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ABSTRACT

Drug repositioning is a process of discovering new indication for existing drugs.
The similarities based on drug- and disease-associated proteins can be used to
reveal the relationships between drugs and diseases, between two drugs, or
between two diseases for drug repositioning. Due to a lack of complete data about
drug- and disease-associated proteins, this strategy could be directly affected by
the limited number of proteins under consideration. To overcome this limitation,
more extensive information about drugs and diseases such as gene ontology terms,
functional annotations of genes and gene products, could be used. Herein, we
provided a comprehensive exploration of using functionality-based similarities to
uncover the relationships among drugs and diseases. After comparing seven
different similarity indices, it is found that the derived Jaccard index was the most
suitable one for computing functionality-based similarity scores. The predictions of
drug-disease, drug-drug, and disease-disease associations for drug repositioning
were significantly improved with an accuracy of 89%, 67%, and 83%, respectively,
by utilizing functionality-based similarities. The case studies showed that our
approach can identify the drug-disease associations that have been under
investigation such as those between tolcapone and attention deficit-hyperactivity
disorder and between nicorandil and type 2 diabetes mellitus.
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availability of drug efficacy and safety information for
approved drugs, the discovery of their new therapeutic

Developing new drugs to markets is expensive and time-
consuming. For only one new drug achieved, it takes 12 to 16
years and almost US $2 billion on average (Nelson et al,
2018). In addition, many drug-like compounds have failed
and could not enter the stage of clinical trials due to their
inadequate safety and efficacy (Yella et al, 2018). With the
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indications, also known as drug repositioning, can
significantly reduce the time, costs, and failure rate of drug
discovery and development. To support drug repositioning,
computational approaches are the most promising tools to
efficiently propose plenty of potential drug-disease associations
for further validation and development on wet lab experiments.
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Because genes and proteins play crucial roles in drug
actions and disease processes at the molecular level,
similarities based on drug target proteins and disease-
associated genes can be leveraged to infer new drug-disease
associations. In the comparative toxicogenomics database
(CTD), associations between chemicals and diseases were
inferred based on the genes shared between the manually
curated chemical-gene and disease-gene relationships
(Davis et al.,, 2008). Since a gene-based similarity between
two diseases could indicate shared causes or even
treatments for those diseases, several studies focused on the
genetic basis of disease-disease similarity. For example,
Lewis and colleagues computed similarities between
diseases based on the Jaccard similarity index and employed
genome-wide association studies to identify disease
associations (Lewis et al, 2011). Based on the assumption
that similar drugs would show similar indications, drug-drug
similarity scores computed based on the Tanimoto
coefficients and drug-interacting proteins were used to
predict drug-disease associations (Huang et al, 2015).
Although the gene- or protein-based similarities could point
to some potential drug-disease associations, some
limitations of the methods such as using drug target proteins
without considering genes or proteins that are affected
downstream, could disguise true drug-disease associations
or limit the predicted results to only the drugs and diseases
obviously involved with each other.

Under the current situation, it is costly to identify
complete sets of genes and proteins affected by drugs and
diseases, utilizing more extensive information about drugs
and diseases, as provided by gene ontology (GO) annotations,
is a promising strategy to overcome the limitations of
traditional methods. GO terms are controlled vocabularies
used to describe biological functions of genes and gene
products, such as RNAs and proteins (Hill et al., 2008). Davis
and colleagues compared the numbers of genes and GO
functions shared between the old and new diseases treated
by three repositioned drugs, including raloxifene,
thalidomide, and sildenafil. They found that in only one case
did the new and old disease are associated with the same
genes, whereas all drugs showed similar GO functions
between their old and new diseases (Davis et al., 2016). This
suggests that similarities based on GO functions, termed as

functionality-based similarities or GO-based similarities, may
improve the identification of drug-disease associations.
However, there is no study providing a comprehensive
analysis that uses all three functionality-based similarities,
including drug-disease, drug-drug, and disease-disease
similarity, for drug repositioning.

