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ABSTRACT

For software development to succeed, qualified developers with the necessary
abilities are required to provide a high-performance solution. Since people have a
wide range of skills, considering a wide range of developers to include in a team is
an integral part of the selection process. This problem becomes more aggravating
in online open-source software settings, where developers from around the globe
become viable candidates. This paper proposed a method for recommending
developers for a specific software task using knowledge graph embedding. The
knowledge graph using data from Moodle, an open-source software project housed
in the JIRA platform, was crafted. The constructed knowledge graph represented
the relationship among software development factors, such as skills, developers'
collaboration, task dependencies, task locality, and task creation dates. The link
prediction protocol was used to recommend a list of developer candidates. The
comparison of techniques with the existing developer recommendation algorithms
showed that the developed approach outperformed those state-of-the-art
recommendation baselines. The experiment results are encouraging and shed light
on the possibility of extending the proposed algorithm to recommend software team
members for various other roles, such as reviewers, testers, and integrators.
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and skills. The exploratory survey by Agarwal and Rathod
(2006) showed that the main success criteria include the

Due to growing communities of collaborative software
development, numerous open-source and proprietary
software projects are available for all-around users. The
stakeholders involved in those projects consider multiple
factors before releasing quality products. Those projects
contain both success and failure, which are caused by
various reasons. The consequences directly affect users,
who use the particular software, especially in a startup
company that usually fails at the early stage (Giardino et
al, 2014).

Successful software projects are found to have the
right combination of scope, time, cost, team compatibility,

Silpakorn Universtiy

software project's scope to understand the developed
software's functionality and limitation. In addition, the
analysis of open-source software in Sourceforge (Singh,
2010) significantly impacts a successful project because of
the collaboration network between developers. Therefore,
appropriate developers for a specific project are essential
for the software product in the management, develop-
ment, and evaluation aspects. However, manually selecting
developers is challenging, especially in online open-source
software settings, because the project leader must
evaluate many developer candidates from a large pool of
software practitioners worldwide.
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Due to the general selection of candidates being a
challenging problem, developer recommendations have
been proposed to solve the selection of the proper person
for a particular software project. They consider several
aspects of developers and software development information
and use different techniques affecting the development of
progress procedure. For instance, DevRec is a recommend-
dation system that recommends the developer for open-
source software projects (Zhang et al. 2017). RECAST is a
software team recommendation algorithms (Tuarob et al,,
2021) that use machine learning techniques to extract
meaningful team features to recommend developers with
a high chance of success (Liu et al,, 2014). However, the
past research did not directly use the network relation
between developers and tasks that could potentially
significantly impact a project's success. Moreover, the
knowledge graph is a novel relationship representation
technique, and it is adapted to various domains, including
the recommendation system.

This work proposed the developer recommendation
framework in online open-source software development,
which applied the knowledge graph to represent the
relations between defined users and task entities. As a case
study, the proposed method was evaluated on the Moodle
project due to its reputation and the completeness of the
data. We evaluated the developer recommendation from
Moodle's tasks and formulated the problem for the
knowledge graph structure with the link prediction
technique.

2. MATERIALS AND METHODS

2.1 Dataset

The Moodle dataset containing the data pertaining to
software development activities in Moodle’s projects and
tasks was used. Moodle is a well-known open-source
platform in education that has been continuously updated
and maintained. It uses JIRA for tracking its collaborative
activities. The tracking system contained task information
as well as the developers, who solve the task. Figure 1
illustrates the detail of a real-world task from Moodle,
generally containing various information to describe the
task, such as the users who work on the task and the
essential descriptions of items that need to be done.

