clusters in p samples. 
 

2.4 Simulation study 
A simulation study was conducted to analyze the properties 
of the T and T2, i.e., robustness and power of the test. In 
this study, the robustness evaluation was based on Bradley’s 
criterion (0.0250, 0.0750) for the significance level of 
0.05 (Bradley, 1978). We considered the situation in which 
all the observations of a cluster belong to only one sample. 
The study was constructed under two and three samples. Let 
n1, n2, and n3 denote the number of clusters from the first, 
second, and third samples, respectively. When the 
sample sizes in each sample are equal, the power of the 
test is usually high. Thus, we set n1 = n2, in the case of 
two samples and n1 = n2 = n3 in the case of three samples. 

      We generated data 𝑋𝑖𝑗𝑘 = exp(𝑌𝑖𝑗𝑘) + (𝑖 − 1)𝑑, where 

𝒀𝑖𝑗 = (𝑌𝑖𝑗1, 𝑌𝑖𝑗2, . . , 𝑌𝑖𝑗𝑚) is independent multivariate 

normal with mean vector 0 and exchangeable covariance 
matrix ∑ = (1 − 𝜌)𝐈 + 𝜌𝟏, where I is the identity matrix of 
size m ꓫ m and 1 is the m ꓫ m matrix of all elements equal  
to 1. This procedure creates log-normal distribution data 
with usually skewed distributions, for which rank procedures 
are often used. 

      In the case of two samples, the numbers of clusters in 
samples (n1,n2) are equal to (5,5), (7,7), and (10,10) with 
cluster sizes m  of 2, 4, and 6, respectively. In addition, we 
computed the ordinary Wilcoxon rank sum test based on 
the cluster means of observations. This test is called the 
cluster mean test and denoted it as TM. 
      In the case of three samples, the numbers of clusters in 
samples (n1,n2,n3) are equal to (4,4,4), (6,6,6), and (8,8,8) 
with cluster sizes m of 2, 4, and 6, respectively. In this case, 
the Kruskal-Wallis test based on mean cluster observations 
was also computed and denoted as TKW.  
      For each case involving two and three samples, the 
coefficient of correlation between observations in a cluster 
(𝜌) was set to be 0.1, 0.3, 0.5, 0.7, and 0.9. The effect size 
(d) is equal to 0.0, 0.3, and 0.5. The significance level of 
0.05 was used for all tests. For each situation, the rejection 
rate was obtained from 10,000 replicates. 
 
 

3. RESULTS AND DISCUSSION 
 

3.1 Simulation study results 
Tables 1 and 2 respectively present the results of the 
comparison of the estimated probabilities of Type  I 
errors and power among T, 𝑊𝑐 , and TM for testing the 
differences in the location parameters of two populations at 
two different effect sizes at the nominal significance 
level of 0.05.  

      When the numbers of clusters in each sample are 
equal to (5, 5), (7, 7), and (10, 10), the estimated 
probabilities of Type I errors for all three tests are close to 
the significance level of 0.05 and lie in Bradley’s criterion 
for all situations (Table 1). Hence, the T, 𝑊𝑐 , and TM can 
control the probabilities of Type I errors for all situations 
in this study.  

 

Table 1. Estimated probabilities of Type I errors of adjusted rank test (T), RGL test (𝑊𝑐), and cluster mean test (TM) at 
nominal alpha of 0.05 
 

m 
 

(n1,n2)=(5,5) 
 

(n1,n2)=(7,7) 
 

(n1,n2)=(10,10) 