In this study, we comprehensively explored how to exploit
drug-disease, drug-drug, and disease-disease similarity
based on GO functions to uncover the relationships between
drugs and diseases. Two main objectives of this study were to
find the most appropriate similarity index for computing
functionality-based similarities and to assess the utilization
of functionality-based similarity scores for the classifications
of drug-disease associations, drug-drug associations (in
terms of being able to treat similar diseases), and disease-
disease associations (in terms of being treated by similar
drugs). The overview of this study is shown in Figure 1.
Initially, drug-GO and disease-GO associations were
constructed based on drug-protein associations, disease-
protein associations, and the functional annotation of human
proteins. Based on known drug-disease associations, we
could generate all drug-drug pairs labeled with “shared” or
“not shared” some common associated diseases. Similarly,
we also had all disease-disease pairs labeled with “shared” or
“not shared” some common associated drugs. Seven different
similarity measures, including the Jaccard, Braun-Blanquet,
Simpson, Cosine, Sorgenfrei, McConnaughey, and derived
Jaccard index, were used to compute the functionality-based
similarity scores of all drug-disease, drug-drug, and disease-
disease pairs. Then, we compared the predicting powers of
the similarity scores based on those seven similarity indices
to select the best-performing similarity index for computing
functionality-based similarities. After that, we compared the
performance of functionality-based similarities in the
classifications of the drug-disease, drug-drug, and disease-
disease associations with that of protein-based similarities to
evaluate our method. Lastly, we demonstrated the
practicality of using functionality-based similarities to
classify drug-disease, drug-drug, and disease-disease
associations. Three case studies selected from the inferred
associations of each association type were validated by
searching for supporting evidence from published literature
and public databases.
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2. MATERIALS AND METHODS

2.1 Data collection

Four data sets were required for this study, including the
functional annotation of human proteins, drug-disease
associations, drug-protein associations, and disease-protein
associations (Figure 1). The GO annotation data of human
proteins were retrieved from the gene ontology annotation
(GOA) database version 191 (Huntley et al,, 2015). Our drug-
disease associations were generated by combining two data
sets provided in the study of the PREDICT method (Gottlieb
et al, 2011) and the comparative toxicogenomics database
(CTD), released in August 2019 (Davis et al, 2019). The
former is the manually curated gold-standard data set whose
drug-disease associations were assembled from different
sources, and only the associations that overlapped with more
than one source were kept in this data set (Gottlieb et al,
2011). In the CTD, only therapeutic drug-disease relations
supported by the literature were selected. All approved
drugs and their target proteins were collected from
DrugBank version 5.1.3 (Wishart et al,, 2018). All diseases
and their associated genes were downloaded from
DisGeNET version 6.0 (Pifiero et al, 2016). All disease-
associated genes were mapped to their corresponding
protein identifiers to obtain the disease-protein associations.

2.2 Construction of drug-GO and disease-GO

associations

GO can be classified into three non-overlapping classes (also
known as GO aspects), including molecular function (MF),
biological process (BP), and cellular component (CC). “MF”
refers to a cellular activity that a gene product performs,
such as “alcohol dehydrogenase activity” and “retinol
dehydrogenase activity.” “BP” is a molecular process
comprising one or more biological activities such as
“neurotransmitter secretion” and “limb development.” CC is
a cellular location where a gene product may function such as
“plasma membrane.” GO functions are expressed as a
hierarchical structure, where high-level GO terms provide
broader information than low-level GO terms. For example, a
BP GO term “serotonin secretion” is a child of the parent BP
term “neurotransmitter secretion.” For each gene or protein,
a particular set of relevant GO terms is annotated, and all
parent GO terms of an annotated term are also associated
with that gene or protein.

To create drug-GO and disease-GO associations, the drug-
protein, disease-protein, and functional annotation data of
human proteins were used. All aspects of GO terms, including
BP, MF, and CC, were utilized to collect as much as functional
information about drugs and diseases. Based on the GO
annotation data, GO functions annotated for all target
proteins of a drug were mapped to that drug. Similarly, GO
functions annotated for all proteins associated with a disease
were directly linked to that disease. Because similar GO terms
from different levels could be connected to the same drug or
disease, the drug-GO and disease-GO associations with the
GO terms that were not the most detailed annotation terms
(leaf terms) were removed. Then, we performed one-sided
Fisher’s exact tests to examine whether a drug (or a disease)
and a GO function of a particular pair are specifically
associated with each other or not. To reduce the false
discovery rate (FDR) in the multiple testing, we transformed
all p-values obtained from the Fisher’s exact tests into g-
values by using the Benjamini-Hochberg method, as shown in
Equation (1), where m is the total number of tests, and i is the
rank of a p-value when we sort all p-values in an ascending
order. Only the drug-GO and disease-GO associations, which
had the g-value less than 0.05 were preserved into the final
list of our drug-GO and disease-GO associations.

g-value = min 4 ( p-Value)(ﬁj,l (1)
i

2.3 Three functionality-based relationships of
drugs and diseases under investigation

Since drug- and disease-associated GO functions can indicate
biological functions, which drugs and diseases are involved,
it is more likely that the associations between drugs and
diseases, between two drugs, and between two diseases can
be detected by the drug-disease, drug-drug, and disease-
disease similarities based on GO functions. To perform a
comprehensive study of the functionality-based similarities,
three functionality-based relationships of drugs and diseases
were investigated, including the drug-disease, drug-drug,
and disease-disease relationship (Figure 2). To be capable of
making an inference about drug-disease associations, the
drug-drug and disease-disease associations were formulated
based on how they are mapped to some common diseases
and drugs, respectively.

