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ABSTRACT 
 
Drug repositioning is a process of discovering new indication for existing drugs. 
The similarities based on drug- and disease-associated proteins can be used to 
reveal the relationships between drugs and diseases, between two drugs, or 
between two diseases for drug repositioning. Due to a lack of complete data about 
drug- and disease-associated proteins, this strategy could be directly affected by 
the limited number of proteins under consideration. To overcome this limitation, 
more extensive information about drugs and diseases such as gene ontology terms, 
functional annotations of genes and gene products, could be used. Herein, we 
provided a comprehensive exploration of using functionality-based similarities to 
uncover the relationships among drugs and diseases. After comparing seven 
different similarity indices, it is found that the derived Jaccard index was the most 
suitable one for computing functionality-based similarity scores. The predictions of 
drug-disease, drug-drug, and disease-disease associations for drug repositioning 
were significantly improved with an accuracy of 89%, 67%, and 83%, respectively, 
by utilizing functionality-based similarities. The case studies showed that our 
approach can identify the drug-disease associations that have been under 
investigation such as those between tolcapone and attention deficit-hyperactivity 
disorder and between nicorandil and type 2 diabetes mellitus. 
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1. INTRODUCTION                                    
 
Developing new drugs to markets is expensive and time-
consuming. For only one new drug achieved, it takes 12 to 16 
years and almost US $2 billion on average (Nelson et al., 
2018). In addition, many drug-like compounds have failed 
and could not enter the stage of clinical trials due to their 
inadequate safety and efficacy (Yella et al., 2018). With the 

availability of drug efficacy and safety information for 
approved drugs, the discovery of their new therapeutic 
indications, also known as drug repositioning, can 
significantly reduce the time, costs, and failure rate of drug 
discovery and development. To support drug repositioning, 
computational approaches are the most promising tools to 
efficiently propose plenty of potential drug-disease associations 
for further validation and development on wet lab experiments. 
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       Because genes and proteins play crucial roles in drug 
actions and disease processes at the molecular level, 
similarities based on drug target proteins and disease-
associated genes can be leveraged to infer new drug-disease 
associations. In the comparative toxicogenomics database 
(CTD), associations between chemicals and diseases were 
inferred based on the genes shared between the manually 
curated chemical-gene and disease-gene relationships 
(Davis et al., 2008). Since a gene-based similarity between 
two diseases could indicate shared causes or even 
treatments for those diseases, several studies focused on the 
genetic basis of disease-disease similarity. For example, 
Lewis and colleagues computed similarities between 
diseases based on the Jaccard similarity index and employed 
genome-wide association studies to identify disease 
associations (Lewis et al., 2011). Based on the assumption 
that similar drugs would show similar indications, drug-drug 
similarity scores computed based on the Tanimoto 
coefficients and drug-interacting proteins were used to 
predict drug-disease associations (Huang et al., 2015). 
Although the gene- or protein-based similarities could point 
to some potential drug-disease associations, some 
limitations of the methods such as using drug target proteins 
without considering genes or proteins that are affected 
downstream, could disguise true drug-disease associations 
or limit the predicted results to only the drugs and diseases 
obviously involved with each other. 
       Under the current situation, it is costly to identify 
complete sets of genes and proteins affected by drugs and 
diseases, utilizing more extensive information about drugs 
and diseases, as provided by gene ontology (GO) annotations, 
is a promising strategy to overcome the limitations of 
traditional methods. GO terms are controlled vocabularies 
used to describe biological functions of genes and gene 
products, such as RNAs and proteins (Hill et al., 2008). Davis 
and colleagues compared the numbers of genes and GO 
functions shared between the old and new diseases treated 
by three repositioned drugs, including raloxifene, 
thalidomide, and sildenafil. They found that in only one case 
did the new and old disease are associated with the same 
genes, whereas all drugs showed similar GO functions 
between their old and new diseases (Davis et al., 2016). This 
suggests that similarities based on GO functions, termed as 