T 𝑾𝒄 TM  
 

T 𝑾𝒄 TM  
 

T 𝑾𝒄 TM  

2 0.1 0.0479 0.0411 0.0559 
 

0.0466 0.0459 0.0532 
 

0.0481 0.0453 0.0524 

0.3 0.0496 0.0442 0.0568 
 

0.0461 0.0455 0.0512 
 

0.0463 0.0458 0.0515 

0.5 0.0473 0.0437 0.0542 
 

0.0497 0.0479 0.0531 
 

0.0496 0.0478 0.0532 

0.7 0.0527 0.0486 0.0574 
 

0.0519 0.0498 0.0575 
 

0.0521 0.0488 0.0515 

0.9 0.0532 0.0479 0.0576 
 

0.0467 0.0463 0.0495 
 

0.0521 0.0503 0.0546 

4 0.1 0.0530 0.0431 0.0556 
 

0.0486 0.0435 0.0525 
 

0.0466 0.0426 0.0501 

0.3 0.0554 0.0460 0.0568 
 

0.0497 0.0465 0.0532 
 

0.0495 0.0471 0.0510 

0.5 0.0525 0.0439 0.0549 
 

0.0519 0.0478 0.0529 
 

0.0499 0.0470 0.0524 

0.7 0.0525 0.0447 0.0535 
 

0.0521 0.0474 0.0550 
 

0.0500 0.0469 0.0509 

0.9 0.0537 0.0468 0.0555 
 

0.0514 0.0472 0.0525 
 

0.0518 0.0471 0.0521 

6 0.1 0.0521 0.0410 0.0554 
 

0.0543 0.0477 0.0540 
 

0.0511 0.0477 0.0512 

0.3 0.0552 0.0435 0.0572 
 

0.0560 0.0502 0.0572 
 

0.0488 0.0444 0.0512 

0.5 0.0586 0.0482 0.0587 
 

0.0556 0.0497 0.0565 
 

0.0548 0.0496 0.0531 

0.7 0.0553 0.0454 0.0558 
 

0.0553 0.0495 0.0555 
 

0.0508 0.0459 0.0530 

0.9 0.0543 0.0453 0.0547 
 

0.0492 0.0449 0.0512 
 

0.0527 0.0482 0.0521 
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Table 2. Empirical powers of adjusted rank test (T), RGL test (𝑊𝑐), and cluster mean test (TM) at effect size (d) of 0.3, 0.5 
and nominal alpha of 0.05 
 

d m 
 

(n1,n2)=(5,5)  (n1,n2)=(7,7)  (n1,n2)=(10,10) 

