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ABSTRACT 
 
A time series analysis model. Could provide useful information to facilitate the 
planning of public health interventions to minimize the frequency of dengue fever 
(DF) outbreaks. The objectives of this study were to analyze the trend of monthly 
DF cases from Kuantan, Malaysia during 2011-2019 to develop a seasonal 
autoregressive integrated moving average (SARIMA) model, test the accuracy of 
model parameters by forecasting monthly cases of DF in 2018 and comparing it with 
actual monthly cases of DF in 2018, and construct a SARIMA model, by adopting 
the Box-Jenkins method, to forecast the monthly DF cases in 2019. Monthly-
confirmed DF cases from 2011 to 2018 fit the model while the prediction was 
validated using epidemiological data from January 2018 to December 2018. The 
study concluded that the SARIMA (0,1,0) (3,0,2)12 model was the best-fit and could 
be used to extrapolate case numbers up to 12 months in advance. Our predicted 
number of monthly DF cases in 2019 was relatively close to the actual number of 
monthly DF cases and fell within the confidence interval. Therefore, the SARIMA 
model developed by this study is capable of accurately forecasting and predicting 
future DF cases. This can help improve existing intervention programs, which are 
an integral component of minimizing the burden of the disease in Kuantan. 
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1. INTRODUCTION                                    
 
Dengue fever (DF) is a burgeoning public health problem 
in Malaysia (Bujang et al., 2017). Therefore, formulating 
disease prevention, intervention, and control methodologies 
are vital to reduce the likelihood of new infection as well 
as the burden of the disease in the country. The proposed 
strategies would be more effective if they were supported 
by accurate statistical and scientific data. Time series 
analysis is one of the statistical techniques that is used to 

predict future occurrences of DF by assessing past trends, 
which is achieved by analyzing a continuous sequence of 
numerical data points. In an investment industry, for 
instance, time series is represented by the movement of 
specific data points, such as the price of a commodity; over 
a specified period with regularly reported data points. 
There is no time period to allow policy makers or analysts 
to obtain important and highly sought-after data. Often, 
time series analysis is related to trend analysis, cyclical 
fluctuation analysis and issues of seasonality. For example, 
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disease such as malaria or tuberculosis can be analyzed 
daily, weekly or by a monthly basis. Time series analysis 
will also show whether the disease is seasonal by 
evaluating if it goes through peaks and troughs at specific 
times of the year. The onset of DF in Malaysia backdated to 
1901, following its transmission from Singapore to Penang 
(Skae, 1902). The first outbreak of epidemic proportions 
was reported in 1973 and resulted in a total of 969 
confirmed cases and 54 mortality cases (Wallace et al., 
1980); such situation continued to deteriorate with the 
rampant spread of the disease in urban populations. 
Subsequent outbreaks in the following years resulted in 
1,487 cases and 54 deaths in 1973, 2,200 cases and 104 
deaths in 1974, and 3,006 cases and 35 deaths in 1982 
(Mudin, 2015). The number of confirmed DF cases has only 
continued to increase since 2000, with the highest number 
of cases recorded in 2015. 
       According to Ler et al. (2011), DF can be caused by any 
of the four genetically related but antigenically distinct 
dengue virus (DENV) serotypes, which are DENV-1, DENV-
2, DENV-3, and DENV-4. Multiple serotypes circulate 
simultaneously in Malaysia with DENV-1, -2 and -3 
identified in Negeri Sembilan (Ahmad et al., 2012), 
multiple entries of DENV-2 and -4 in Sarawak (Holmes et 
al., 2009) and cases in Kuala Lumpur and Selangor 
predominantly from DENV-4 (Chew et al., 2012). Although 
each DENV serotype has a distinct clinical and 
epidemiological profile, accurately identifying each 