functionality-based similarities or GO-based similarities, may 
improve the identification of drug-disease associations. 
However, there is no study providing a comprehensive 
analysis that uses all three functionality-based similarities, 
including drug-disease, drug-drug, and disease-disease 
similarity, for drug repositioning. 
       In this study, we comprehensively explored how to exploit 
drug-disease, drug-drug, and disease-disease similarity 
based on GO functions to uncover the relationships between 
drugs and diseases. Two main objectives of this study were to 
find the most appropriate similarity index for computing 
functionality-based similarities and to assess the utilization 
of functionality-based similarity scores for the classifications 
of drug-disease associations, drug-drug associations (in 
terms of being able to treat similar diseases), and disease-
disease associations (in terms of being treated by similar 
drugs). The overview of this study is shown in Figure 1. 
Initially, drug-GO and disease-GO associations were 
constructed based on drug-protein associations, disease-
protein associations, and the functional annotation of human 
proteins. Based on known drug-disease associations, we 
could generate all drug-drug pairs labeled with “shared” or 
“not shared” some common associated diseases. Similarly, 
we also had all disease-disease pairs labeled with “shared” or 
“not shared” some common associated drugs. Seven different 
similarity measures, including the Jaccard, Braun-Blanquet, 
Simpson, Cosine, Sorgenfrei, McConnaughey, and derived 
Jaccard index, were used to compute the functionality-based 
similarity scores of all drug-disease, drug-drug, and disease-
disease pairs. Then, we compared the predicting powers of 
the similarity scores based on those seven similarity indices 
to select the best-performing similarity index for computing 
functionality-based similarities. After that, we compared the 
performance of functionality-based similarities in the 
classifications of the drug-disease, drug-drug, and disease-
disease associations with that of protein-based similarities to 
evaluate our method. Lastly, we demonstrated the 
practicality of using functionality-based similarities to 
classify drug-disease, drug-drug, and disease-disease 
associations. Three case studies selected from the inferred 
associations of each association type were validated by 
searching for supporting evidence from published literature 
and public databases. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic diagram describing an overview of this study 
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2. MATERIALS AND METHODS 
 
2.1 Data collection 
Four data sets were required for this study, including the 
functional annotation of human proteins, drug-disease 
associations, drug-protein associations, and disease-protein 
associations (Figure 1). The GO annotation data of human 
proteins were retrieved from the gene ontology annotation 
(GOA) database version 191 (Huntley et al., 2015). Our drug-
disease associations were generated by combining two data 
sets provided in the study of the PREDICT method (Gottlieb 
et al., 2011) and the comparative toxicogenomics database 
(CTD), released in August 2019 (Davis et al., 2019). The 
former is the manually curated gold-standard data set whose 
drug-disease associations were assembled from different 
sources, and only the associations that overlapped with more 
than one source were kept in this data set (Gottlieb et al., 
2011). In the CTD, only therapeutic drug-disease relations 
supported by the literature were selected. All approved 
drugs and their target proteins were collected from 
DrugBank version 5.1.3 (Wishart et al., 2018). All diseases 
and their associated genes were downloaded from 
DisGeNET version 6.0 (Piñero et al., 2016). All disease-
associated genes were mapped to their corresponding 
protein identifiers to obtain the disease-protein associations. 
 
2.2 Construction of drug-GO and disease-GO 
associations 
GO can be classified into three non-overlapping classes (also 
known as GO aspects), including molecular function (MF), 
biological process (BP), and cellular component (CC). “MF” 
refers to a cellular activity that a gene product performs, 
such as “alcohol dehydrogenase activity” and “retinol 
dehydrogenase activity.” “BP” is a molecular process 
comprising one or more biological activities such as 
“neurotransmitter secretion” and “limb development.” CC is 
a cellular location where a gene product may function such as 
“plasma membrane.” GO functions are expressed as a 
hierarchical structure, where high-level GO terms provide 
broader information than low-level GO terms. For example, a 
BP GO term “serotonin secretion” is a child of the parent BP 
term “neurotransmitter secretion.” For each gene or protein, 
a particular set of relevant GO terms is annotated, and all 
parent GO terms of an annotated term are also associated 
with that gene or protein. 

       To create drug-GO and disease-GO associations, the drug-
protein, disease-protein, and functional annotation data of 
human proteins were used. All aspects of GO terms, including 
BP, MF, and CC, were utilized to collect as much as functional 
information about drugs and diseases. Based on the GO 
annotation data, GO functions annotated for all target 
proteins of a drug were mapped to that drug. Similarly, GO 
functions annotated for all proteins associated with a disease 
were directly linked to that disease. Because similar GO terms 
from different levels could be connected to the same drug or 
disease, the drug-GO and disease-GO associations with the 
GO terms that were not the most detailed annotation terms 
(leaf terms) were removed. Then, we performed one-sided 
Fisher’s exact tests to examine whether a drug (or a disease) 
and a GO function of a particular pair are specifically 
associated with each other or not. To reduce the false 
discovery rate (FDR) in the multiple testing, we transformed 
all p-values obtained from the Fisher’s exact tests into q-
values by using the Benjamini-Hochberg method, as shown in 
Equation (1), where m is the total number of tests, and i is the 
rank of a p-value when we sort all p-values in an ascending 
order. Only the drug-GO and disease-GO associations, which 
had the q-value less than 0.05 were preserved into the final 
list of our drug-GO and disease-GO associations. 
 