T 𝑾𝒄 TM   T 𝑾𝒄 TM   T 𝑾𝒄 TM  

0.3 2 0.1 0.1046 0.0950 0.0883  0.1280 0.1258 0.0997  0.1676 0.1696 0.1210 

0.3 0.0934 0.0893 0.0874  0.1205 0.1217 0.1022  0.1467 0.1525 0.1203 

0.5 0.0894 0.0842 0.0822  0.1114 0.1076 0.1002  0.1373 0.1397 0.1193 

0.7 0.0880 0.0820 0.0888  0.1041 0.1029 0.1018  0.1285 0.1297 0.1196 

0.9 0.0896 0.0810 0.0933  0.0973 0.0929 0.0987  0.1226 0.1222 0.1247 

4 0.1 0.1455 0.1263 0.0911  0.1946 0.1894 0.1091  0.2618 0.2647 0.1338 

0.3 0.1184 0.1060 0.0900  0.1442 0.1418 0.0990  0.1921 0.1935 0.1239 

0.5 0.1015 0.0895 0.0854  0.1244 0.1163 0.0960  0.1665 0.1675 0.1253 

0.7 0.0909 0.0797 0.0815  0.1106 0.1059 0.0993  0.1363 0.1341 0.1175 

0.9 0.0845 0.0727 0.0821  0.1061 0.0996 0.1037  0.1261 0.1212 0.1210 

6 0.1 0.1785 0.1515 0.0965  0.2389 0.2308 0.1171  0.3217 0.3210 0.1426 

0.3 0.1267 0.1066 0.0857  0.1617 0.1556 0.1064  0.2155 0.2161 0.1256 

0.5 0.1122 0.0974 0.0927  0.1361 0.1311 0.1014  0.1709 0.1745 0.1210 

0.7 0.0960 0.0856 0.0879  0.1137 0.1056 0.0974  0.1413 0.1410 0.1123 

0.9 0.0875 0.0768 0.0842  0.1025 0.0943 0.0977  0.1267 0.1207 0.1188 

0.5 2 0.1 0.1878 0.1772 0.1413  0.2584 0.2565 0.1810  0.3495 0.3594 0.2371 

0.3 0.1647 0.1582 0.1374  0.2239 0.2285 0.1781  0.3123 0.3223 0.2395 

0.5 0.1502 0.1452 0.1317  0.1980 0.2008 0.1738  0.2712 0.2781 0.2239 

0.7 0.1416 0.1366 0.1392  0.1886 0.1869 0.1758  0.2511 0.2579 0.2298 

0.9 0.1363 0.1297 0.1450  0.1726 0.1677 0.1751  0.2350 0.2365 0.2327 

4 0.1 0.2881 0.2616 0.1559  0.3962 0.3939 0.1998  0.5420 0.5550 0.2696 

0.3 0.2162 0.1978 0.1417  0.2892 0.2871 0.1818  0.4034 0.4133 0.2464 

0.5 0.1835 0.1648 0.1355  0.2347 0.2310 0.1732  0.3308 0.3404 0.2390 

0.7 0.1537 0.1414 0.1309  0.2069 0.2008 0.1751  0.2743 0.2762 0.2282 

0.9 0.1366 0.1234 0.1332  0.1811 0.1751 0.1729  0.2400 0.2367 0.2274 

6 0.1 0.3588 0.3276 0.1692  0.4963 0.4923 0.2249  0.6453 0.6582 0.2975 

0.3 0.2393 0.2183 0.1420  0.3359 0.3272 0.1915  0.4504 0.4641 0.2520 

0.5 0.1988 0.1800 0.1447  0.2578 0.2518 0.1782  0.3536 0.3600 0.2402 

0.7 0.1631 0.1476 0.1347  0.2075 0.2014 0.1692  0.2844 0.2846 0.2273 

0.9 0.1398 0.1254 0.1326  0.1796 0.1702 0.1698  0.2452 0.2411 0.2283 

      As shown in Table 2, when (n1, n2) = (5,5) and (7,7), with 
the correlation coefficient being less than 0.7, the T 
achieves the highest empirical power, followed by the 𝑊𝑐 . 
However, for (n1, n2) = (10,10), the 𝑊𝑐 has the highest 
empirical power, which is slightly higher than that of the T. 
      For a given number of clusters (n1, n2), the number of 
observations in each cluster (m), the effect size (d), and the 
estimated powers of the T and 𝑊𝑐 decrease as the 
correlation coefficients (𝜌) of the observations increase. 
However, for a fixed number of clusters, number of 
observations in a cluster, and correlation coefficient, the 
powers of all three tests increase when the effect size 
increases. For a fixed number of observations, coefficient 
of correlation, and effect size, the estimated powers of all 
three tests increase as the number of cluster increases. 
When the number of clusters, coefficient of correlation, and 
effect size are given, the estimated power of the T increases 
as the number of observations increases. 
      Tables 3 and 4 respectively present the results of the 
comparison of the estimated probabilities of Type I errors  

and powers of the T2 and Kruskal-Wallis test based on mean 
cluster (TKW) for comparing the location parameters of 
three or more populations at two different effect sizes at the 
nominal significance level of 0.05. 
      Table 3 shows that when the numbers of clusters in 
each sample are equal to (4,4,4), (6,6,6), and (8,8,8), the 
estimated probabilities of Type I errors of both tests are 
close to the significance level of 0.05 and lie in Bradley’s 
criterion for all situations. Hence, the T2 and TKW can 
control the probabilities of Type I errors for all situations 
in this study. 
      Table 4 shows that, for a given number of clusters (n1, 
n2, n3), number of observations in each m, and d, the 
empirical powers of the T2 and TKW tend to decrease to their 
corresponding limiting values as 𝜌 increase. The power of 
each test increases with an increase in the number of 
observations, effect size, and number of clusters. For all 
situations, the T2 is significantly more powerful than TKW, 
and their powers tend to one for a large number of clusters 
with a large number of observations and low correlation. 
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Table 3. Estimated probabilities of Type I errors of adjusted rank test (T2) and Kruskal-Wallis test based on the mean 
cluster (TKW) at nominal alpha of 0.05 
 

m 
 

(n1,n2,n3)=(4,4,4)  (n1,n2,n3)=(6,6,6)  (n1,n2,n3)=(8,8,8) 