serotype’s clinical characteristics proves to be a challenge. 
Studies indicate that DENV-2 and -3 have more severe 
disease outcomes while DENV-4 is the mildest (Nisalak et 
al., 2016; Vaughn et al., 2000). All genders and ethnicities 
have been found to be equally vulnerable. Severe cases of 
dengue haemorrhagic fever (DHF) and dengue shock 
syndrome (DSS) affect paediatric patients between the 
ages of 2 years and 15 years throughout Southeast Asia. 
(Bhatia et al., 2013).  
       DF is an emerging threat in non-endemic countries. 
Despite warning, the number of tourists travelling into 
dengue-endemic areas has increased. Imported DF cases 
can further spread in non-endemic areas when competent 
vectors, such as Aedes albopictus and Aedes aegypti 
mosquitos, are present. Following disease importation in 
recent years, autochthonous DF outbreaks have been 
reported in several non-endemic countries such as France, 
Croatia, Portugal, and the United States (Gjenero-Margan 
et al., 2011). 
       In Malaysia, nearly all age groups are vulnerable to the 
disease. The most vulnerable age group between 15 years 
to 49 years old (Mudin, 2015). DF is considered a highly 
contagious health threat with a growing trend of infection 
in Malaysia. Between 2000 to 2010, the number of DF 
cases and DF-related deaths increased by an average of 
14% and 8%, respectively, each year (Mia et al., 2013). 
Malaysia suffered a 151% increase in cases in 2014 
compared to the year of 2013, as seen in Figure 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Dengue cases situation reported in Malaysia from 2000 to 2018 
 
 
2. MATERIALS AND METHODS 
 
This study used systematically sampled data of confirmed 
DF cases reported by the Vector-borne Disease Sector, 
Disease Control Division, Pahang State Health Department 
at the Ministry of Health, Malaysia’s real-time national 
database of dengue cases that is eDengueV2 (http:// 
edenguev2.moh.gov.my/index.php?r=site%2Flogin). The 
eDengue V2 contains individual DF patient’s information 
as well. Complete data of each individual confirmed case 
from 2011 to 2018 were downloaded and placed in a 
specific folder in Microsoft Office format. Data saved was 
updated using Microsoft Excel and statistically analyzed 
using Statistical Package for Social Science Version 20 

(SPSS Version 20.0). Box et al. (2015) and Boudrioua and 
Boudrioua, (2020) expressed the seasonal autoregressive  
integrated moving average (SARIMA) model as follows: 
 

Φ𝑝𝑝(𝐵𝐵𝑠𝑠)𝜙𝜙𝑝𝑝(𝐵𝐵)∇𝑆𝑆𝐷𝐷∇𝑑𝑑𝜒𝜒𝑡𝑡 =  Θ𝜚𝜚 (𝐵𝐵𝑠𝑠)𝓌𝓌𝑡𝑡 
 
where the seasonal difference component can be 
represented by: ∇𝑆𝑆𝐷𝐷= (1-𝐵𝐵𝑠𝑠)D Φ𝑝𝑝(𝐵𝐵𝑠𝑠) and Θ𝜚𝜚 (𝐵𝐵𝑠𝑠) are 
polynomial B represents respectively the seasonal 
autoregressive and moving average components, given as 
follow: 
 

Φ(𝐵𝐵𝑠𝑠) = 1 −  Φ1𝐵𝐵𝑠𝑠 −  Φ2𝐵𝐵2𝑠𝑠 −⋯  −  Φ𝑝𝑝 𝐵𝐵𝑝𝑝𝑝𝑝 
Θ(𝐵𝐵𝑠𝑠) = 1 −  Θ1𝐵𝐵𝑠𝑠 −  Θ2𝐵𝐵2𝑠𝑠 −⋯  −  Θ𝜚𝜚  𝐵𝐵𝜚𝜚𝜚𝜚 
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       The model used autoregression terms (P, D, Q) 
extracted through autocorrelation and added to the 
seasonality element (p, d, q) to develop a model capable of 
predicting dengue. The null hypothesis of a SARIMA 
against stationary and alternatively was tested in the 
augmented Dickey-Fuller test (ADF). The ∆Xt = β0+αt+β1Xt-

1+∑ 𝛾𝛾𝛾𝛾𝑝𝑝
𝑖𝑖=1  ∆Xt-1+εt regression formula (Cryer and Chan, 

2008) can test both and, if necessary, fulfil the underlying 
assumption via differencing before forecasting using the 
Box-Jenkins method. Auto-correlation function (ACF) and 
partial auto-correlation function (PACF) plots were 
generated to measure the degree of correlation between 
observations in the time series. Both ACF and PACF were 
compared to determine their characteristic and 
theoretical behaviors. The model was estimated using 
mean squared error (MSE), mean absolute percentage 
error (MAPE), mean absolute error (MAE) and root-mean-
square error (RMSE). The final model’s goodness of fit was 
tested using Bayesian information criterion (BIC). To 
obtain a forecast with minimal errors, a SARIMA model 
must possess good features. The model should be 
parsimonious (smallest coefficients), stationary and have 
constant mean and variance values while its coefficient 
must be significant and have white noise as a residual. 
Lastly, the time series model should be distributed 
normally to appropriately fit the forecast with minimal 
error. 
 
