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ABSTRACT

The objective classification of outdoor time has the potential to benefit applications
involving the effect of outdoor exposure on various health outcomes such as
happiness, stress, or myopia. The focus of this work is the use of different combinations
of multiple light measurements as inputs to an artificial neural network (ANN) to classify
indoor and outdoor environments. Seven different light measurements are considered
within this work: ultraviolet index, luminosity, color temperature, red light, green light,
blue light, and clear light. ANNs are trained, validated, and tested using all
combinations of these different light measurements as inputs. The classification
accuracy of each of these variations is compared and used to determine the
effectiveness of the individual measurements for classification purposes. The results
of this work revealed that the color temperature measurement was particularly effective
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1. INTRODUCTION

Mental health has become an increasingly relevant
consideration in recent years. The COVID-19 pandemic has
created numerous stressors for people worldwide.
Specifically, changes in social behavior patterns, such as
physical or social distancing, as well as isolation and
quarantine practices have led to a tendency for people to
spend more time indoors during the COVID-19 pandemic
(Soga et al, 2021; Lades et al,, 2020). Earlier work in the
field of psychology has demonstrated a link between outdoor
time and greater overall happiness (MacKerron and Mourato,
2013), lower stress levels (Hartig etal,, 2003; Thompson etal,
2012), lower mortality and disease rates (Maas, 2009), as well
as lower anger, violence, and aggression (Kuo and Sullivan,
2001). This is further reinforced by more recent studies,
which showed an overall decrease in subjective well-being
during the pandemic due to this decrease in outdoor activity
(Jackson et al., 2021; Stieger et al, 2021).
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for detecting outdoor exposure when used in conjunction with at least one other
measurement type. Additionally, it was found that the ultraviolet index may not be a
necessary component for classification algorithms.

Keywords: artificial neural network; classification; light; sensor systems and applications

Since it is likely that these types of habits will continue for
people across the world, methods for monitoring and
analyzing indoor and outdoor exposure is an important
consideration for human health and well-being. One of the
limitations of previous studies regarding the effect of
outdoor time is the reliance of self-reported survey data to
determine the overall outdoor time. It is also possible that
this exposure to outdoor environments is confounded with
other measurements, such as physical activity (Cleland
et al, 2008; Schaefer et al,, 2014) or screen time (Burdette
and Whitaker, 2005). It has been shown, however, that
physical activity and exposure to natural environments can
independently promote positive health effects (Frumkin,
2001; St Leger, 2003). Regardless, promoting outdoor time
could naturally lead to increased physical activity, thus
providing an overall health benefit (McCurdy et al., 2010).
Therefore, the ability to objectively measure outdoor
exposure could have numerous benefits for various research
areas. In addition to mental health considerations, outdoor
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time has been shown to reduce the incidence of myopia
(Xiong et al,, 2017; He et al, 2015). There are likely many
other potential uses for indoor/outdoor information. For
example, it was shown that the accuracy of activity monitors
varies between indoor and outdoor locations (Busse et al.,
2009). Accurate information about the user’s location
could help to improve activity monitoring algorithms.

Currently, many consumers use health tracking devices
for different purposes, such as monitoring physical activity
through energy expenditure (e.g., calories burned), step
counts, distance travelled, etc. Many users also benefit
from other biometric data from wearable technology, such
as heart rate monitoring during exercise. This information
serves two primary purposes. The first is just simple
tracking and logging. That is, users can keep track of their
current progress so that they have an idea of what they are
doing. The second, and perhaps more important purpose of
this type of health monitoring, is to motivate users to do
more, often to complete goals such as reaching 10,000 steps
every day. This mindset could be extended to additional
health metrics, such as their time spent outdoors. If there
were a reliable way to objectively measure the time a person
is spending outside each day, this information could be used
to help motivate them to get outside more, which could
directly impact their mental health. In order to accomplish
this, a sensing system and corresponding detection
algorithm must be employed to automatically determine at
any given moment if a person is indoors or outdoors.