( )-value min -value ,1mq p
i

  =   
  

               (1) 

 
2.3 Three functionality-based relationships of 
drugs and diseases under investigation 
Since drug- and disease-associated GO functions can indicate 
biological functions, which drugs and diseases are involved, 
it is more likely that the associations between drugs and 
diseases, between two drugs, and between two diseases can 
be detected by the drug-disease, drug-drug, and disease-
disease similarities based on GO functions. To perform a 
comprehensive study of the functionality-based similarities, 
three functionality-based relationships of drugs and diseases 
were investigated, including the drug-disease, drug-drug, 
and disease-disease relationship (Figure 2). To be capable of 
making an inference about drug-disease associations, the 
drug-drug and disease-disease associations were formulated 
based on how they are mapped to some common diseases 
and drugs, respectively.

 
 

 
 
Figure 2. Three functionality-based relationships investigated in this study 
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       For a drug-disease association (Figure 2a), we presumed 
that a drug and a disease can be associated with different 
proteins, but these proteins may work together in the same 
biological functions or be associated with similar GO 
functions. We measured the drug-disease similarity based on 
drug- and disease-associated GO functions to represent its 
association score. For two distinct drugs those share a 
common disease (Figure 2b), they could interact with 
different proteins, which affected similar downstream 
biological functions to treat the same disease. To predict 
drug-drug associations, we measured the similarity of any 
drug-drug pairs based on drug-associated GO functions. For 
two diseases those can be treated by a common drug (Figure 
2c), one disease may be relevant to another disease by being 
associated with different proteins involved in some common 
GO functions. The functionality-based similarity of any 
disease-disease pairs was measured as the scores of disease-
disease associations. 
       Initially, all drug-disease, drug-drug, and disease-disease 
pairs with their labels were required for further 
measurements of their similarities. Based on our known 
drug-disease associations, all pairs of any pair type can be 
divided into two classes, which are known (positive-labeled) 
and unknown (negative-labeled) associations. The methods 
to generate and label the drug-disease, drug-drug, and 
disease-disease pairs are described as follows: 

Drug-disease pairs: all possible drug-disease pairs were 
generated by combining all drugs and all diseases that we 
had. The drug-disease pairs in the list of our collected 
drug-disease associations were labeled as positive 
whereas the remaining drug-disease pairs were negative. 

Drug-drug pairs: all possible drug-drug pairs were 
constructed by pairing two different drugs together 
based on the list of all drugs that we had. The drug-drug 
pairs that share at least one common disease were 
labeled as positive and the remaining drug-drug pairs 
were labeled as negative.  

Disease-disease pairs: the list of all diseases was used 
to generate all possible disease-disease pairs by pairing 
two distinct diseases together. The disease-disease pairs 
sharing at least one common drug were positive samples 
whereas the remaining pairs were negative samples. 

 
2.4 Measurement of protein- and functionality-
based similarities 
To predict drug-disease, drug-drug, and disease-disease 
associations, the functionality-based similarities were 
measured between drugs and diseases, between two drugs, 
and between two diseases, respectively. The drug-GO and 
disease-GO associations were used to measure all of the 
functionality-based similarities. Based on the drug-protein 
and disease-protein associations, we also measured the 
protein-based similarities, and used them as the baseline to 
finally compare with the functionality-based similarities. To 
compute drug-disease, drug-drug, and disease-disease 
similarity scores, seven similarity indices were used in this 
study. Because different similarity indices can be variously 
computed and are suitable for different tasks, the best-
performing one in the classification of the associations is 
considered as the most suitable similarity index for 
computing the functionality-based similarities. 
       We posited that x and y represent a drug or a disease, and 
SSimilarityIndex (x, y) is a function for computing a similarity score 

between x and y based on a particular similarity index. X and 
Y are the sets of the proteins or GO functions associated with 
x and y, respectively. | · | is the number of all elements in a set, 
and “\” is the set difference of any two sets. The formulas of 
those seven similarity indices are shown in Equations (2)-(8). 
 