 
3. RESULTS  
 
Figure 2 shows 8,005 confirmed DF cases between 2011 
and 2018 in Kuantan. An increasing trend of DF cases, 
beginning in 2011 and finally showing a peak in 2015, was 
observed during such period. It increased by 216% in 
magnitude and frequency as indicated by the 541 cases 
and 1,711 cases in 2011 and 2015, respectively. The 
number of cases subsequently decreased to 1,684 in 2016, 
further decrease in DF cases was observed to be 963 in 
2017, and 578 in 2018. 
       A pattern of short-term changes was observed in the 
data indicating the existence of seasonal fluctuations. The 
decomposition method estimated the trends while the 

moving average method calculated the seasonal 
fluctuations. This produced a single figure that showed the 
original series (observed), trend, seasonal effects, and 
random elements (Figure 3). The additive model seemed 
more appropriate than the multiplicative model because, 
over time, the frequency of the seasonal fluctuations and 
the pattern did not vary. Increased in variance of the 
random element meant that log transformation was more 
suitable for the sequence. 
       Natural logarithm and natural differentiation were 
carried out to stabilize the time series variance. 
Furthermore, stationarity testing of the time series was 
carried out using the ADF test and the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test for the monthly DF 
cases in Kuantan. Hypothesis were H0: Xt is non-stationary 
and Ha: Xt is the stationary sequence tested using ADF. H0: 
Xt hypotheses are levels or patterns of stationarity that 
have been tested for the Ha: Xt non-stationary series. 
       As shown in Table 1, the 0.513 p-value of the ADF test 
(p>0.05) indicated that the original time series was non-
stationary. This non-stationarity was also supported by 
the 0.024 was p-value of the KPSS test (p<0.05). Therefore, 
differencing was used to convert the original time series to 
stationary. The first differencing of the original time series 
detrended and stabilized it. Table 1 also shows the ADF 
test’s p-value of 0.01, indicating a rejection of the non-
hypotheses and demonstrating the success of differencing 
the time series. The KPSS test’s p-value of 0.1 (p>0.05) 
indicated that the non-hypotheses of stationarity in the 
time series was not rejected, thereby making the series 
stationary.  
 

Table 1. Unit root test before differentiation and after first 
differentiation 
 

Unit root test t-statistic P-value 

Before differentiation 
   ADF -2.1536 0.513 
   KPSS 0.583 0.024 
After first differentiation 
   ADF -4.6066 0.01 
   KPSS 0.0445 0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Time series plot of yearly dengue cases in Kuantan, from 2011 to 2018 
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Figure 3. Decomposition of dengue fever cases in Kuantan during 2011-2019 
 
 
       The structure dependence of the coefficient rates was 
calculated by testing ACF and PACF analyses. The ACF and 
PACF plots in Figures 4B and 4C defined the dependence of 
the coefficient structure, suggesting that non-seasonal (p, d, 
q) and seasonal (P, D, Q) parameters were required in the 
model design. Major cuts were observed at lags 1 and 12 on 
the ACF and PACF plots after non-seasonal differentiation as 
shown in Figures 4E and 4F. ACF and PACF analyses 
suggested that the p and q values should be equal to 0 or 1. 
       Table 2 shows the BIC, RMSE, MAE and MAPE 
parameter values of the developed SARIMA models in 
relation to different p, d, and q parameters. From the 
models, the SARIMA (0,1,0) (3,0,2)12 model had the lowest 
BIC, RMSE, MAPE and MAE parameter values, and the 
highest coefficient of determination (R2) value which 
made it the most appropriate, compatible, and best-fit 
model for DF cases. The parameters were estimated using 
maximum likelihood estimation (MLE), the best and most 
appropriate method of estimation. A Ljung-Box test of the 
SARIMA (0,1,0) (3,0,2)12 model had a p-value >0.05, which 
indicated that the model was appropriate. 
       Figure 5A shows the ACF plot and estimation of the 
residual SARIMA (0,1,0) (3,0,2)12 model data. For all the 
time lags, the plot showed that the ACF parameters fell 
within the 95% confidence interval (CI) and the plot values 
were close to zero, indicating that the series is considered 
white noise. The normality plot, shown in Figure 5B, 
revealed that the residual data was distributed normally. 
The p-value = 0.844, shown in Table 3, indicated that the 
alternative hypothesis was rejected, and that the data was 
distributed normally. 