@ Drug (&) Disease Protein GO function
”
\
Drug-disease Drug -drug w DISLaSL disease ‘
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- 4

(a) Drug-disease relationship

(b) Drug-drug relationship

(c) Disease-disease relationship

Figure 2. Three functionality-based relationships investigated in this study
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For a drug-disease association (Figure 2a), we presumed
that a drug and a disease can be associated with different
proteins, but these proteins may work together in the same
biological functions or be associated with similar GO
functions. We measured the drug-disease similarity based on
drug- and disease-associated GO functions to represent its
association score. For two distinct drugs those share a
common disease (Figure 2b), they could interact with
different proteins, which affected similar downstream
biological functions to treat the same disease. To predict
drug-drug associations, we measured the similarity of any
drug-drug pairs based on drug-associated GO functions. For
two diseases those can be treated by a common drug (Figure
2c), one disease may be relevant to another disease by being
associated with different proteins involved in some common
GO functions. The functionality-based similarity of any
disease-disease pairs was measured as the scores of disease-
disease associations.

Initially, all drug-disease, drug-drug, and disease-disease
pairs with their labels were required for further
measurements of their similarities. Based on our known
drug-disease associations, all pairs of any pair type can be
divided into two classes, which are known (positive-labeled)
and unknown (negative-labeled) associations. The methods
to generate and label the drug-disease, drug-drug, and
disease-disease pairs are described as follows:

Drug-disease pairs: all possible drug-disease pairs were
generated by combining all drugs and all diseases that we
had. The drug-disease pairs in the list of our collected
drug-disease associations were labeled as positive
whereas the remaining drug-disease pairs were negative.

Drug-drug pairs: all possible drug-drug pairs were
constructed by pairing two different drugs together
based on the list of all drugs that we had. The drug-drug
pairs that share at least one common disease were
labeled as positive and the remaining drug-drug pairs
were labeled as negative.

Disease-disease pairs: the list of all diseases was used
to generate all possible disease-disease pairs by pairing
two distinct diseases together. The disease-disease pairs
sharing at least one common drug were positive samples
whereas the remaining pairs were negative samples.

2.4 Measurement of protein- and functionality-
based similarities

To predict drug-disease, drug-drug, and disease-disease
associations, the functionality-based similarities were
measured between drugs and diseases, between two drugs,
and between two diseases, respectively. The drug-GO and
disease-GO associations were used to measure all of the
functionality-based similarities. Based on the drug-protein
and disease-protein associations, we also measured the
protein-based similarities, and used them as the baseline to
finally compare with the functionality-based similarities. To
compute drug-disease, drug-drug, and disease-disease
similarity scores, seven similarity indices were used in this
study. Because different similarity indices can be variously
computed and are suitable for different tasks, the best-
performing one in the classification of the associations is
considered as the most suitable similarity index for
computing the functionality-based similarities.

We posited that x and y represent a drug or a disease, and
Ssimilarityindex (X, y) is a function for computing a similarity score
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between x and y based on a particular similarity index. X and
Y are the sets of the proteins or GO functions associated with
xand y, respectively. | - | is the number of all elements in a set,
and “\” is the set difference of any two sets. The formulas of
those seven similarity indices are shown in Equations (2)-(8).

XnY
SJaccard (x’ y) = ﬁ (2)
XY
SBraunBlanquet (x’ y) = m 3)
So o (5.) X Y| o
. X, - 1
Simpson y m1n(|X , Y|)
XY
SCosine (x’ y) = ﬁ (5)
2
XY
SSnrgenﬁei (x’ y) = % (6]
xXnry|) - xX\vl-lyr\x
SMCCDmmughey (xay) = (| |) |)((|||Y| | | |) (7)
S perivedraccard (x, J/) = log (1 Al |X a Y|) (8)

log(1+]X wY])

3. RESULTS

3.1 Performance evaluation

Drug-disease, drug-drug, and disease-disease associations
are classified as either positive or negative directly based on
their drug-disease, drug-drug, and disease-disease similarity
scores, respectively. At a specific threshold score, the drug-
disease, drug-drug, and disease-disease associations can be
categorized according to their actual and predicted classes
and summarized in a table called a confusion matrix (Figure
3). It is Noted that true positives, false positives, false
negatives, and true negatives are TP, FP, FN, and TN,
respectively.