( ),Jaccard

X Y
S x y

X Y
∩

=
∪

              (2) 

( ) ( ),
max ,BraunBlanquet

X Y
S x y

X Y
∩

=             (3) 

( ) ( ),
min ,Simpson

X Y
S x y

X Y
∩

=              (4) 

( ),Cosine

X Y
S x y

X Y

∩
=

⋅
             (5) 

( ) ( )2

,Sorgenfrei

X Y
S x y

X Y
∩

=
⋅

             (6) 

( ) ( ) ( )2
\ \

,McConnaughey

X Y X Y Y X
S x y

X Y
∩ − ⋅

=
⋅

     (7) 

( ) ( )
( )

log 1
,

log 1DerivedJaccard

X Y
S x y

X Y
+ ∩

=
+ ∪

            (8) 

 
 
3. RESULTS 
 
3.1 Performance evaluation 
Drug-disease, drug-drug, and disease-disease associations 
are classified as either positive or negative directly based on 
their drug-disease, drug-drug, and disease-disease similarity 
scores, respectively. At a specific threshold score, the drug-
disease, drug-drug, and disease-disease associations can be 
categorized according to their actual and predicted classes 
and summarized in a table called a confusion matrix (Figure 
3). It is Noted that true positives, false positives, false 
negatives, and true negatives are TP, FP, FN, and TN, 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
Figure 3. Confusion matrix 
 
       To assess the performance of each similarity index and 
demonstrate the superiority of the functionality-based 
similarities, we employed the receiver operating 
characteristic (ROC) curves and precision-recall (PR) curves. 
An ROC curve is a plot showing the performance of a binary 
classification model at every threshold score. This plot is 
commonly used to compare the performance of several 
binary classifiers. To create an ROC curve, the true positive 
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rates (TPRs) and false positive rates (FPRs) are computed at 
every changed threshold score. With an imbalanced dataset 
where the negatives outnumber the positives, the ROC curve 
may be deceptive due to a flattening of FPRs. Under this 
situation, the PR curve is recommended as an additional 
measure to the ROC curve (Saito and Rehmsmeier, 2015). A 
PR curve is a plot between precision and recall, which can be 
computed following Equation (9). To quantify the 
performance measures of the ROC and PR curves, the area 
under the ROC curve (AUROC) and the area under the PR 
curve (AUPRC) were estimated from the plots. The higher the 
AUROC and AUPRC values, the better the model. In addition 
to those values, we also computed accuracy and F1 following 
Equations (10) and (11). To give a binary class for an 
association based on its similarity scores, we specified an 
optimal threshold score based on the Youden’s index, a point 
where awards the maximum value of the difference between 
the FPRs and the TPRs in an ROC curve (Youden, 1950). 

 

( ) ( )
,TP TPPrecision Recall

TP FP TP FN
= =

+ +
             (9)

     

( )
TP TNAccuracy

TP FP FN TN
+

=
+ + +

                      (10) 

 
 

( )1
2 Precision RecallF

Precision Recall
× ×

=
+

           (11)  

 
3.2 Preliminary analysis of the data 
In our data set, there were a total of 904 drugs and 524 
diseases. The 6,782 unique proteins interacted with those 
drugs or diseases. The 8,301 GO functions of any aspects were 
associated with the drugs or diseases. Within these GO 
functions, there are 901 CC terms (10.9%), 2,407 MF terms 
(29.0%), and 4,993 BP terms (60.1%). We considered drug-
GO and disease-GO associations of all GO aspects because GO 
functions of any aspect can contribute functional information 
about drugs and diseases from different viewpoints. These 
would be of great advantages in discovering relationships 
among the drugs and diseases. The total numbers and some 
statistics of the drug-protein, disease-protein, drug-GO, and 
disease-GO associations were summarized, as shown in 
Table 1. Since the number of all GO functions was greater 
than that of all proteins, the total number of the drug-GO 
associations (52,038) was approximately six times greater 
than the total number of the interactions between drugs and 
proteins (9,427). Similarly, the total number of the disease-
GO associations (91,998) was about three times larger than 
the total number of the disease-protein associations (32,659). 
Since a protein can be associated with more than one GO 
function and one GO aspect, the numbers of the relations 
based on GO functions were larger than those of proteins. 
        

Table 1. Total numbers and statistics of drug-protein, disease-protein, drug-GO, and disease-GO relations 
 

Statistical information 
Types of drug relations Types of disease relations 

Drug-protein Drug-GO Disease-protein Disease-GO 
Total number (relations) 9,427 52,038 32,659 91,998 

Mean  
(proteins or GO functions) 

10.4 57.6 62.3 175.6 

Standard deviation  
(proteins or GO functions) 

13.1 51.4 162.7 217.6 

Minimum  
(proteins or GO functions) 

1.0 2.0 1.0 1.0 

Maximum  
(proteins or GO functions) 