       The statistical data, shown in Table 3, were from 
Shapiro-Wilk and Kolmogorov-Smirnov tests. The Shapiro-
Wilk test was used to observe datasets smaller than 2,000, 
otherwise, the Kolmogorov-Smirnov test was used. Since 
there were only 96 observable data records, the Shapiro-
Wilk test would have been used. If the residuals were 
distributed normally, it would support the efficacy of this 
model. 
       After diagnostic testing of the time series, the model 
was tested using actual DF case values from January 2011 
to December 2018, that was named as training dataset. 
The dataset was executed using SARIMA (0,1,0) (3,0,2)12 
model to forecast DF cases in 2018. The results were 
validated by comparing it to the actual DF case numbers in 
2018 using metrics specifically BIC, R2, RMSE, MAPE, and 
MAE in the developed predictive models, which allowed 
for an objective view of the strengths and weaknesses of 
each model. The validation results of the forecasts are 
shown in Figure 6. 
       The ideal model for DF prediction for the year 2018 in 
Kuantan was the SARIMA (0,1,0) (3,0,2)12 model. Later, the 
model was used to forecast monthly DF cases for 2019 
(Figure 7). The blue line shows the predicted DF case 
numbers from Jan 2011 to December 2018. The results 
showed that the SARIMA (0,1,0) (3,0,2)12 model’s forecast 
was reasonably accurate, with the predicted DF case 
pattern for 2019 being almost identical to the actual DF 
case pattern and fell within the 95%, CI confirming that the 
forecasted data was adequate and efficient. 
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Figure 4. (A) Natural series of dengue fever cases, (B) ACF plot of natural series dengue fever cases, (C) PACF plot of natural 
series dengue fever, (D) natural logarithm with first differencing of dengue fever series, (E) ACF plot of natural logarithm 
with first differencing of dengue fever and (F) PACF of natural log with first differencing of dengue fever cases 
 
Table 2. Tentative model of SARIMA for dengue fever cases in Kuantan 
 

SARIMA models BIC R2 RMSE MAPE MAE 

(0,1,1)(1,1,1) 12 6.630 0.813 22.849 23.422 17.331 
(1,1,1)(0,0,2) 12 6.621 0.797 23.161 20.032 15.59 
(1,1,1)(0,1,1)12 7.010 0.666 29.916 26.855 21.842 
(1,1,2)(1,1,1)12 7.181 0.675 30.084 25.470 21.166 
(2,1,1)(2,1,1)12 7.185 0.695 29.363 22.178 19.392 
(1,1,1)(0,0,1) 12 6.558 0.798 22.991 20.028 15.588 
(1,1,1)(2,0,1) 12 6.844 0.731 26.524 23.94 18.392 
(1,1,0,)(2,0,1)12 6.687 0.808 22.821 18.912 15.244 
(0,1,1)(2,0,1)12 6.685 0.808 22.801 18.9 15.241 
(0,1,0)(1,0,2)12 6.637 0.806 22.804 19.142 15.445 
(0,1,0)(2,0,1)12 6.609 0.811 22.483 19.012 15.204 
(0,1,0)(1,0,1)12 6.589 0.804 22.804 19.01 15.326 
(0,1,0)(2,0,3)12 6.736 0.81 22.837 19.131 15.363 
(0,1,0)(3,0,2)12  6.505* 0.849** 20.347* 17.806* 13.669* 

Note: *Lowest value for each parameter estimation 
                  **Highest value for each parameter estimation 
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Figure 5. (A) Residual plots of SARIMA (0,1,0) (3,0,0)12 and (B) normality plot of residuals SARIMA (0,1,0) (3,0,2)12 
 
Table 3. Shapiro-Wilk normality test SARIMA (0,1,0) (3,0,2)12 
 
Tests of normality Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Significance Statistic df Significance 

Noise residual from SARIMA (0,1,0) (3,0,2)12 

in 2011-2019 
0.057 95 0.200* 0.992 95 0.844 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Validation of SARIMA (0,1,0) (3,0,2)12 model with actual dengue fever cases from 2011 to 2018 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Plot of predicted dengue cases in 2019 using SARIMA (0,1,0) (3,0,2)12 with 95% of confidence interval 
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4. DISCUSSION 
 
