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ABSTRACT 
 
The objective classification of outdoor time has the potential to benefit applications 
involving the effect of outdoor exposure on various health outcomes such as 
happiness, stress, or myopia. The focus of this work is the use of different combinations 
of multiple light measurements as inputs to an artificial neural network (ANN) to classify 
indoor and outdoor environments. Seven different light measurements are considered 
within this work:  ultraviolet index, luminosity, color temperature, red light, green light, 
blue light, and clear light. ANNs are trained, validated, and tested using all 
combinations of these different light measurements as inputs. The classification 
accuracy of each of these variations is compared and used to determine the 
effectiveness of the individual measurements for classification purposes. The results 
of this work revealed that the color temperature measurement was particularly effective 
for detecting outdoor exposure when used in conjunction with at least one other 
measurement type. Additionally, it was found that the ultraviolet index may not be a 
necessary component for classification algorithms. 
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1. INTRODUCTION                                    
 
Mental health has become an increasingly relevant 
consideration in recent years. The COVID-19 pandemic has 
created numerous stressors for people worldwide. 
Specifically, changes in social behavior patterns, such as 
physical or social distancing, as well as isolation and 
quarantine practices have led to a tendency for people to 
spend more time indoors during the COVID-19 pandemic 
(Soga et al., 2021; Lades et al., 2020). Earlier work in the 
field of psychology has demonstrated a link between outdoor 
time and greater overall happiness (MacKerron and Mourato, 
2013), lower stress levels (Hartig et al., 2003; Thompson et al., 
2012), lower mortality and disease rates (Maas, 2009), as well 
as lower anger, violence, and aggression (Kuo and Sullivan, 
2001).  This is further reinforced by more recent studies, 
which showed an overall decrease in subjective well-being 
during the pandemic due to this decrease in outdoor activity 
(Jackson et al., 2021; Stieger et al., 2021). 

       Since it is likely that these types of habits will continue for 
people across the world, methods for monitoring and 
analyzing indoor and outdoor exposure is an important 
consideration for human health and well-being.  One of the 
limitations of previous studies regarding the effect of 
outdoor time is the reliance of self-reported survey data to 
determine the overall outdoor time. It is also possible that 
this exposure to outdoor environments is confounded with 
other measurements, such as physical activity (Cleland  
et al., 2008; Schaefer et al., 2014) or screen time (Burdette  
and Whitaker, 2005). It has been shown, however, that  
physical activity and exposure to natural environments can 
independently promote positive health effects (Frumkin, 
2001; St Leger, 2003).  Regardless, promoting outdoor time 
could naturally lead to increased physical activity, thus 
providing an overall health benefit (McCurdy et al., 2010). 
Therefore, the ability to objectively measure outdoor 
exposure could have numerous benefits for various research 
areas. In addition to mental health considerations, outdoor 
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time has been shown to reduce the incidence of myopia 
(Xiong et al., 2017; He et al., 2015). There are likely many 
other potential uses for indoor/outdoor information. For 
example, it was shown that the accuracy of activity monitors 
varies between indoor and outdoor locations (Busse et al., 
2009).  Accurate information about the user’s location 
could help to improve activity monitoring algorithms. 
       Currently, many consumers use health tracking devices 
for different purposes, such as monitoring physical activity 
through energy expenditure (e.g., calories burned), step 
counts, distance travelled, etc. Many users also benefit 
from other biometric data from wearable technology, such 
as heart rate monitoring during exercise.  This information 
serves two primary purposes. The first is just simple 
tracking and logging.  That is, users can keep track of their 
current progress so that they have an idea of what they are 
doing. The second, and perhaps more important purpose of 
this type of health monitoring, is to motivate users to do 
more, often to complete goals such as reaching 10,000 steps 
every day. This mindset could be extended to additional 
health metrics, such as their time spent outdoors. If there 
were a reliable way to objectively measure the time a person 
is spending outside each day, this information could be used 
to help motivate them to get outside more, which could 
directly impact their mental health. In order to accomplish 
this, a sensing system and corresponding detection 
algorithm must be employed to automatically determine at 
any given moment if a person is indoors or outdoors.   
       Various sensor systems have been explored for the 
purpose of outdoor detection. One primary category of 
classification algorithms for outdoor detection is the use 
of global positioning system (GPS) measurements 
(Tandon et al., 2013; Klinker et al., 2014; Kerr et al.; 
2012). There are some limitations, however, with using 
this type of sensor. These sensors can be more  
expensive than other alternatives and require external 
communication with satellites to work properly. This 
communication requirement can lead to higher power 
consumption and susceptibility to issues related to 
outages, boundary issues, etc.  
       Other approaches take advantage of built-in smart 
phone sensors, such as accelerometers, proximity sensors, 
light sensors, and magnetometers. Machine learning 
algorithms, such as IODetector have been shown to be 
successful at making indoor/outdoor classification based 
on cell signal strength (Li et al., 2014; Radu et al., 2014; 
Wang et al., 2016; Zhou et al., 2012), or Bluetooth (Zou et 
al., 2016). These methods, however, like GPS, require 
external signal information for proper operation. The  
use of the mobile phone, while convenient, may not be 
representative of the user’s environment when carried, e.g., 
inside a pocket or bag. A person may also choose to leave 
their phone somewhere inside while engaging in sports  
or other outdoor activities. Due to these limitations, 
alternative classification systems are desirable. 
       Various works have considered the use of different 
light measurements for indoor and outdoor classification. 
Light measurements provide a reasonable choice for 
outdoor classification applications due to their relative low 
cost and lack of reliance on external communication. 
Additionally, light sensors measure the current 
environmental conditions, which are particularly relevant 
when assessing environmental exposure. Some early work 
considered the use of light intensity for outdoor detection 