188.0 545.0 1,086.0 944.0 

 
       We also investigated the number of proteins that interact 
with a drug or a disease and the number of GO functions 
associated with a drug or a disease (Table 1). The number of 
proteins and GO functions associated with a drug range from 
1 to 188 proteins and from 2 to 545 GO functions, 
respectively. Also, the wide ranges of the number of proteins 
(1 to 1,086) and GO functions (1 to 994) were found for both 
proteins and GO functions associated with a disease. On 
average, a drug was normally associated with a mean of 10.4 
proteins, with a standard deviation (SD) of 13.1 proteins, 
whereas a drug was associated with a larger number of GO 
functions, a mean of 57.6 GO functions, with an SD of 51.4 GO 
functions. Similarly, a disease was associated with a higher 
average number of GO functions (175.6 ± 217.6) than 
proteins (62.3 ± 162.7). With this more extensive information 
of GO functions relative to proteins, we suggested that higher 
numbers of drug-disease, drug-drug, and disease-disease 

associations can be detected using the functionality-based 
similarities. 

Based on drug-disease association data, we can classify 
all drug-disease, drug-drug, and disease-disease pairs into 
the group of positive (known) and negative (unknown) 
samples, as shown in Table 2. Relative to the negative drug-
disease pairs (467,552 pairs), we had a few positive drug-
disease associations (6,144 pairs). This suggested that 
there was still room for discovering potential drug-disease 
associations. Out of 408,156 drug-drug pairs, 47,094 pairs 
(11.5%) shared some common diseases and were labeled 
as positive, whereas 361,062 pairs (88.5%) did not have 
any common diseases and were labeled as negative. 
Relative to all disease-disease pairs, the positive (sharing 
some common drugs) and negative (no shared drugs) 
paired number 17,129 (12.5%) and 119,897 (87.5%), 
respectively. 

 
 



Functionality-based similarities for uncovering relationships between drugs and diseases 

 
6 

Table 2. The numbers of drug-disease, drug-drug, and disease-disease pairs categorized into positive and negative classes 
 

Types of pairs Numbers of pairs in each class (%) Total numbers of 
pairs Positive Negative 

Drug-disease pairs 6,144 (1.3%) 467,552 (98.7%) 473,696 
Drug-drug pairs 47,094 (11.5%) 361,062 (88.5%) 408,156 
Disease-disease pairs 17,129 (12.5%) 119,897 (87.5%) 137,026 

 
3.3 Selection of the most appropriate similarity 
index  
To select the most suitable similarity index for this study, 
seven similarity indices were used to compute both protein- 
and functionality-based similarity scores for all drug-disease, 

drug-drug, and disease-disease pairs. Then, we directly 
classified drug-disease, drug-drug, and disease-disease 
associations based on those similarity scores. The AUROC 
values of each similarity index based on both proteins and GO 
functions are shown in Figure 4. 

 
Figure 4. Area under the ROC curves (AUROC) of all similarity indices based on proteins and GO functions 
 
       According to Figure 4, the classifications of drug-disease, 
drug-drug, and disease-disease associations based on 
functionality-based similarity scores can produce higher 
AUROC values than those of the classifications based on 
protein-based similarity scores. Despite a variety of 
similarity indices utilized, the AUROC values of protein-
based similarities were slightly improved in all cases, 
especially in the cases of drug-disease and disease-disease 
associations. Moreover, the Cosine and Sorgenfrei 
similarity indices always give us the same AUROC values in 
all cases. For example, the AUROC values of both similarity 
indices computed based on GO functions were equally 
0.731, 0.596, and 0.738 for drug-disease, drug-drug, and 
disease-disease associations, respectively. This is because 
they were correlated with each other, as can be seen in 
Equations (5) and (6). For both the protein- and 
functionality-based similarities, we can achieve the highest 
AUROC values in all association types by using the derived 
Jaccard similarity index. By applying a logarithmic 
transformation, as shown in Equation (8), the derived 
Jaccard similarity index was less correlated with its 
original one (Consonni and Todeschini, 2012). 
Consequently, this may suggest why the derived Jaccard 
similarity index was more appropriate for measuring the 
protein- and functionality-based similarities. 
 

3.4 Comparison of protein- and functionality-
based similarities 
To assess the predicting power of the functionality-based 
similarities, we compared the classifications of drug-
disease, drug-drug, and disease-disease associations using 
functionality-based similarities with those using protein-
based similarities. In this experiment, the protein- and 
functionality-based similarity scores of all drug-disease, 
drug-drug, and disease-disease pairs were computed 
based on the derived Jaccard similarity index because it 
performed best among all similarity indices. Initially, the 
overall performance of protein- and functionality-based 
similarity scores was evaluated with respect to several 
threshold scores by using the ROC and the precision-recall 
(PR) curves. Based on the optimal threshold scores 
specified by the Youden’s index, we additionally created 
the confusion matrices and computed the values of some 
standard performance measures, including precision, 
recall, accuracy, and F1, to demonstrate that functionality-
based similarities provide improved classifications of the 
different associations. 