Actual class

Positive Negative
- 2 True False
1] - .. "
= 3 Positive Positive
=< (P (FP)
% 2 False True
E T, Negative  Negative
Z (FN) (TN)

Figure 3. Confusion matrix

To assess the performance of each similarity index and
demonstrate the superiority of the functionality-based
similarities, we employed the receiver operating
characteristic (ROC) curves and precision-recall (PR) curves.
An ROC curve is a plot showing the performance of a binary
classification model at every threshold score. This plot is
commonly used to compare the performance of several
binary classifiers. To create an ROC curve, the true positive
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rates (TPRs) and false positive rates (FPRs) are computed at
every changed threshold score. With an imbalanced dataset
where the negatives outnumber the positives, the ROC curve
may be deceptive due to a flattening of FPRs. Under this
situation, the PR curve is recommended as an additional
measure to the ROC curve (Saito and Rehmsmeier, 2015). A
PR curve is a plot between precision and recall, which can be
computed following Equation (9). To quantify the
performance measures of the ROC and PR curves, the area
under the ROC curve (AUROC) and the area under the PR
curve (AUPRC) were estimated from the plots. The higher the
AUROC and AUPRC values, the better the model. In addition
to those values, we also computed accuracy and F1 following
Equations (10) and (11). To give a binary class for an
association based on its similarity scores, we specified an
optimal threshold score based on the Youden’s index, a point
where awards the maximum value of the difference between
the FPRs and the TPRs in an ROC curve (Youden, 1950).

Precision= L, Recall = _rr 9
(TP+ FP) (TP+FN)
TP+TN (10)
Accuracy =
(TP+FP+FN+TN)

_ 2x Precisionx Recall (11
(Precision+ Recall )

3.2 Preliminary analysis of the data

In our data set, there were a total of 904 drugs and 524
diseases. The 6,782 unique proteins interacted with those
drugs or diseases. The 8,301 GO functions of any aspects were
associated with the drugs or diseases. Within these GO
functions, there are 901 CC terms (10.9%), 2,407 MF terms
(29.0%), and 4,993 BP terms (60.1%). We considered drug-
GO and disease-GO associations of all GO aspects because GO
functions of any aspect can contribute functional information
about drugs and diseases from different viewpoints. These
would be of great advantages in discovering relationships
among the drugs and diseases. The total numbers and some
statistics of the drug-protein, disease-protein, drug-GO, and
disease-GO associations were summarized, as shown in
Table 1. Since the number of all GO functions was greater
than that of all proteins, the total number of the drug-GO
associations (52,038) was approximately six times greater
than the total number of the interactions between drugs and
proteins (9,427). Similarly, the total number of the disease-
GO associations (91,998) was about three times larger than
the total number of the disease-protein associations (32,659).
Since a protein can be associated with more than one GO
function and one GO aspect, the numbers of the relations
based on GO functions were larger than those of proteins.

Table 1. Total numbers and statistics of drug-protein, disease-protein, drug-GO, and disease-GO relations

Types of drug relations

Types of disease relations

Statistical information

Drug-protein Drug-GO Disease-protein Disease-GO
Total number (relations) 9,427 52,038 32,659 91,998
Mean 10.4 57.6 62.3 175.6
(proteins or GO functions)
Standard deviation 13.1 51.4 162.7 217.6
(proteins or GO functions)
Minimum 1.0 2.0 1.0 1.0
(proteins or GO functions)
Maximum 188.0 545.0 1,086.0 944.0

(proteins or GO functions)

We also investigated the number of proteins that interact
with a drug or a disease and the number of GO functions
associated with a drug or a disease (Table 1). The number of
proteins and GO functions associated with a drug range from
1 to 188 proteins and from 2 to 545 GO functions,
respectively. Also, the wide ranges of the number of proteins
(1to 1,086) and GO functions (1 to 994) were found for both
proteins and GO functions associated with a disease. On
average, a drug was normally associated with a mean of 10.4
proteins, with a standard deviation (SD) of 13.1 proteins,
whereas a drug was associated with a larger number of GO
functions, a mean of 57.6 GO functions, with an SD of 51.4 GO
functions. Similarly, a disease was associated with a higher
average number of GO functions (175.6 + 217.6) than
proteins (62.3 + 162.7). With this more extensive information
of GO functions relative to proteins, we suggested that higher
numbers of drug-disease, drug-drug, and disease-disease
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associations can be detected using the functionality-based
similarities.