Various sensor systems have been explored for the
purpose of outdoor detection. One primary category of
classification algorithms for outdoor detection is the use
of global positioning system (GPS) measurements
(Tandon et al,, 2013; Klinker et al.,, 2014; Kerr et al.;
2012). There are some limitations, however, with using
this type of sensor. These sensors can be more
expensive than other alternatives and require external
communication with satellites to work properly. This
communication requirement can lead to higher power
consumption and susceptibility to issues related to
outages, boundary issues, etc.

Other approaches take advantage of built-in smart
phone sensors, such as accelerometers, proximity sensors,
light sensors, and magnetometers. Machine learning
algorithms, such as IODetector have been shown to be
successful at making indoor/outdoor classification based
on cell signal strength (Li et al,, 2014; Radu et al,, 2014;
Wang et al,, 2016; Zhou et al,, 2012), or Bluetooth (Zou et
al, 2016). These methods, however, like GPS, require
external signal information for proper operation. The
use of the mobile phone, while convenient, may not be
representative of the user’s environment when carried, e.g.,
inside a pocket or bag. A person may also choose to leave
their phone somewhere inside while engaging in sports
or other outdoor activities. Due to these limitations,
alternative classification systems are desirable.

Various works have considered the use of different
light measurements for indoor and outdoor classification.
Light measurements provide a reasonable choice for
outdoor classification applications due to their relative low
cost and lack of reliance on external communication.
Additionally, light sensors measure the current
environmental conditions, which are particularly relevant
when assessing environmental exposure. Some early work
considered the use of light intensity for outdoor detection
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using receiver operating characteristic (ROC) analysis
(Tandon et al., 2013), which was later improved (Flynn et
al,, 2014). A more recent work applied a machine learning
algorithm, the support vector machine (SVM), using
ultraviolet (UV) index along with light intensity and
number of steps to classify the indoor or outdoor condition
(Yeetal,, 2019).

In previous related works, the wuse of light
measurements and machine learning techniques have
been explored. Specifically, these works investigated the
use of UV index, luminosity, color temperature, and red,
green, blue, and clear components of light. The data
acquisition system is fully detailed, and ROC classification
results are offered for the individual metrics in addition to
a preliminary artificial neural network (ANN) classifier
(Rhudy et al., 2020). This work was expanded from Rhudy
et al. (2021), which offers a comparison of three different
machine learning classifiers: SVM, ANN, and bagged tree
(BT). This work considered the use of all seven light
measurements as inputs to the machine learning
classifiers. Although the BT classifier showed marginally
better performance over the ANN classifier (Rhudy et al,
2021), the ANN classifier still reported very high
classification accuracy at a much lower computational cost.
Due to the eventual goal of implementing in real time on a
wearable device, computational cost is of particular
importance for this application. Thus, the ANN classifier
was selected for use in this study.

As a follow up to these works, additional work is desired
to explore the effectiveness of each of the individual
measurements within an ANN classifier. Specifically, this
work aims to identify which measurements provide
meaningful information regarding indoor or outdoor
condition. This could help to reduce the measurement set,
thus reducing the overall cost of the system and the
computational complexity of the algorithm.

2. MATERIALS AND METHODS

2.1 Materials

The experimental setup for this project consisted of a
microcontroller, which sampled data from two different
light sensors approximately once per minute and stored
the data on a microSD card. The microcontroller was an
Adafruit Feather 32u4 Adalogger (New York, USA) with a
rechargeable 3.7 V 350 mAh lithium ion battery. The
microcontroller interfaces through 12C communication
with a TCS34725 (Adafruit Industries, New York, USA) to
measure luminosity, color temperature, and red, green,
blue, and clear components of light. Additionally, a
GUVA-S12SD (Adafruit Industries, New York, USA) sensor
measured UV index through an analog voltage signal. This
sensing system was presented in full detail in Rhudy et al.
(2020). A diagram of the data acquisition system wiring
is given in Figure 1 along with a picture of the prototype
system used for data collection, which is shown in Figure 2.

