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ABSTRACT

A time series analysis model. Could provide useful information to facilitate the
planning of public health interventions to minimize the frequency of dengue fever
(DF) outbreaks. The objectives of this study were to analyze the trend of monthly
DF cases from Kuantan, Malaysia during 2011-2019 to develop a seasonal
autoregressive integrated moving average (SARIMA) model, test the accuracy of
model parameters by forecasting monthly cases of DF in 2018 and comparing it with
actual monthly cases of DF in 2018, and construct a SARIMA model, by adopting
the Box-Jenkins method, to forecast the monthly DF cases in 2019. Monthly-
confirmed DF cases from 2011 to 2018 fit the model while the prediction was
validated using epidemiological data from January 2018 to December 2018. The
study concluded that the SARIMA (0,1,0) (3,0,2)12 model was the best-fit and could
be used to extrapolate case numbers up to 12 months in advance. Our predicted
number of monthly DF cases in 2019 was relatively close to the actual number of
monthly DF cases and fell within the confidence interval. Therefore, the SARIMA
model developed by this study is capable of accurately forecasting and predicting
future DF cases. This can help improve existing intervention programs, which are
an integral component of minimizing the burden of the disease in Kuantan.
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predict future occurrences of DF by assessing past trends,
which is achieved by analyzing a continuous sequence of

Dengue fever (DF) is a burgeoning public health problem
in Malaysia (Bujang et al., 2017). Therefore, formulating
disease prevention, intervention, and control methodologies
are vital to reduce the likelihood of new infection as well
as the burden of the disease in the country. The proposed
strategies would be more effective if they were supported
by accurate statistical and scientific data. Time series
analysis is one of the statistical techniques that is used to
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numerical data points. In an investment industry, for
instance, time series is represented by the movement of
specific data points, such as the price of a commodity; over
a specified period with regularly reported data points.
There is no time period to allow policy makers or analysts
to obtain important and highly sought-after data. Often,
time series analysis is related to trend analysis, cyclical
fluctuation analysis and issues of seasonality. For example,
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disease such as malaria or tuberculosis can be analyzed
daily, weekly or by a monthly basis. Time series analysis
will also show whether the disease is seasonal by
evaluating if it goes through peaks and troughs at specific
times of the year. The onset of DF in Malaysia backdated to
1901, following its transmission from Singapore to Penang
(Skae, 1902). The first outbreak of epidemic proportions
was reported in 1973 and resulted in a total of 969
confirmed cases and 54 mortality cases (Wallace et al,
1980); such situation continued to deteriorate with the
rampant spread of the disease in urban populations.
Subsequent outbreaks in the following years resulted in
1,487 cases and 54 deaths in 1973, 2,200 cases and 104
deaths in 1974, and 3,006 cases and 35 deaths in 1982
(Mudin, 2015). The number of confirmed DF cases has only
continued to increase since 2000, with the highest number
of cases recorded in 2015.

According to Ler etal. (2011), DF can be caused by any
of the four genetically related but antigenically distinct
dengue virus (DENV) serotypes, which are DENV-1, DENV-
2, DENV-3, and DENV-4. Multiple serotypes circulate
simultaneously in Malaysia with DENV-1, -2 and -3
identified in Negeri Sembilan (Ahmad et al, 2012),
multiple entries of DENV-2 and -4 in Sarawak (Holmes et
al, 2009) and cases in Kuala Lumpur and Selangor
predominantly from DENV-4 (Chew et al., 2012). Although
each DENV serotype has a distinct clinical and
epidemiological profile, accurately identifying each
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serotype’s clinical characteristics proves to be a challenge.
Studies indicate that DENV-2 and -3 have more severe
disease outcomes while DENV-4 is the mildest (Nisalak et
al,, 2016; Vaughn et al., 2000). All genders and ethnicities
have been found to be equally vulnerable. Severe cases of
dengue haemorrhagic fever (DHF) and dengue shock
syndrome (DSS) affect paediatric patients between the
ages of 2 years and 15 years throughout Southeast Asia.
(Bhatia et al,, 2013).