Based on drug-disease association data, we can classify
all drug-disease, drug-drug, and disease-disease pairs into
the group of positive (known) and negative (unknown)
samples, as shown in Table 2. Relative to the negative drug-
disease pairs (467,552 pairs), we had a few positive drug-
disease associations (6,144 pairs). This suggested that
there was still room for discovering potential drug-disease
associations. Out of 408,156 drug-drug pairs, 47,094 pairs
(11.5%) shared some common diseases and were labeled
as positive, whereas 361,062 pairs (88.5%) did not have
any common diseases and were labeled as negative.
Relative to all disease-disease pairs, the positive (sharing
some common drugs) and negative (no shared drugs)
paired number 17,129 (12.5%) and 119,897 (87.5%),
respectively.
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Table 2. The numbers of drug-disease, drug-drug, and disease-disease pairs categorized into positive and negative classes

Types of pairs Numbers of pairs in each class (%) Total numbers of
Positive Negative pairs
Drug-disease pairs 6,144 (1.3%) 467,552 (98.7%) 473,696
Drug-drug pairs 47,094 (11.5%) 361,062 (88.5%) 408,156
Disease-disease pairs 17,129 (12.5%) 119,897 (87.5%) 137,026

3.3 Selection of the most appropriate similarity
index

To select the most suitable similarity index for this study,
seven similarity indices were used to compute both protein-
and functionality-based similarity scores for all drug-disease,

D Protein-based similarities
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0.76 0.608
0.74 0.604
0.72 0.600
0.70 0.596
0.68 0.592
0.66 0.588
0.64 0.584
0.62 0.580
> o > L& o 8D X <>
& F L X S F 8
¥ T S o "
& S S &
@@Q @G Q@O %@9

(a) Drug-disease associations

(b) Drug-drug associations

drug-drug, and disease-disease pairs. Then, we directly
classified drug-disease, drug-drug, and disease-disease
associations based on those similarity scores. The AUROC
values of each similarity index based on both proteins and GO
functions are shown in Figure 4.

B Functionality-based similarities

AUROC
0.75
0.74
0.73
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0.71
0.70
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0.67
0.66

(c) Disease-disease associations

Figure 4. Area under the ROC curves (AUROC) of all similarity indices based on proteins and GO functions

According to Figure 4, the classifications of drug-disease,
drug-drug, and disease-disease associations based on
functionality-based similarity scores can produce higher
AUROC values than those of the classifications based on
protein-based similarity scores. Despite a variety of
similarity indices utilized, the AUROC values of protein-
based similarities were slightly improved in all cases,
especially in the cases of drug-disease and disease-disease
associations. Moreover, the Cosine and Sorgenfrei
similarity indices always give us the same AUROC values in
all cases. For example, the AUROC values of both similarity
indices computed based on GO functions were equally
0.731, 0.596, and 0.738 for drug-disease, drug-drug, and
disease-disease associations, respectively. This is because
they were correlated with each other, as can be seen in
Equations (5) and (6). For both the protein- and
functionality-based similarities, we can achieve the highest
AUROC values in all association types by using the derived
Jaccard similarity index. By applying a logarithmic
transformation, as shown in Equation (8), the derived
Jaccard similarity index was less correlated with its
original one (Consonni and Todeschini, 2012).
Consequently, this may suggest why the derived Jaccard
similarity index was more appropriate for measuring the
protein- and functionality-based similarities.
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3.4 Comparison of protein- and functionality-
based similarities

To assess the predicting power of the functionality-based
similarities, we compared the classifications of drug-
disease, drug-drug, and disease-disease associations using
functionality-based similarities with those using protein-
based similarities. In this experiment, the protein- and
functionality-based similarity scores of all drug-disease,
drug-drug, and disease-disease pairs were computed
based on the derived Jaccard similarity index because it
performed best among all similarity indices. Initially, the
overall performance of protein- and functionality-based
similarity scores was evaluated with respect to several
threshold scores by using the ROC and the precision-recall
(PR) curves. Based on the optimal threshold scores
specified by the Youden’s index, we additionally created
the confusion matrices and computed the values of some
standard performance measures, including precision,
recall, accuracy, and F1, to demonstrate that functionality-
based similarities provide improved classifications of the
different associations.