using receiver operating characteristic (ROC) analysis 
(Tandon et al., 2013), which was later improved (Flynn et 
al., 2014). A more recent work applied a machine learning 
algorithm, the support vector machine (SVM), using 
ultraviolet (UV) index along with light intensity and 
number of steps to classify the indoor or outdoor condition 
(Ye et al., 2019). 
       In previous related works, the use of light 
measurements and machine learning techniques have 
been explored. Specifically, these works investigated the 
use of UV index, luminosity, color temperature, and red, 
green, blue, and clear components of light. The data 
acquisition system is fully detailed, and ROC classification 
results are offered for the individual metrics in addition to 
a preliminary artificial neural network (ANN) classifier 
(Rhudy et al., 2020). This work was expanded from Rhudy 
et al. (2021), which offers a comparison of three different 
machine learning classifiers: SVM, ANN, and bagged tree 
(BT). This work considered the use of all seven light 
measurements as inputs to the machine learning 
classifiers. Although the BT classifier showed marginally 
better performance over the ANN classifier (Rhudy et al., 
2021), the ANN classifier still reported very high 
classification accuracy at a much lower computational cost.  
Due to the eventual goal of implementing in real time on a 
wearable device, computational cost is of particular 
importance for this application. Thus, the ANN classifier 
was selected for use in this study. 
       As a follow up to these works, additional work is desired 
to explore the effectiveness of each of the individual 
measurements within an ANN classifier. Specifically, this 
work aims to identify which measurements provide 
meaningful information regarding indoor or outdoor 
condition. This could help to reduce the measurement set, 
thus reducing the overall cost of the system and the 
computational complexity of the algorithm. 
 
 
2. MATERIALS AND METHODS    
 
2.1 Materials 
The experimental setup for this project consisted of a 
microcontroller, which sampled data from two different 
light sensors approximately once per minute and stored 
the data on a microSD card. The microcontroller was an 
Adafruit Feather 32u4 Adalogger (New York, USA) with a 
rechargeable 3.7 V 350 mAh lithium ion battery. The 
microcontroller interfaces through I2C communication 
with a TCS34725 (Adafruit Industries, New York, USA) to 
measure luminosity, color temperature, and red, green, 
blue, and clear components of light. Additionally, a  
GUVA-S12SD (Adafruit Industries, New York, USA) sensor 
measured UV index through an analog voltage signal. This 
sensing system was presented in full detail in Rhudy et al. 
(2020). A diagram of the data acquisition system wiring 
is given in Figure 1 along with a picture of the prototype 
system used for data collection, which is shown in Figure 2. 
      
2.2 Protocol 
Data collection was conducted under static conditions in 
various indoor and outdoor locations. A total of 3,640 indoor 
and 1,368 outdoor samples were collected. Each sample 
consists of seven light measurements: UV index, color 
temperature, luminosity, and red, green, blue, and clear 
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components of light.  Table 1 shows the full description of all 
collected data sets.  Most of the data described in Table 1 
were collected in the general area of Reading, PA, USA. 
However, the last three data files were collected in Egypt. 
Note that this data set was used in previous related studies 
(Rhudy et al., 2020; 2021). 
 
2.3 Data analysis 
In this study, various ANN systems were developed, which 
used different combinations of inputs from the light 
measurements. All ANNs were selected as feedforward 
neural networks with a single hidden layer, containing 13 
nodes. The number of nodes was identified to maximize the 
performance of the ANN for classification. The overall data 
set was divided into 70% training data and 30% testing data 
for each of the considered machine learning classifiers. The 
training was repeated for each ANN variation using 1,000 
unique permutations of the data sets.  Each ANN used the 
same 1,000 variations of training and testing data to ensure 
one-to-one comparison of the different ANN models. All data 

analyses were performed using MATLAB (R2021a, Natick 
MA), including the neural network toolbox. 
 