DF is an emerging threat in non-endemic countries.
Despite warning, the number of tourists travelling into
dengue-endemic areas has increased. Imported DF cases
can further spread in non-endemic areas when competent
vectors, such as Aedes albopictus and Aedes aegypti
mosquitos, are present. Following disease importation in
recent years, autochthonous DF outbreaks have been
reported in several non-endemic countries such as France,
Croatia, Portugal, and the United States (Gjenero-Margan
etal, 2011).

In Malaysia, nearly all age groups are vulnerable to the
disease. The most vulnerable age group between 15 years
to 49 years old (Mudin, 2015). DF is considered a highly
contagious health threat with a growing trend of infection
in Malaysia. Between 2000 to 2010, the number of DF
cases and DF-related deaths increased by an average of
14% and 8%, respectively, each year (Mia et al, 2013).
Malaysia suffered a 151% increase in cases in 2014
compared to the year of 2013, as seen in Figure 1.

2008 2010 2012 2014 2016 2018
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Figure 1. Dengue cases situation reported in Malaysia from 2000 to 2018

2. MATERIALS AND METHODS

This study used systematically sampled data of confirmed
DF cases reported by the Vector-borne Disease Sector,
Disease Control Division, Pahang State Health Department
at the Ministry of Health, Malaysia’s real-time national
database of dengue cases that is eDengueV2 (http://
edenguev2.moh.gov.my/index.php?r=site%2Flogin). The
eDengue V2 contains individual DF patient’s information
as well. Complete data of each individual confirmed case
from 2011 to 2018 were downloaded and placed in a
specific folder in Microsoft Office format. Data saved was
updated using Microsoft Excel and statistically analyzed
using Statistical Package for Social Science Version 20
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(SPSS Version 20.0). Box et al. (2015) and Boudrioua and
Boudrioua, (2020) expressed the seasonal autoregressive
integrated moving average (SARIMA) model as follows:

D, (B)¢,(B)VEVy, = O, (BS)w,

where the seasonal difference component can be
represented by: V2= (1-B%)D ®,(B¥) and ©, (B®) are
polynomial B represents respectively the seasonal
autoregressive and moving average components, given as
follow:

®(BS) =1 — ®,BS — ®,B% — ... — d, BPS
O(B°) =1 — ©;B° — O,B* — - — @, B
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The model used autoregression terms (P, D, Q)
extracted through autocorrelation and added to the
seasonality element (p, d, q) to develop a model capable of
predicting dengue. The null hypothesis of a SARIMA
against stationary and alternatively was tested in the
augmented Dickey-Fuller test (ADF). The AX:= Bo+au+B1Xe
1+Z?=1yi AXe1+e regression formula (Cryer and Chan,
2008) can test both and, if necessary, fulfil the underlying
assumption via differencing before forecasting using the
Box-Jenkins method. Auto-correlation function (ACF) and
partial auto-correlation function (PACF) plots were
generated to measure the degree of correlation between
observations in the time series. Both ACF and PACF were
compared to determine their characteristic and
theoretical behaviors. The model was estimated using
mean squared error (MSE), mean absolute percentage
error (MAPE), mean absolute error (MAE) and root-mean-
square error (RMSE). The final model’s goodness of fit was
tested using Bayesian information criterion (BIC). To
obtain a forecast with minimal errors, a SARIMA model
must possess good features. The model should be
parsimonious (smallest coefficients), stationary and have
constant mean and variance values while its coefficient
must be significant and have white noise as a residual.
Lastly, the time series model should be distributed
normally to appropriately fit the forecast with minimal
error.

3. RESULTS

Figure 2 shows 8,005 confirmed DF cases between 2011
and 2018 in Kuantan. An increasing trend of DF cases,
beginning in 2011 and finally showing a peak in 2015, was
observed during such period. It increased by 216% in
magnitude and frequency as indicated by the 541 cases
and 1,711 cases in 2011 and 2015, respectively. The
number of cases subsequently decreased to 1,684 in 2016,
further decrease in DF cases was observed to be 963 in
2017,and 578 in 2018.