3.4.1 ROC and PR curves 
The ROC curves and their corresponding AUROC values are 
shown in Figure 5. The classifications based on both protein- 
and functionality-based similarity scores can improve the 
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performance of the completely random classifier, shown as 
the red-dashed straight lines. In all cases, utilizing the 
functionality-based similarity scores to classify drug-disease 
associations (AUROC = 0.748), drug-drug associations 
(AUROC = 0.605), and disease-disease associations (AUROC 
= 0.745) can produce higher AUROC values when compared 
to the classifications using the protein-based similarities. In 
addition to the ROC curves, the PR curves and computed the 

area under the PR curves (AUPRC) are also plotted, as shown 
in Figure 6. By comparing the AUPRC values, we found that 
the classifications of drug-disease associations (AUPRC = 
0.059), drug-drug associations (AUPRC = 0.178), and disease-
disease associations (AUPRC = 0.349) using functionality-
based similarity scores achieved better AUPRC values than 
those of the classifications using the protein-based similarity 
scores. 

 

Figure 5. ROC plots of the derived Jaccard similarity index based on proteins and GO functions 
 

 
Figure 6. Precision-recall curves of the derived Jaccard similarity index based on proteins and GO functions 
 
3.4.2 Confusion matrices and standard evaluation 
metrics 
Based on the optimal threshold scores determined by the 
Youden’s index, we created the confusion matrices of the 
classifications of drug-disease, drug-drug, and disease-
disease associations, as shown in Figure 7. From all confusion 
matrices, it is noticeable that the classifications of all 
associations by using functionality-based similarities were 
improved. In Figure 7a, the number of accurate predictions 
using drug-disease similarity scores based on GO functions 
(TP = 3,836 and TN = 419,643) was significantly greater than 
those using the protein-based similarity scores (TP = 2,660 
and TN = 402,076). Similarly, using drug-drug similarity 
scores based on GO functions (TP = 27,463 and TN = 244,961) 
increased the number of accurate predictions compared with 
those using the protein-based similarity scores (TP = 24,114 
and TN = 216,263), as can be seen in Figure 7b. Furthermore, 
in the classification of disease-disease associations (Figure 
7c), the number of accurate predictions was noticeably 
improved by using the functionality-based similarity scores 
(TP = 11,008 and TN = 102,159) compared with those using 
the protein-based similarity scores (TP = 9,855 and TN = 
93,510).        
       According to the confusion matrices, the values of the  

evaluation metrics (precision, recall, accuracy, and F1) can be 
computed to measure the performance of the protein- and 
functionality-based similarities, as shown in Tables 3 - 5. The 
values of all evaluation metrics were noticeably improved 
when we used the functionality-based similarity scores in the 
association classification. Especially, the accuracy values of 
the classifications of drug-disease, drug-drug, and disease-
disease associations using the protein-based similarities 
were improved from 0.854 to 0.894, from 0.589 to 0.668, and 
from 0.754 to 0.826, respectively, by using the functionality-
based similarities. These results are in accordance with the 
results of the confusion matrices (Figure 7), which show that 
using the functionality-based similarities increased the 
number of accurate predictions in the association 
classifications. Similarly, the recall values of the classifications 
of drug-disease, drug-drug, and disease-disease associations 
were improved from 0.433 to 0.624, from 0.512 to 0.583, and 
from 0.575 to 0.643, respectively, by using the functionality-
based similarities. The precision values of the association 
classifications were quite low in all cases due to the highly 
imbalanced classes between positives and negatives in the 
data, resulting in a much higher number of false positives 
detected relative to true positives. Due to the low values of 
precision, the values of F1 were also low in all cases. However, 
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whatever the metrics considered may be, it is noticeable 
that using the functionality-based similarities in the 
classifications of drug-disease, drug-drug, and disease-

disease associations outperformed the classifications using 
the protein-based similarities.

 

 
 
Figure 7. Confusion matrices of the association classification using the protein- and functionality-based similarities 
 
Table 3. Values of evaluation metrics for the classification of drug-disease associations 
 
 

 

 
Table 4. Values of evaluation metrics for the classification of drug-drug associations 
 

Evaluation metrics Drug-drug associations 

Protein-based similarity Functionality-based similarity 

Precision 0.143 0.191 
Recall 0.512 0.583 
Accuracy 0.589 0.668 
F1 0.223 0.288 

 
Table 5. Values of evaluation metrics for the classification of disease-disease associations 
 