2.2 Protocol

Data collection was conducted under static conditions in
various indoor and outdoor locations. A total of 3,640 indoor
and 1,368 outdoor samples were collected. Each sample
consists of seven light measurements: UV index, color
temperature, luminosity, and red, green, blue, and clear
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components of light. Table 1 shows the full description of all
collected data sets. Most of the data described in Table 1
were collected in the general area of Reading, PA, USA.
However, the last three data files were collected in Egypt.
Note that this data set was used in previous related studies
(Rhudy et al,, 2020; 2021).

2.3 Data analysis

In this study, various ANN systems were developed, which
used different combinations of inputs from the light
measurements. All ANNs were selected as feedforward
neural networks with a single hidden layer, containing 13
nodes. The number of nodes was identified to maximize the
performance of the ANN for classification. The overall data
set was divided into 70% training data and 30% testing data
for each of the considered machine learning classifiers. The
training was repeated for each ANN variation using 1,000
unique permutations of the data sets. Each ANN used the
same 1,000 variations of training and testing data to ensure
one-to-one comparison of the different ANN models. All data

analyses were performed using MATLAB (R2021a, Natick
MA), including the neural network toolbox.

3. RESULTS AND DISCUSSION

Some preliminary work has already been published in
(Rhudy et al.,, 2020), which investigated the classification
accuracy using individual light measurements. This
work used ROC curves to identify the discrimination
accuracy between outdoor and indoor conditions using
a fixed cutoff value. The cutoff values were selected as the
maximum sum of sensitivity and specificity, which
coincides with the maximum Youden'’s index (Le, 2006).
The results from this work are shown in Table 2. The
results in Table 2 indicate that the blue light measurement
offered the highest classification accuracy for this data set,
followed by the UV index, though all individual sensors
performed with reasonable accuracy.
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Figure 1. Diagram of the data acquisition system (Rhudy et al., 2020)
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Figure 2. Picture of data acquisition system prototype (Rhudy etal., 2021)
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Table 1. Description of data sets (Rhudy et al.,, 2021)

Description Type Month Start time Duration Weather
(Local) (HH:MM)
Classroom, 2 m from window Indoor January 09:00 AM 00:53 Sunny
Classroom, blinds down Indoor January 11:10 AM 00:35 Sunny
Classroom, blinds down Indoor January 09:05 AM 00:55 Sunny
Classroom, blinds down Indoor January 11:10 AM 00:53 Sunny
Apartment back step, shaded Outdoor January 01:15 PM 00:40 Sunny
Apartment, far from window Indoor January 01:56 PM 01:10 Sunny
Classroom, dark outside Indoor January 06:11 PM 00:39 Clear night
Classroom, blinds down Indoor January 10:35 AM 00:44 Sunny
Classroom, blinds down Indoor January 11:06 AM 00:46 Overcast
Classroom, blinds down Indoor January 08:57 AM 00:58 Overcast
Car windshield, direct sun Outdoor February 11:07 AM 04:21 Sunny
Café, next to large windows Indoor May 09:16 AM 00:36 Cloudy
Office desk, lights off Indoor May 01:58 PM 43:43 Partly Cloudy
House, blinds down Indoor June 03:18 PM 01:07 Cloudy
House under lamp (on) Indoor June 04:28 PM 01:19 Cloudy
House front lawn, direct sun Outdoor June 02:00 PM 00:57 Sunny
Outdoor swing Outdoor July 07:19 AM 01:07 Clear sky
Outdoor rocking chair under tree Outdoor July 08:27 AM 00:25 Sunny
House, bookshelf, lights off Indoor July 08:54 AM 01:10 Sunny
House, bench, lights off Indoor July 10:45 AM 01:19 Sunny
House, kitchen under LED lights Indoor July 12:24 PM 00:50 N/A
House by electric fireplace (on) Indoor July 01:16 PM 00:30 N/A
Outdoor deck chair, direct sun Outdoor July 01:48 PM 00:35 Sunny
Seesaw in shade Outdoor July 02:24 PM 00:35 Sunny
Chair under an outdoor roof Outdoor July 03:00 PM 00:38 Shaded area
Basement table, no windows Indoor July 07:44 PM 01:00 N/A
House roof (Egypt) Outdoor July 01:56 PM 05:38 Sunny
House roof (Egypt) Outdoor July 04:11 AM 08:50 Sunny
House, bedroom floor (Egypt) Indoor July 09:20 PM 01:37 N/A
Table 2. Classification accuracy from ROC analysis