A pattern of short-term changes was observed in the
data indicating the existence of seasonal fluctuations. The
decomposition method estimated the trends while the
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moving average method calculated the seasonal
fluctuations. This produced a single figure that showed the
original series (observed), trend, seasonal effects, and
random elements (Figure 3). The additive model seemed
more appropriate than the multiplicative model because,
over time, the frequency of the seasonal fluctuations and
the pattern did not vary. Increased in variance of the
random element meant that log transformation was more
suitable for the sequence.

Natural logarithm and natural differentiation were
carried out to stabilize the time series variance.
Furthermore, stationarity testing of the time series was
carried out using the ADF test and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test for the monthly DF
cases in Kuantan. Hypothesis were Ho: X: is non-stationary
and Ha: Xt is the stationary sequence tested using ADF. Ho:
Xt hypotheses are levels or patterns of stationarity that
have been tested for the Ha: Xt non-stationary series.

As shown in Table 1, the 0.513 p-value of the ADF test
(p>0.05) indicated that the original time series was non-
stationary. This non-stationarity was also supported by
the 0.024 was p-value of the KPSS test (p<0.05). Therefore,
differencing was used to convert the original time series to
stationary. The first differencing of the original time series
detrended and stabilized it. Table 1 also shows the ADF
test’s p-value of 0.01, indicating a rejection of the non-
hypotheses and demonstrating the success of differencing
the time series. The KPSS test’s p-value of 0.1 (p>0.05)
indicated that the non-hypotheses of stationarity in the
time series was not rejected, thereby making the series
stationary.

Table 1. Unit root test before differentiation and after first
differentiation

No. of dengue cases
© B
g & B
~
(54
b3 0

Unit root test t-statistic P-value
Before differentiation
ADF -2.1536 0.513
KPSS 0.583 0.024
After first differentiation
ADF -4.6066 0.01
KPSS 0.0445 0.1
1711 1684

y= 63.107x+716.64
................... -
I 578

2015 2016 2017 2018

Year

Figure 2. Time series plot of yearly dengue cases in Kuantan, from 2011 to 2018
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Figure 3. Decomposition of dengue fever cases in Kuantan during 2011-2019

The structure dependence of the coefficient rates was
calculated by testing ACF and PACF analyses. The ACF and
PACF plots in Figures 4B and 4C defined the dependence of
the coefficient structure, suggesting that non-seasonal (p, d,
q) and seasonal (P, D, Q) parameters were required in the
model design. Major cuts were observed atlags 1 and 12 on
the ACF and PACF plots after non-seasonal differentiation as
shown in Figures 4E and 4F. ACF and PACF analyses
suggested that the p and q values should be equal to 0 or 1.

Table 2 shows the BIC, RMSE, MAE and MAPE
parameter values of the developed SARIMA models in
relation to different p, d, and g parameters. From the
models, the SARIMA (0,1,0) (3,0,2)12 model had the lowest
BIC, RMSE, MAPE and MAE parameter values, and the
highest coefficient of determination (R%) value which
made it the most appropriate, compatible, and best-fit
model for DF cases. The parameters were estimated using
maximum likelihood estimation (MLE), the best and most
appropriate method of estimation. A Ljung-Box test of the
SARIMA (0,1,0) (3,0,2)12 model had a p-value >0.05, which
indicated that the model was appropriate.

Figure 5A shows the ACF plot and estimation of the
residual SARIMA (0,1,0) (3,0,2)12 model data. For all the
time lags, the plot showed that the ACF parameters fell
within the 95% confidence interval (CI) and the plot values
were close to zero, indicating that the series is considered
white noise. The normality plot, shown in Figure 5B,
revealed that the residual data was distributed normally.
The p-value = 0.844, shown in Table 3, indicated that the
alternative hypothesis was rejected, and that the data was
distributed normally.

science, engineering
and health studies

\=H

The statistical data, shown in Table 3, were from
Shapiro-Wilk and Kolmogorov-Smirnov tests. The Shapiro-
Wilk test was used to observe datasets smaller than 2,000,
otherwise, the Kolmogorov-Smirnov test was used. Since
there were only 96 observable data records, the Shapiro-
Wilk test would have been used. If the residuals were
distributed normally, it would support the efficacy of this
model.