Evaluation metrics Disease-disease associations 

Protein-based similarity Functionality-based similarity 

Precision 0.272 0.383 

Recall 0.575 0.643 
Accuracy 0.754 0.826 
F1 0.369 0.480 

 
3.5 Case studies of the inferred associations 
In this section, the practicality of using the functionality-
based similarities for predicting drug-disease, drug-drug, and 
disease-disease associations were demonstrated. The optimal 

threshold similarity scores specified by the Youden’s index 
were 0.264, 0.369, and 0.297 for drug-disease, drug-drug, 
and disease-disease associations, respectively. Each of three 
case studies was selected from the negative-labeled drug-

Evaluation metrics Drug-disease associations 

Protein-based similarity Functionality-based similarity 

Precision 0.039 0.074 

Recall 0.433 0.624 
Accuracy 0.854 0.894 
F1 0.072 0.133 
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disease pairs, drug-drug pairs, and disease-disease pairs 
having the functionality-based similarity scores greater than 
the given threshold scores. After that, these three inferred 
associations were validated by finding supporting evidence 
from the published literature and a database of clinical 
studies (ClinicalTrails.gov). 
 
3.5.1 Tolcapone and attention deficit-hyperactivity 
disorder (ADHD) 
Tolcapone (DB00323) is a drug used to treat Parkinson’s 
disease (PD) by inhibiting the enzyme catechol-O-methyl 
transferase (COMT) (Antonini et al., 2008). ADHD (OMIM: 
143465) is a mental health disorder that is characterized by 
several abnormal behaviors such as inattention, 
hyperactivity, and high impulsivity (Kuntsi et al., 2014). 
Recently, we found a clinical study in ClinicalTrials.gov 
(NCT03904498) that had the aim to assess the therapeutic 
effects of tolcapone in participants who have both ADHD and 
alcohol use disorder. The functionality-based similarity score 
between tolcapone and ADHD was 0.484. There were 9 GO 
functions shared between tolcapone and ADHD, mainly 
related to neural processes such as dopamine catabolic 
process (GO: 0042420), catechol-O-methyltransferase 
activity (GO: 00162606), and short-term memory (GO: 
0007614). Until now, the mechanism of tolcapone is still 
unclear, but it is believed that the ability to inhibit COMT can 
sustain the dopaminergic system, resulting in relieving PD 
(Bonifácio et al., 2007). Moreover, the COMT gene’s product 
can degrade dopamine mainly within the prefrontal cortex 

which mediates several executive behaviors related to ADHD 
(Sun et al., 2014). 
 
3.5.2 Glimepiride and nicorandil 
Glimepiride (DB00222) and nicorandil (DB09220) are two 
drugs having the functionality-based similarity score as 
0.488 and sharing four GO functions, such as potassium ion 
import across plasma membrane (GO: 1990573), ion channel 
binding (GO: 0044325), and sulfonylurea receptor activity 
(GO: 0008281). Because of their involvement in similar GO 
functions, these drugs may be able to treat the same diseases. 
According to Figure 8a, glimepiride is a drug used for the 
treatment of type 2 diabetes mellitus or T2D (OMIM: 
125853), maturity-onset diabetes of the young, type 1 
(OMIM: 125850), type 2 (OMIM: 125851), and type 3 (OMIM: 
600496). Nicorandil is used to treat cardiac arrhythmia 
(OMIM: 115000) and myocardial infarction (OMIM: 608446). 
Interestingly, we found a clinical study in ClinicalTrials.gov 
(NCT03775902) that was performed to investigate the effect 
of nicorandil in diabetic patients. Furthermore, there is a 
study showing that the abnormality of insulin handling in 
T2D patients is related to the dysfunction of the ATP-
dependent potassium channel activity (Bonfanti et al., 2015). 
In addition, defective Ca2+ handling, which is mediated by 
several ion channel activities, can impact β-cell function in 
T2D (Jacobson and Shyng, 2020). Based on those supporting 
studies, it is suggested that the shared GO functions between 
these drugs may hint at the mechanisms of nicorandil in the 
treatment of T2D. 

 

 
Figure 8. Inference of the shared diseases from the drug-drug association and the shared drugs from the disease-disease 
association 
 