 
3. RESULTS AND DISCUSSION 
 
Some preliminary work has already been published in 
(Rhudy et al., 2020), which investigated the classification 
accuracy using individual light measurements. This  
work used ROC curves to identify the discrimination 
accuracy between outdoor and indoor conditions using  
a fixed cutoff value. The cutoff values were selected as the 
maximum sum of sensitivity and specificity, which 
coincides with the maximum Youden’s index (Le, 2006). 
The results from this work are shown in Table 2. The 
results in Table 2 indicate that the blue light measurement 
offered the highest classification accuracy for this data set, 
followed by the UV index, though all individual sensors 
performed with reasonable accuracy. 
 
 

  

Figure 1. Diagram of the data acquisition system (Rhudy et al., 2020) 

 

Figure 2. Picture of data acquisition system prototype (Rhudy et al., 2021) 
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Table 1. Description of data sets (Rhudy et al., 2021) 

Description Type Month Start time 
(Local) 

Duration 
(HH:MM) 

Weather 

Classroom, 2 m from window Indoor January 09:00 AM 00:53 Sunny 
Classroom, blinds down Indoor January 11:10 AM 00:35 Sunny 
Classroom, blinds down Indoor January 09:05 AM 00:55 Sunny 
Classroom, blinds down Indoor January 11:10 AM 00:53 Sunny 
Apartment back step, shaded Outdoor January 01:15 PM 00:40 Sunny 
Apartment, far from window Indoor January 01:56 PM 01:10 Sunny 
Classroom, dark outside Indoor January 06:11 PM 00:39 Clear night 
Classroom, blinds down Indoor January 10:35 AM 00:44 Sunny 
Classroom, blinds down Indoor January 11:06 AM 00:46 Overcast 
Classroom, blinds down Indoor January 08:57 AM 00:58 Overcast 
Car windshield, direct sun Outdoor February 11:07 AM 04:21 Sunny 
Café, next to large windows Indoor May 09:16 AM 00:36 Cloudy 
Office desk, lights off Indoor May 01:58 PM 43:43 Partly Cloudy 
House, blinds down Indoor June 03:18 PM 01:07 Cloudy 
House under lamp (on) Indoor June 04:28 PM 01:19 Cloudy 
House front lawn, direct sun Outdoor June 02:00 PM 00:57 Sunny 
Outdoor swing Outdoor July 07:19 AM 01:07 Clear sky 
Outdoor rocking chair under tree Outdoor July 08:27 AM 00:25 Sunny 
House, bookshelf, lights off Indoor July 08:54 AM 01:10 Sunny 
House, bench, lights off Indoor July 10:45 AM 01:19 Sunny 
House, kitchen under LED lights Indoor July 12:24 PM 00:50 N/A 
House by electric fireplace (on) Indoor July 01:16 PM 00:30 N/A 
Outdoor deck chair, direct sun Outdoor July 01:48 PM 00:35 Sunny 
Seesaw in shade Outdoor July 02:24 PM 00:35 Sunny 
Chair under an outdoor roof Outdoor July 03:00 PM 00:38 Shaded area 
Basement table, no windows Indoor July 07:44 PM 01:00 N/A 
House roof (Egypt) Outdoor July 01:56 PM 05:38 Sunny 
House roof (Egypt) Outdoor July 04:11 AM 08:50 Sunny 
House, bedroom floor (Egypt) Indoor July 09:20 PM 01:37 N/A 

Table 2. Classification accuracy from ROC analysis  

Measurement Sensitivity Specificity Youden’s index 

UV index 0.932 0.995 0.927 
Color temperature 0.939 0.968 0.907 
Light intensity 0.919 0.995 0.914 
Red 0.904 0.999 0.903 
Green 0.923 0.997 0.920 
Blue 0.930 0.998 0.928 
Clear 0.922 0.996 0.918 