After diagnostic testing of the time series, the model
was tested using actual DF case values from January 2011
to December 2018, that was named as training dataset.
The dataset was executed using SARIMA (0,1,0) (3,0,2)12
model to forecast DF cases in 2018. The results were
validated by comparing it to the actual DF case numbers in
2018 using metrics specifically BIC, Rz, RMSE, MAPE, and
MAE in the developed predictive models, which allowed
for an objective view of the strengths and weaknesses of
each model. The validation results of the forecasts are
shown in Figure 6.

The ideal model for DF prediction for the year 2018 in
Kuantan was the SARIMA (0,1,0) (3,0,2)12 model. Later, the
model was used to forecast monthly DF cases for 2019
(Figure 7). The blue line shows the predicted DF case
numbers from Jan 2011 to December 2018. The results
showed that the SARIMA (0,1,0) (3,0,2)12 model’s forecast
was reasonably accurate, with the predicted DF case
pattern for 2019 being almost identical to the actual DF
case pattern and fell within the 95%, CI confirming that the
forecasted data was adequate and efficient.
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Figure 4. (A) Natural series of dengue fever cases, (B) ACF plot of natural series dengue fever cases, (C) PACF plot of natural
series dengue fever, (D) natural logarithm with first differencing of dengue fever series, (E) ACF plot of natural logarithm
with first differencing of dengue fever and (F) PACF of natural log with first differencing of dengue fever cases

Table 2. Tentative model of SARIMA for dengue fever cases in Kuantan

SARIMA models BIC R RMSE MAPE MAE
(0,1,1)(1,1,1) 12 6.630 0.813 22.849 23.422 17.331
(1,1,1)(0,0,2) 12 6.621 0.797 23.161 20.032 15.59
(1,1,1)(0,1,1)12 7.010 0.666 29.916 26.855 21.842
(1,1,2)(1,1,1)12 7.181 0.675 30.084 25.470 21.166
(21,121,112 7.185 0.695 29.363 22.178 19.392
(1,1,1)(0,0,1) 12 6.558 0.798 22.991 20.028 15.588
(1,1,1)(2,0,1) 12 6.844 0.731 26.524 23.94 18.392
(1,1,0)(2,0,1)12 6.687 0.808 22.821 18.912 15.244
(0,1,1)(2,0,1)12 6.685 0.808 22.801 18.9 15.241
(0,1,0)(1,0,2)12 6.637 0.806 22.804 19.142 15.445
(0,1,0)(2,0,1)12 6.609 0.811 22.483 19.012 15.204
(0,1,0)(1,0,1)12 6.589 0.804 22.804 19.01 15.326
(0,1,0)(2,0,3)12 6.736 0.81 22.837 19.131 15.363
(0,1,0)(3,0,2)12 6.505° 0.849" 20.347" 17.806" 13.669"

Note: "Lowest value for each parameter estimation
“Highest value for each parameter estimation
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Figure 5. (A) Residual plots of SARIMA (0,1,0) (3,0,0)12 and (B) normality plot of residuals SARIMA (0,1,0) (3,0,2)12

Table 3. Shapiro-Wilk normality test SARIMA (0,1,0) (3,0,2)12

Tests of normality Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Significance Statistic df Significance
Noise residual from SARIMA (0,1,0) (3,0,2)12  0.057 95 0.200" 0.992 95 0.844
in2011-2019
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Figure 6. Validation of SARIMA (0,1,0) (3,0,2)12 model with actual dengue fever cases from 2011 to 2018
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Figure 7. Plot of predicted dengue cases in 2019 using SARIMA (0,1,0) (3,0,2)12 with 95% of confidence interval
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4. DISCUSSION