3.4.1 ROC and PR curves

The ROC curves and their corresponding AUROC values are
shown in Figure 5. The classifications based on both protein-
and functionality-based similarity scores can improve the
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performance of the completely random classifier, shown as
the red-dashed straight lines. In all cases, utilizing the
functionality-based similarity scores to classify drug-disease
associations (AUROC = 0.748), drug-drug associations
(AUROC = 0.605), and disease-disease associations (AUROC
= 0.745) can produce higher AUROC values when compared
to the classifications using the protein-based similarities. In
addition to the ROC curves, the PR curves and computed the

area under the PR curves (AUPRC) are also plotted, as shown
in Figure 6. By comparing the AUPRC values, we found that
the classifications of drug-disease associations (AUPRC =
0.059), drug-drug associations (AUPRC = 0.178), and disease-
disease associations (AUPRC = 0.349) using functionality-
based similarity scores achieved better AUPRC values than
those of the classifications using the protein-based similarity
scores.
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Figure 5. ROC plots of the derived Jaccard similarity index based on proteins and GO functions
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Figure 6. Precision-recall curves of the derived Jaccard similarity index based on proteins and GO functions

3.4.2 Confusion matrices and standard evaluation
metrics
Based on the optimal threshold scores determined by the
Youden’s index, we created the confusion matrices of the
classifications of drug-disease, drug-drug, and disease-
disease associations, as shown in Figure 7. From all confusion
matrices, it is noticeable that the classifications of all
associations by using functionality-based similarities were
improved. In Figure 7a, the number of accurate predictions
using drug-disease similarity scores based on GO functions
(TP=3,836 and TN = 419,643) was significantly greater than
those using the protein-based similarity scores (TP = 2,660
and TN = 402,076). Similarly, using drug-drug similarity
scores based on GO functions (TP=27,463 and TN = 244,961)
increased the number of accurate predictions compared with
those using the protein-based similarity scores (TP = 24,114
and TN = 216,263), as can be seen in Figure 7b. Furthermore,
in the classification of disease-disease associations (Figure
7¢c), the number of accurate predictions was noticeably
improved by using the functionality-based similarity scores
(TP=11,008 and TN = 102,159) compared with those using
the protein-based similarity scores (TP = 9,855 and TN =
93,510).

According to the confusion matrices, the values of the
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evaluation metrics (precision, recall, accuracy, and F1) can be
computed to measure the performance of the protein- and
functionality-based similarities, as shown in Tables 3 - 5. The
values of all evaluation metrics were noticeably improved
when we used the functionality-based similarity scores in the
association classification. Especially, the accuracy values of
the classifications of drug-disease, drug-drug, and disease-
disease associations using the protein-based similarities
were improved from 0.854 to 0.894, from 0.589 to 0.668, and
from 0.754 to 0.826, respectively, by using the functionality-
based similarities. These results are in accordance with the
results of the confusion matrices (Figure 7), which show that
using the functionality-based similarities increased the
number of accurate predictions in the association
classifications. Similarly, the recall values of the classifications
of drug-disease, drug-drug, and disease-disease associations
were improved from 0.433 to 0.624, from 0.512 to 0.583, and
from 0.575 to 0.643, respectively, by using the functionality-
based similarities. The precision values of the association
classifications were quite low in all cases due to the highly
imbalanced classes between positives and negatives in the
data, resulting in a much higher number of false positives
detected relative to true positives. Due to the low values of
precision, the values of F1 were also low in all cases. However,
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whatever the metrics considered may be, it is noticeable
that using the functionality-based similarities in the
classifications of drug-disease, drug-drug, and disease-

disease associations outperformed the classifications using
the protein-based similarities.

Drug-disease associations Drug-drug associations

Actual class Actual class Actual class
Positive Negative Positive Negative Positive Negative
Z 7 2660 65476 57 24114 144799 £ 7 985 26387
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(a) Drug-disease associations

(b) Drug-drug associations

(c) Disease-disease associations

Figure 7. Confusion matrices of the association classification using the protein- and functionality-based similarities

Table 3. Values of evaluation metrics for the classification of drug-disease associations

Evaluation metrics

Drug-disease associations

Protein-based similarity

Functionality-based similarity

Precision 0.039
Recall 0.433
Accuracy 0.854
F1 0.072

0.074
0.624
0.894
0.133

Table 4. Values of evaluation metrics for the classification of drug-drug associations

Evaluation metrics

Drug-drug associations

Protein-based similarity

Functionality-based similarity

Precision 0.143
Recall 0.512
Accuracy 0.589
F1 0.223

0.191
0.583
0.668
0.288

Table 5. Values of evaluation metrics for the classification of disease-disease associations