T2 TKW   T2 TKW   T2 TKW  

2 0.1 0.0459 0.0480 
 

0.0482 0.0445 
 

0.0505 0.0491 

0.3 0.0499 0.0495 
 

0.0488 0.0468 
 

0.0533 0.0527 

0.5 0.0480 0.0480 
 

0.0517 0.0494 
 

0.0485 0.0485 

0.7 0.0508 0.0489 
 

0.0489 0.0455 
 

0.0536 0.0542 

0.9 0.0471 0.0482 
 

0.0569 0.0552 
 

0.0497 0.0497 

4 0.1 0.0486 0.0485 
 

0.0502 0.0505 
 

0.0523 0.0495 

0.3 0.0509 0.0464 
 

0.0479 0.0474 
 

0.0506 0.0508 

0.5 0.0472 0.0483 
 

0.0481 0.0487 
 

0.0476 0.0497 

0.7 0.0496 0.0497 
 

0.0546 0.0520 
 

0.0514 0.0522 

0.9 0.0446 0.0458 
 

0.0515 0.0514 
 

0.0485 0.0491 

6 0.1 0.0455 0.0469 
 

0.0493 0.0495 
 

0.0536 0.0520 

0.3 0.0462 0.0486 
 

0.0441 0.0452 
 

0.0541 0.0559 

0.5 0.0460 0.0466 
 

0.0463 0.0467 
 

0.0472 0.0468 

0.7 0.0495 0.0496 
 

0.0506 0.0515 
 

0.0529 0.0514 

0.9 0.0501 0.0517  0.0468 0.0466  0.0494 0.0502 

 
Table 4. Empirical powers of adjusted rank test (T2) and Kruskal-Wallis test based on mean cluster (TKW) at effect size (d) 
of 0.3, 0.5 and nominal alpha = 0.05 
 

d m 
 

(n1,n2,n3)=(4,4,4) 
 

(n1,n2,n3)=(6,6,6)  (n1,n2,n3)=(8,8,8) 