To assess the risk of an outbreak, particularly DF, an early
prediction tool is necessary. Instead of controlling the
disease, early diagnosis will not only allow for early
intervention but prevention as well. Therefore, an early
warning system must be established to identify and quantify
the threat of DF in the population. The existing system of DF
outbreak prediction focuses solely on various entomological
indices while ignoring epidemiological indices. The SARIMA
model is a useful tool for tracking and interpreting data. It
has great potential as a public health decision-making tool
to improve contingency planning and mitigation initiatives
(Dom et al,, 2013). The SARIMA model developed in this
study closely mimicked the pattern of DF cases in Kuantan.
The model was tested by forecasting DF case numbers
for 2019 through auto-regression and moving average
parameters. Therefore, using multi-month trend extrapolation,
this model can successfully forecast the number of DF cases.

This study focused on forecasting DF cases in Kuantan
using a SARIMA model. It has been determined that, of all
the models developed in this study, the SARIMA (0,1,0)

(3,0,2)12 model was the most appropriate and parsimonious
model with the lowest BIC, RMSE, MAE and MAPE
parameter values and the highest R2 value. It was found to
accurately predict the number of DF cases for which it was
months ahead of time, indicating that the method could be
used to predict DF case numbers for 2019 in Kuantan. The
model forecasted a total of 814 DF cases in 2019 with the
highest number of cases (14% or 111) occurring in
November and the lowest number of cases (6% or 48)
occurring in February (Table 4). A SARIMA model, utilizing
the same BIC, RMSE, MAE and MAPE parameters, was used
to predict DF case numbers in Selangor and found to
closely reflect the actual number of DF cases (Thiruchelvam et
al, 2018). Several other studies have reported similar
findings using SARIMA models developed using secondary
data and Akaike information criterion, RMSE, MAE, MAPE
parameters (Phuthomdee et al,, 2018; Dom et al., 2013).
This model was able to consistently predict and tally
with actual DF case numbers. Many studies could also
consider and discuss climate change impacts, such as
precipitation, temperature, and humidity, to increase
forecast accuracy.

Table 4. Summary of the forecasted values with the lower and upper 95% confident interval

Model (0,1,0) (3,0,2)12 Jan Feb Mar Apr Jun Jul Aug Sep Oct Nov  Dec
2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019
Forecast 53 48 59 53 57 76 59 68 83 111 95
UCL 79 83 115 113 139 198 162 196 252 350 313
LCL 34 25 27 21 18 21 15 16 18 21 17

Note: UCL = upper control limit
LCL = lower control limit

5. CONCLUSION

In conclusion, the objective of this study was successfully
achieved. Based on prediction model, Kuantan can expect
a 41% (236) increase of dengue fever (DF) cases in 2019
from the 578 cases reported in 2018. This model is a good
fit for these cases only because they are localized
transmission (peri-domestic infection). DF transmission is
very complex with the risk of transmission varying in
differentlocations and from season-to-season. The disease
cycle depends on seasonal conditions, immunity, and
changes in hyper-endemic areas where various serology
types are in circulation.

Due to the intrinsically complex nature of these
processes, time series prediction is a challenge. Whether a
sequence is stochastically or deterministically chaotic, or
some mixture of both systems, is near impossible to tell.
More importantly, it is unknown to what degree a non-
linear deterministic system preserves its properties when
distorted by white noise. White noise may influence a
model in various ways even though the model’s equations
remain deterministic. Since there is no single accurate
statistical measure of chaos, it is crucial to combine
multiple tests, especially when working with small and
white noise datasets such as in disease, economic and
financial time series.

Ideally, this model can be used to track and predict the
occurrence of DF in Kuantan. This is in line with the need
to develop DF monitoring and prediction strategies to
reduce not only local and national cases but regional cases
as well. Therefore, the SARIMA model can accurately

Silpakorn Universtiy

forecast DF cases, thereby enhancing the currentintervention
programme by allowing them to install vector control
measures a few months ahead of DF seasons.
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