3.5.3 Myotonia congenita and Gitelman syndrome 
Myotonia congenita (OMIM: 255700) is a disease with 
abnormality of skeletal muscles treated by acetazolamide 
(DB00819) and carbamazepine (DB00564), as shown in 
Figure 8b. Gitelman syndrome (OMIM: 263800) is a rare 
disease affecting the balance of several ions in the body such 
as magnesium, calcium, and potassium (Cruz et al., 2001), 
and can be treated by indomethacin (DB00328). Myotonia 
congenita and Gitelman syndrome have a functionality-based 
similarity score equal to 0.667 and share three GO functions 
between them, which are chloride transmembrane transport 
(GO: 1902476), voltage-gated chloride channel activity (GO: 
0005247), and chloride channel complex (GO: 0034707). 
With the highly functional correlation between these 
diseases, myotonia congenita and Gitelman syndrome may 
share some common treatments. Although there is no clinical 
study in ClinicalTrials.gov that can support this theory, 
there are some studies suggesting the relationship between  

carbamazepine and Giltelman syndrome. The studies 
revealed that carbamazepine can affect the sodium transport 
in the toad Pleurodema thaul (Suwalsky et al., 2006), and that 
dysfunction of sodium chloride cotransporters can cause 
Giltelman syndrome (Graziani et al., 2010). 
 

4. DISCUSSION 
 
In this study, we comprehensively explore how to exploit 
functionality-based similarities to identify potential drug-
disease, drug-drug, and disease-disease associations for drug 
repositioning. Drug-disease, drug-drug, and disease-disease 
similarity scores based on GO functions were used to predict 
drug-disease associations, drug-drug associations (sharing 
some common diseases), and disease-disease associations 
(sharing some common drugs), respectively. To assess the 
predicting power of functionality-based similarities, the 
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performance of predictions based on protein-based 
similarities served as the baseline and were compared with 
the performance of functionality-based similarities. Both 
protein- and functionality-based similarities were computed 
based on seven commonly used similarity indices, which 
include the Jaccard, Braun-Blanquet, Simpson, Cosine, 
Sorgenfrei, McConnaughey, and derived Jaccard index, to find 
the most appropriate similarity index for protein and GO 
information used in this study. It was found that the derived 
Jaccard index performs better than the others for computing 
both protein- and functionality-based similarities. This result 
is consistent with the study of Wijaya and co-workers, who 
showed that the derived Jaccard index produced the highest 
AUROC value in classifying the efficacy matching of 
Indonesian and Japanese herbal medicines (Wijaya et al., 
2016). 
       In the classifications of drug-disease, drug-drug, and 
disease-disease associations, functionality-based similarities 
based on the derived Jaccard similarity index significantly 
improved the classifications based on protein-based 
similarities. With the enlarging scope of drug and disease 
information using GO functions, the relationships of drugs 
and diseases were more efficiently detected than by using 
drug- and disease-associated proteins. This finding is 
supported by the study of Davis and co-workers, where two 
diseases having some common drugs significantly share their 
BP GO terms but rarely share their associated genes due to 
broader biological concepts compared (Davis et al., 2016). 
Furthermore, by the investigation of drug-protein-disease 
relationships on a protein-protein interaction (PPI) network, 
it has been revealed that disease-associated proteins interact 
with drug target proteins through more complex interaction 
than one-step direct interaction on the PPI network 
(Rutherford et al., 2018). This implied that not only drug 
target proteins and disease-associated proteins but also the 
downstream proteins affected by drugs and diseases are 
important for connecting drugs to diseases. Nevertheless, it 
is unlikely that all drug- and disease-affected proteins for 
computing the protein-based similarities can be identified. 
Therefore, the utilization of more extensive information 
about drugs and diseases, i.e., drug- and disease-associated 
GO functions, can overcome the limitation of the protein-
based similarities and improve the classifications of drug-
disease, drug-drug, and disease-disease associations. 
       Despite the advantages of functionality-based similarities 
were shown, there are some limitations of these similarities, 
which require improvement. Potential drug-drug and 
disease-disease associations, identified by the drug-drug and 
disease-disease functionality-based similarity scores, cannot 
directly point to the corresponding drug-disease associations 
for drug repositioning. Only a set of possible diseases shared 
between two drugs or a set of possible drugs shared between 
two diseases can be inferred from a drug-drug and disease-
disease association, respectively. To overcome this 
limitation, more complex methods that can systematically 
integrate all these independent measures of the functional 
similarities are required to obtain more accurate and reliable 
predictions of the drug-disease associations. 
 
 
5. CONCLUSION 
 
The utilization of functionality-based similarities to identify 
drug-disease, drug-drug, and disease-disease associations for 

drug repositioning was explored. Herein, the derived Jaccard 
similarity index is recommended for computing 
functionality-based similarity scores due to its better 
performance than other similarity indices. By using the 
functionality-based similarity scores, the performance of the 
association classification based on the protein-based 
similarity scores is significantly improved. The case studies 
guarantee that the functionality-based similarity scores can 
be used to identify some potential drug-disease associations, 
which have been under investigation. In addition, the shared 
GO functions of the potential associations could provide a 
guide to the underlying mechanisms related to drugs and 
diseases. 
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