T2 TKW  
 

T2 TKW  
 

T2 TKW  

0.3 2 0.1 0.1409 0.1051 
 

0.2224 0.1433 
 

0.3001 0.1938 

0.3 0.1292 0.1021 
 

0.1975 0.1439 
 

0.2689 0.1968 

0.5 0.1235 0.1056 
 

0.1836 0.1485 
 

0.2331 0.1851 

0.7 0.1175 0.1097 
 

0.1602 0.1395 
 

0.2099 0.1882 

0.9 0.1078 0.1088 
 

0.1552 0.1455 
 

0.1987 0.1872 

4 0.1 0.2170 0.1206 
 

0.3543 0.1702 
 

0.4738 0.2233 

0.3 0.1630 0.1107 
 

0.2478 0.1477 
 

0.3475 0.1961 

0.5 0.1335 0.1019 
 

0.1984 0.1390 
 

0.2786 0.1866 

0.7 0.1198 0.1064 
 

0.1793 0.1512 
 

0.2311 0.1874 

0.9 0.1099 0.1061 
 

0.1546 0.1454 
 

0.1968 0.1849 

6 0.1 0.2756 0.1253 
 

0.4462 0.1766 
 

0.6000 0.2500 

0.3 0.1846 0.1130 
 

0.2869 0.1553 
 

0.3960 0.2080 

0.5 0.1421 0.1039 
 

0.2124 0.1439 
 

0.2963 0.1902 

0.7 0.1234 0.1065 
 

0.1850 0.1512 
 

0.2401 0.1872 

0.9 0.1151 0.1110 
 

0.1585 0.1493 
 

0.2058 0.1902 

0.5 2 0.1 0.2899 0.1994 
 

0.4674 0.3018 
 

0.6039 0.4170 

0.3 0.2526 0.1935 
 

0.4096 0.2998 
 

0.5425 0.4057 

0.5 0.2343 0.1953 
 

0.3692 0.2967 
 

0.4836 0.3898 

0.7 0.2149 0.1971 
 

0.3227 0.2802 
 

0.4372 0.3849 

0.9 0.2041 0.1992 
 

0.3071 0.2873 
 

0.4080 0.3912 

4 0.1 0.4617 0.2342 
 

0.6985 0.3667 
 

0.8466 0.4962 

0.3 0.3319 0.2092 
 

0.5360 0.3182 
 

0.6859 0.4328 

0.5 0.2584 0.1915 
 

0.4280 0.2885 
 

0.5636 0.4041 

0.7 0.2245 0.1923 
 

0.3554 0.2864 
 

0.4777 0.3940 

0.9 0.2047 0.1943 
 

0.3071 0.2847 
 

0.4155 0.3902 

6 0.1 0.5696 0.2570 
 

0.8121 0.4100 
 

0.9285 0.5509 

0.3 0.3773 0.2184 
 

0.5947 0.3310 
 

0.7484 0.4643 

0.5 0.2837 0.2002 
 

0.4406 0.2947 
 

0.6075 0.4199 

0.7 0.2359 0.1978 
 

0.3720 0.2950 
 

0.5012 0.3985 

0.9 0.2089 0.1956 
 

0.3117 0.2899 
 

0.4209 0.3931 
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3.2 Application to real data 
In this section, the T2 was applied to the data set from 
Crowder and Hand (1989). This data set was used to 
study the effect of a vitamin E diet supplement on the 
growth of guinea pigs. For each animal, the body weight 
(in grams) was recorded at the end of weeks 1, 3, 4, 5, 6, 
and 7. All animals were given a growth-inhibiting substance 
during week 1 and vitamin E therapy at the beginning of 
week 5. Three groups comprising five animals each 
received zero, low, and high doses of vitamin E. The main 
issue was the possible difference in the growth profiles 
of the groups. 
      The sum of the observation ranks in each cluster and 
the cluster mean of observations are given in Table 5. 
Using the T2, we found that the testing statistic was equal 
to 0.740 and that the exact p-value was equal to 0.725. 
The TKW was equal to 1.340 with an exact p-value equal 
to 0.538. The results of the two tests led to no significant 
difference in the growth profiles of the three groups. 
 
Table 5. Sum of observation ranks in each cluster and 
cluster mean of observations 
 

Group Animal 
(Cluster) 

Cluster 
mean 

Cluster 
rank sum 

1 1 471.83 488  
2 561.17 255  
3 558.83 253  
4 571.17 221  
5 532.67 357 

2 6 552.00 303  
7 512.67 395  
8 578.67 224  
9 621.67 123  

10 596.33 178 

3 11 600.33 162  
12 560.17 272  
13 550.17 296  
14 595.50 171  
15 524.83 374 

 
 

4. CONCLUSION 
 

Clustered data are common in scientific research. In this 
study, we applied the procedure of the Wilcoxon test to 
construct the adjusted rank test for the observation 
ranks of clustered data of two independent samples . For 
a balanced design, this test uses the same critical values 
that benefit researchers in testing the differences between 
two central tendency populations. We also considered 
the clustered rank tests for three or more populations 
with clustered data. In this case, the T1 was modified by 
using the sums of the observation ranks in a cluster to 
compute the test statistic. In addition, the procedure of 
the Kruskal-Wallis test was applied to adjust the sums of 
the observation ranks with clustered data as the raw 

data, i.e., the T2. For a balanced design, under data sets 
with the same numbers of clusters in samples, the T2 also 
uses the same critical values. The simulation study 
showed that the adjusted rank tests could maintain the 
probabilities of Type I errors for all situations. Given a 
small number of clusters (n1, n2) = (5,5) and (7,7) and 
correlation coefficients (𝜌 < 0.7), the T has the highest 
empirical power. The T2, has higher empirical power 
than the Kruskal-Wallis based on mean cluster for all 
situations. The powers of the two adjusted rank tests 
increase when the effect size, number of clusters, and 
number of observations increase. However, the powers 
of the adjusted rank tests decrease when the correlation 
coefficients between observations in clusters increase . 
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