Evaluation metrics

Disease-disease associations

Protein-based similarity

Functionality-based similarity

Precision 0.272
Recall 0.575
Accuracy 0.754
F1 0.369

0.383
0.643
0.826
0.480

3.5 Case studies of the inferred associations

In this section, the practicality of using the functionality-
based similarities for predicting drug-disease, drug-drug, and
disease-disease associations were demonstrated. The optimal
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threshold similarity scores specified by the Youden’s index
were 0.264, 0.369, and 0.297 for drug-disease, drug-drug,
and disease-disease associations, respectively. Each of three
case studies was selected from the negative-labeled drug-
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disease pairs, drug-drug pairs, and disease-disease pairs
having the functionality-based similarity scores greater than
the given threshold scores. After that, these three inferred
associations were validated by finding supporting evidence
from the published literature and a database of clinical
studies (ClinicalTrails.gov).

3.5.1 Tolcapone and attention deficit-hyperactivity
disorder (ADHD)

Tolcapone (DB00323) is a drug used to treat Parkinson’s
disease (PD) by inhibiting the enzyme catechol-O-methyl
transferase (COMT) (Antonini et al, 2008). ADHD (OMIM:
143465) is a mental health disorder that is characterized by
several abnormal behaviors such as inattention,
hyperactivity, and high impulsivity (Kuntsi et al, 2014).
Recently, we found a clinical study in ClinicalTrials.gov
(NCT03904498) that had the aim to assess the therapeutic
effects of tolcapone in participants who have both ADHD and
alcohol use disorder. The functionality-based similarity score
between tolcapone and ADHD was 0.484. There were 9 GO
functions shared between tolcapone and ADHD, mainly
related to neural processes such as dopamine catabolic
process (GO: 0042420), catechol-O-methyltransferase
activity (GO: 00162606), and short-term memory (GO:
0007614). Until now, the mechanism of tolcapone is still
unclear, but it is believed that the ability to inhibit COMT can
sustain the dopaminergic system, resulting in relieving PD
(Bonifacio et al,, 2007). Moreover, the COMT gene’s product
can degrade dopamine mainly within the prefrontal cortex

Glimepiride .

Diabetes mellitus, type 2

*  Maturity-onset diabetes of the

. young, type 1

*  Maturity-onset diabetes of the
young, type 2

*  Maturity-onset diabetes of the

young, type 3

’ * Cardiac arrhythmia
*  Myocardial infarction

Nicorandil

(a) An inferred drug-drug association

which mediates several executive behaviors related to ADHD
(Sun etal,, 2014).

3.5.2 Glimepiride and nicorandil

Glimepiride (DB00222) and nicorandil (DB09220) are two
drugs having the functionality-based similarity score as
0.488 and sharing four GO functions, such as potassium ion
importacross plasma membrane (GO: 1990573), ion channel
binding (GO: 0044325), and sulfonylurea receptor activity
(GO: 0008281). Because of their involvement in similar GO
functions, these drugs may be able to treat the same diseases.
According to Figure 8a, glimepiride is a drug used for the
treatment of type 2 diabetes mellitus or T2D (OMIM:
125853), maturity-onset diabetes of the young, type 1
(OMIM: 125850), type 2 (OMIM: 125851), and type 3 (OMIM:
600496). Nicorandil is used to treat cardiac arrhythmia
(OMIM: 115000) and myocardial infarction (OMIM: 608446).
Interestingly, we found a clinical study in ClinicalTrials.gov
(NCT03775902) that was performed to investigate the effect
of nicorandil in diabetic patients. Furthermore, there is a
study showing that the abnormality of insulin handling in
T2D patients is related to the dysfunction of the ATP-
dependent potassium channel activity (Bonfanti et al,, 2015).
In addition, defective Ca2* handling, which is mediated by
several ion channel activities, can impact B-cell function in
T2D (Jacobson and Shyng, 2020). Based on those supporting
studies, it is suggested that the shared GO functions between
these drugs may hint at the mechanisms of nicorandil in the
treatment of T2D.