Measurement Sensitivity Specificity Youden'’s index

UV index 0.932 0.995 0.927

Color temperature 0.939 0.968 0.907

Light intensity 0.919 0.995 0914

Red 0.904 0.999 0.903

Green 0.923 0.997 0.920

Blue 0.930 0.998 0.928

Clear 0.922 0.996 0.918

The performance of using all seven light measurements
as inputs for the ANN revealed a sensitivity of 97.6% and
specificity of 99.81% (Youden’s index = 0.945), which
showed a clear performance benefit over using the
individual metrics. However, it is not clear if all seven
metrics are necessary in order to obtain this higher
performance accuracy (Rhudy et al., 2021). To investigate
this further, all possible combinations of the seven
considered light measurements were implemented as
inputs to ANNs, resulting in 120 different combinations.
For each ANN, the same 1,000 variations of training and
testing data were used so that the comparisons were
equivalent regarding their performance.

For each of the 120 different combinations, the
performance was evaluated by calculating the sensitivity,
specificity, and Youden’s index. The classification results
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for the ANN variations with the top 5 highest Youden'’s
index are presented in Table 3. The Youden’s indices for
each of the 2-input ANNSs are shown in Figure 3, for 3-input
ANNSs in Figure 4, for 4-input ANNs in Figure 5, for 5-input
ANNSs in Figure 6, and for 6-input ANNs in Figure 7. For
compactness, the following abbreviations were used in
Table 3 and Figures 3 through 7: UV = UV index, CT = color
temperature, L = luminosity, R = red light, G = green light,
B = blue light, and C = clear light.

In addition to the results shown directly in Figure 3
through Figure 7, some additional observations were made
regarding the different ANN combinations when ranked by
Youden'’s index. Note in Table 3 that the color temperature
measurement appeared in all top 5 ANN variations. In fact,
the color temperature measurement was used in the top 42
ranked ANNs (out of the 120 combinations). This is



particularly interesting,

since the color temperature
performed worse than all other light metrics except for red
light when using only a single measurement as shown in
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estimation performance.

Table 3. Classification accuracy for top 5 ANN combinations

Table 2. However, when used in combination with other light
measurements, the color temperature served to improve the

ANN inputs

Sensitivity

Specificity

Youden'’s index

CT,B
UV,CTL,G,B,C
CT,LR

CT,B,C
CT,L,R,GB,C

0.9797
0.9776
0.9761
0.9755
0.9762

0.9981
0.9975
0.9984
0.9987
0.9975

0.9779
0.9751
0.9745
0.9741
0.9737

Metrics for 2-input ANN

B.C
G,C
G,B
RC
R,B
R,G
LC
LB

LR
cTC
cTB
CTG
CTR
CTL
uv,c
uv,B
uv,G
UVR
uv,L

uv,cT

0.85

0.9 0.95
Youden's index

Figure 3. Classification accuracy for ANNs using 2 input metrics

Metrics for 3-input ANN

GB.C
RB,C
R,GC
R.G,B
LB,C
LG.C
LGB
LRC
LR,B
LRG
CTB.C
CT.G,C
CTG,B
CTR.C
CTR.B
CTR,G
CTLC
CTLB
CTLG
CTLR
uv,B,C
uv.G,C
Uv.G,B
UV,R,C
UV,R,B
UV.R.G
uv.Lc
uv.LB
Uv,LG
UV.LR
UV.CT.C
UV.CT.B
UV,.CT.G
UV.CTR
UV,.CTL

0.85

0.9 0.95
Youden's index

Figure 4. Classification accuracy for ANNs using 3 input metrics
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Metrics for 4-input ANN
C
<
P
®
9]
1

UV,CTLC -

UV,CT.LB .