       The performance of using all seven light measurements 
as inputs for the ANN revealed a sensitivity of 97.6% and 
specificity of 99.81% (Youden’s index = 0.945), which 
showed a clear performance benefit over using the 
individual metrics. However, it is not clear if all seven 
metrics are necessary in order to obtain this higher 
performance accuracy (Rhudy et al., 2021). To investigate 
this further, all possible combinations of the seven 
considered light measurements were implemented as 
inputs to ANNs, resulting in 120 different combinations. 
For each ANN, the same 1,000 variations of training and 
testing data were used so that the comparisons were 
equivalent regarding their performance.  
       For each of the 120 different combinations, the 
performance was evaluated by calculating the sensitivity, 
specificity, and Youden’s index. The classification results 

for the ANN variations with the top 5 highest Youden’s 
index are presented in Table 3. The Youden’s indices for 
each of the 2-input ANNs are shown in Figure 3, for 3-input 
ANNs in Figure 4, for 4-input ANNs in Figure 5, for 5-input 
ANNs in Figure 6, and for 6-input ANNs in Figure 7. For 
compactness, the following abbreviations were used in 
Table 3 and Figures 3 through 7:  UV = UV index, CT = color 
temperature, L = luminosity, R = red light, G = green light, 
B = blue light, and C = clear light.   
       In addition to the results shown directly in Figure 3 
through Figure 7, some additional observations were made 
regarding the different ANN combinations when ranked by 
Youden’s index. Note in Table 3 that the color temperature 
measurement appeared in all top 5 ANN variations.  In fact, 
the color temperature measurement was used in the top 42 
ranked ANNs (out of the 120 combinations). This is 
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particularly interesting, since the color temperature 
performed worse than all other light metrics except for red 
light when using only a single measurement as shown in 

Table 2. However, when used in combination with other light 
measurements, the color temperature served to improve the 
estimation performance. 

 

Table 3. Classification accuracy for top 5 ANN combinations 

ANN inputs Sensitivity Specificity Youden’s index 
CT,B 0.9797 0.9981 0.9779 
UV,CT,L,G,B,C 0.9776 0.9975 0.9751 
CT,L,R 0.9761 0.9984 0.9745 
CT,B,C 0.9755 0.9987 0.9741 
CT,L,R,G,B,C 0.9762 0.9975 0.9737 

 

 
 
Figure 3. Classification accuracy for ANNs using 2 input metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Classification accuracy for ANNs using 3 input metrics 
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Figure 5. Classification accuracy for ANNs using 4 input metrics 

 

 

Figure 6. Classification accuracy for ANNs using 5 input metrics 

 
Figure 7. Classification accuracy for ANNs using 6 input metrics 
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       It is also interesting to note that the classification 
accuracy of the ANN, which used all seven measurements 
ranks low on the list at 46. Often, one would expect  
greater performance when using more measurement data. 
However, as shown in Figure 7, some of the 6-input 
classifiers outperformed the full 7-input ANN. In fact, two 
of the top 5 combinations (Table 3) used 6 out of the 7 
metrics. The second highest performing ANN used all 
measurements except the red light component. This 
indicated that the red light measurement may potentially 
be confusing the classification in the ANN. The red light 
measurement was also the one, which showed the worst 
classification accuracy (Table 2). 
       Surprisingly, four out of the five best performing ANN 
classifiers did not use the UV index. UV exposure is known 
to be higher in outdoor locations, so this measurement was 
expected to provide a meaningful indication of indoor or 
outdoor condition. This is particularly interesting in this 
application though, because the measurement is provided 
from a separate sensor. Future iterations of this hardware 
could consider omitting the UV sensor since it does  
not lead to a significant improvement in classification 
accuracy. 

       As an additional comparison analysis, for each light 
measurement, two groups were created: one group 
containing all ANN combinations with that light 
measurement, and the other group containing all ANN 
combinations without that light measurement. Then, a 
two-sample t-test was used to see if there were 
significant differences in the classification accuracy 
between the two groups. Only the color temperature 
demonstrated significant difference between the two 
groups (p<0.001). This is further indication that the color 
temperature measurement can help to improve the 
classification accuracy. To further illustrate these results, 
a box plot of the classification accuracy for ANN 
combinations with and without the color temperature are 
shown in Figure 8.  The classification accuracy 
significantly improved when using classifiers with the 
color temperature measurement. Though not statistically 
significant, the blue light measurement showed an 
increase in classification accuracy between the two 
groups. It is interesting to note that the other five 
measurements showed a decrease in classification 
accuracy between the two groups, though not statistically 
significant.

 

Figure 8. Box plot of classification accuracy for ANN combinations with and without the color temperature measurement 
as an input 
 
 
4. CONCLUSION 
 
This work investigated the use of different light measurements 
within ANNs for indoor or outdoor classification. The results 
indicated that the greatest classification accuracy was 
obtained when using only two of the light measurements: 
color temperature and blue light. This combination of sensor 
measurements led to a Youden’s index of 0.9779, which is a 
very high classification performance. The color temperature 
measurement was shown to offer the best performance 
improvement when used in conjunction with other light 
sensors. Overall, this work determined that the use of all seven 

considered light measurements is likely unnecessary for 
indoor and outdoor classification, and a reduced measurement 
set could be considered in future applications. 
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