Myotonia
congenita
*  Acetazolamide e
»  Carbamazepine -
. Indomethacin
Gitelman
syndrome

(b) An inferred disease-disease association

Figure 8. Inference of the shared diseases from the drug-drug association and the shared drugs from the disease-disease

association

3.5.3 Myotonia congenita and Gitelman syndrome

Myotonia congenita (OMIM: 255700) is a disease with
abnormality of skeletal muscles treated by acetazolamide
(DB00819) and carbamazepine (DB00564), as shown in
Figure 8b. Gitelman syndrome (OMIM: 263800) is a rare
disease affecting the balance of several ions in the body such
as magnesium, calcium, and potassium (Cruz et al, 2001),
and can be treated by indomethacin (DB00328). Myotonia
congenita and Gitelman syndrome have a functionality-based
similarity score equal to 0.667 and share three GO functions
between them, which are chloride transmembrane transport
(GO: 1902476), voltage-gated chloride channel activity (GO:
0005247), and chloride channel complex (GO: 0034707).
With the highly functional correlation between these
diseases, myotonia congenita and Gitelman syndrome may
share some common treatments. Although there is no clinical
study in ClinicalTrials.gov that can support this theory,
there are some studies suggesting the relationship between
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carbamazepine and Giltelman syndrome. The studies
revealed that carbamazepine can affect the sodium transport
in the toad Pleurodema thaul (Suwalsky et al.,, 2006), and that
dysfunction of sodium chloride cotransporters can cause
Giltelman syndrome (Graziani etal,, 2010).

4. DISCUSSION

In this study, we comprehensively explore how to exploit
functionality-based similarities to identify potential drug-
disease, drug-drug, and disease-disease associations for drug
repositioning. Drug-disease, drug-drug, and disease-disease
similarity scores based on GO functions were used to predict
drug-disease associations, drug-drug associations (sharing
some common diseases), and disease-disease associations
(sharing some common drugs), respectively. To assess the
predicting power of functionality-based similarities, the
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performance of predictions based on protein-based
similarities served as the baseline and were compared with
the performance of functionality-based similarities. Both
protein- and functionality-based similarities were computed
based on seven commonly used similarity indices, which
include the Jaccard, Braun-Blanquet, Simpson, Cosine,
Sorgenfrei, McConnaughey, and derived Jaccard index, to find
the most appropriate similarity index for protein and GO
information used in this study. It was found that the derived
Jaccard index performs better than the others for computing
both protein- and functionality-based similarities. This result
is consistent with the study of Wijaya and co-workers, who
showed that the derived Jaccard index produced the highest
AUROC value in classifying the efficacy matching of
Indonesian and Japanese herbal medicines (Wijaya et al,
2016).

In the classifications of drug-disease, drug-drug, and
disease-disease associations, functionality-based similarities
based on the derived Jaccard similarity index significantly
improved the classifications based on protein-based
similarities. With the enlarging scope of drug and disease
information using GO functions, the relationships of drugs
and diseases were more efficiently detected than by using
drug- and disease-associated proteins. This finding is
supported by the study of Davis and co-workers, where two
diseases having some common drugs significantly share their
BP GO terms but rarely share their associated genes due to
broader biological concepts compared (Davis et al, 2016).
Furthermore, by the investigation of drug-protein-disease
relationships on a protein-protein interaction (PPI) network,
it has been revealed that disease-associated proteins interact
with drug target proteins through more complex interaction
than one-step direct interaction on the PPI network
(Rutherford et al, 2018). This implied that not only drug
target proteins and disease-associated proteins but also the
downstream proteins affected by drugs and diseases are
important for connecting drugs to diseases. Nevertheless, it
is unlikely that all drug- and disease-affected proteins for
computing the protein-based similarities can be identified.
Therefore, the utilization of more extensive information
about drugs and diseases, i.e., drug- and disease-associated
GO functions, can overcome the limitation of the protein-
based similarities and improve the classifications of drug-
disease, drug-drug, and disease-disease associations.

Despite the advantages of functionality-based similarities
were shown, there are some limitations of these similarities,
which require improvement. Potential drug-drug and
disease-disease associations, identified by the drug-drug and
disease-disease functionality-based similarity scores, cannot
directly point to the corresponding drug-disease associations
for drug repositioning. Only a set of possible diseases shared
between two drugs or a set of possible drugs shared between
two diseases can be inferred from a drug-drug and disease-
disease association, respectively. To overcome this
limitation, more complex methods that can systematically
integrate all these independent measures of the functional
similarities are required to obtain more accurate and reliable
predictions of the drug-disease associations.

5. CONCLUSION

The utilization of functionality-based similarities to identify
drug-disease, drug-drug, and disease-disease associations for
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drug repositioning was explored. Herein, the derived Jaccard
similarity index is recommended for computing
functionality-based similarity scores due to its better
performance than other similarity indices. By using the
functionality-based similarity scores, the performance of the
association classification based on the protein-based
similarity scores is significantly improved. The case studies
guarantee that the functionality-based similarity scores can
be used to identify some potential drug-disease associations,
which have been under investigation. In addition, the shared
GO functions of the potential associations could provide a
guide to the underlying mechanisms related to drugs and
diseases.
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