UV,CT.L,G -

UV,CTLR .
13 L

0.85 0.9 0.95 1

Youden's index

Figure 5. Classification accuracy for ANNs using 4 input metrics

L,R,G,B,C b
CTR,GB,C 1
CTL,G,B,C b
CTLR,B,C b
CTLRG,C b
CTLR,GB b
UV,R,G,B,C b
UV,L,G,B,C b
UV,LR,B,C b
UV,LR,G,C b
UV,L.R,G,B 4
UV,CTG,B,C 4
UV,CTR,B,C b
UV,CTR,G,C b
UV,CTR,G,B k
UV,CTL,B,C k
UV,CTL,G,C b
UV,CTL,G,B b
UV,CTL,R,C b
UV,CTL,R,B b
UV,CTLR,G b

0.85 0.9 0.95 1
Youden's index

Metrics for 5-input ANN

Figure 6. Classification accuracy for ANNs using 5 input metrics

Metrics for 6-input ANN

0.85 0.9 0.95 1
Youden's index

Figure 7. Classification accuracy for ANNs using 6 input metrics

‘:H science, engineering
- and health studies



Rhudy, M. B.

It is also interesting to note that the classification
accuracy of the ANN, which used all seven measurements
ranks low on the list at 46. Often, one would expect
greater performance when using more measurement data.
However, as shown in Figure 7, some of the 6-input
classifiers outperformed the full 7-input ANN. In fact, two
of the top 5 combinations (Table 3) used 6 out of the 7
metrics. The second highest performing ANN used all
measurements except the red light component. This
indicated that the red light measurement may potentially
be confusing the classification in the ANN. The red light
measurement was also the one, which showed the worst
classification accuracy (Table 2).

Surprisingly, four out of the five best performing ANN
classifiers did not use the UV index. UV exposure is known
to be higher in outdoor locations, so this measurement was
expected to provide a meaningful indication of indoor or
outdoor condition. This is particularly interesting in this
application though, because the measurement is provided
from a separate sensor. Future iterations of this hardware
could consider omitting the UV sensor since it does
not lead to a significant improvement in classification
accuracy.

As an additional comparison analysis, for each light
measurement, two groups were created: one group
containing all ANN combinations with that light
measurement, and the other group containing all ANN
combinations without that light measurement. Then, a
two-sample t-test was used to see if there were
significant differences in the classification accuracy
between the two groups. Only the color temperature
demonstrated significant difference between the two
groups (p<0.001). This is further indication that the color
temperature measurement can help to improve the
classification accuracy. To further illustrate these results,
a box plot of the classification accuracy for ANN
combinations with and without the color temperature are
shown in Figure 8. The classification accuracy
significantly improved when using classifiers with the
color temperature measurement. Though not statistically
significant, the blue light measurement showed an
increase in classification accuracy between the two
groups. It is interesting to note that the other five
measurements showed a decrease in classification
accuracy between the two groups, though not statistically
significant.

0.98 i T ]
|
0.97 + | E
|
0.96 |
w 0.95 N i
(0]
2 |
5 0941 : + i
o) |
S o093t | + .
(o] -
0.91F | 1
1
09+ _
+
With Without

Color temperature

Figure 8. Box plot of classification accuracy for ANN combinations with and without the color temperature measurement

as an input

4. CONCLUSION

This work investigated the use of different light measurements
within ANNs for indoor or outdoor classification. The results
indicated that the greatest classification accuracy was
obtained when using only two of the light measurements:
color temperature and blue light. This combination of sensor
measurements led to a Youden’s index of 0.9779, which is a
very high classification performance. The color temperature
measurement was shown to offer the best performance
improvement when used in conjunction with other light
sensors. Overall, this work determined that the use of all seven
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considered light measurements is likely unnecessary for
indoor and outdoor classification, and a reduced measurement
set could be considered in future applications.
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