To assess the risk of an outbreak, particularly DF, an early 
prediction tool is necessary. Instead of controlling the 
disease, early diagnosis will not only allow for early 
intervention but prevention as well. Therefore, an early 
warning system must be established to identify and quantify 
the threat of DF in the population. The existing system of DF 
outbreak prediction focuses solely on various entomological 
indices while ignoring epidemiological indices. The SARIMA 
model is a useful tool for tracking and interpreting data. It 
has great potential as a public health decision-making tool 
to improve contingency planning and mitigation initiatives 
(Dom et al., 2013). The SARIMA model developed in this 
study closely mimicked the pattern of DF cases in Kuantan. 
The model was tested by forecasting DF case numbers 
for 2019 through auto-regression and moving average 
parameters. Therefore, using multi-month trend extrapolation, 
this model can successfully forecast the number of DF cases. 
       This study focused on forecasting DF cases in Kuantan 
using a SARIMA model. It has been determined that, of all 
the models developed in this study, the SARIMA (0,1,0) 

(3,0,2)12 model was the most appropriate and parsimonious 
model with the lowest BIC, RMSE, MAE and MAPE 
parameter values and the highest R2 value. It was found to 
accurately predict the number of DF cases for which it was 
months ahead of time, indicating that the method could be 
used to predict DF case numbers for 2019 in Kuantan. The 
model forecasted a total of 814 DF cases in 2019 with the 
highest number of cases (14% or 111) occurring in 
November and the lowest number of cases (6% or 48) 
occurring in February (Table 4). A SARIMA model, utilizing 
the same BIC, RMSE, MAE and MAPE parameters, was used 
to predict DF case numbers in Selangor and found to 
closely reflect the actual number of DF cases (Thiruchelvam et 
al., 2018). Several other studies have reported similar 
findings using SARIMA models developed using secondary 
data and Akaike information criterion, RMSE, MAE, MAPE 
parameters (Phuthomdee et al., 2018; Dom et al., 2013). 
This model was able to consistently predict and tally 
with actual DF case numbers. Many studies could also 
consider and discuss climate change impacts, such as 
precipitation, temperature, and humidity, to increase 
forecast accuracy.

 
Table 4. Summary of the forecasted values with the lower and upper 95% confident interval 
 
Model (0,1,0) (3,0,2)12 Jan  

2019 
Feb  
2019 

Mar  
2019 

Apr  
2019 

May 
 2019 

Jun  
2019 

Jul  
2019 

Aug 
2019 

Sep 
2019 

Oct  
2019 

Nov 
2019 

Dec 
2019 

Forecast 53 48 59 53 52 57 76 59 68 83 111 95 
UCL 79 83 115 113 120 139 198 162 196 252 350 313 
LCL 34 25 27 21 18 18 21 15 16 18 21 17 
Note: UCL = upper control limit 
            LCL = lower control limit 
 
 
5. CONCLUSION 
 
In conclusion, the objective of this study was successfully 
achieved. Based on prediction model, Kuantan can expect 
a 41% (236) increase of dengue fever (DF) cases in 2019 
from the 578 cases reported in 2018. This model is a good 
fit for these cases only because they are localized 
transmission (peri-domestic infection). DF transmission is 
very complex with the risk of transmission varying in 
different locations and from season-to-season. The disease 
cycle depends on seasonal conditions, immunity, and 
changes in hyper-endemic areas where various serology 
types are in circulation. 
       Due to the intrinsically complex nature of these 
processes, time series prediction is a challenge. Whether a 
sequence is stochastically or deterministically chaotic, or 
some mixture of both systems, is near impossible to tell. 
More importantly, it is unknown to what degree a non-
linear deterministic system preserves its properties when 
distorted by white noise. White noise may influence a 
model in various ways even though the model’s equations 
remain deterministic. Since there is no single accurate 
statistical measure of chaos, it is crucial to combine 
multiple tests, especially when working with small and 
white noise datasets such as in disease, economic and 
financial time series. 
       Ideally, this model can be used to track and predict the 
occurrence of DF in Kuantan. This is in line with the need 
to develop DF monitoring and prediction strategies to 
reduce not only local and national cases but regional cases 
as well. Therefore, the SARIMA model can accurately 

forecast DF cases, thereby enhancing the current intervention 
programme by allowing them to install vector control 
measures a few months ahead of DF seasons. 
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