The Moodle dataset used in this research contained
88,655 tasks from several software projects, and the
development dates commenced from 05/09/2002 to
22/05/2019. The projects consisted of various roles,
including developers, integrators, reviewers, and testers.
Specifically, there were 450 developers, who correspond-
ded to the requirements in different tasks. The historical
task data comprised the details describing the task
characteristics, such as task dependency, task
components, task type, and users working it. To project
these pieces of task information into a knowledge graph's
perspective, we extracted entities and relations from the
Moodle tasks and used them to construct the knowledge
graph. Figure 2 illustrates example of a real-world
development task in knowledge graph constructed from
the Moodle dataset.

The complete knowledge graph merged multiple sub-
knowledge graphs, including user role, user expertise, user
collaboration, task dependency, task locality, and task
creation date graphs. Table 1 presents the knowledge
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graph statistics generated from the Moodle dataset.
Specific sub-knowledge graphs independently had their
entities and relations. The user collaboration graph had
the smallest size, with 734 user entities, and was fewer
than the total number of developers, with 16 developers
working independently. However, the task creation graph
was the most enormous and densest knowledge graph,
representing the temporal relation of task creation. It
contained every task entity connecting to the temporal
(month-year) entity sequence. Eventually, the complete
knowledge graph had distinct entities that added all
relations from sub-knowledge graphs. In addition, the
software development issue dataset also contained other
roles, such as tester, integrator, and reviewer.

The graph density is the ratio between the number of
entities and relations. It can measure the number of edges
that can add to the graph. The graph density can be
calculated from the following equation, where m denotes
the number of relations, and n denotes the number of
entities.

GraphDensity = n(:_l) (1)

2.2 Methodology

The developer recommendation framework was
introduced for software development. The software
development data was represented in a knowledge graph
structure, which exposed the various relation and entity
types. The constructed knowledge graph was interpreted
from the embedding model before the developer candi-
dates were listed according to the score from the scoring
function into the top-K ranking for particular tasks. The
high level of the proposed framework is illustrated in
Figure 3.

2.2.1 Proposed collaborative software develop-
ment knowledge graph

A knowledge graph is regularly used to represent the
relationship between data. It is defined as several entities
and relationships that can be interpreted as insightful
knowledge. Since selecting a suitable developer is relevant
to various factors from historical development and
characteristics, such as developer collaboration, technical
skills, and experiences, we transformed the Moodle dataset
into various knowledge graph features. The factors were
constructed into individual knowledge graphs and combined
by unionizing entities and relations, of which the end entities
were unique. The following items indicated the proposed
knowledge graph types, relationships, and entities:

1. User role graph: The user role graph G, = (Ey, E¢, R;)
is a directed graph where e, € E;, represents a user
(developer candidate), e; € E, represents a task entity, and
1 € R, represents a role relation. This knowledge graph
represents a developer as an entity connecting to a task
entity to determine that he/she is a developer. The user
role graph is also treated as the base graph since it contains
the role relations that could be used to determine suitable
developers for a given task.

2. User expertise graph: The user expertise graph G,, =
(Ey, Et, Eg, Rys, Rys) is a directed graph, where the user
entity e, € E,,, task entity e; € E, skill entity eg € E;. 1,5 €
R, is the relation of user expertise and r,; € Ry is the
relation of a required task skill. The technical skills are
represented by the system components of a developer's
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previous tasks. The user and task entities connect to the
technical skills entities that represent the current user
skills and required skills for the tasks.

3. User collaboration graph: The user collaboration graph
Gyc = (Ey, R,) is an undirected graph, where e, € E, is a
user entity, and r, € R, is the relation of collaboration
between two users. The software tracking system of
Moodle consists of several past tasks and historical data of
user work collaboration. Thus, the user entities mutually
connect to represent an association between developers.
4. Task dependency graph: The task dependency graph
Geq = (Ey, Ry) is directed graph, where task entity e; € E;
and dependency relation r; € R;. The software tracking
system has several dependencies between tasks to indicate
their relatedness, such as duplication, clone, block, etc.
Therefore, the task entities connect to other dependent
tasks, and the relations are dependency types.

m Moadle /

~ Details
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Priority: ¥ Minor Resolution Fixed
Affects V/s: 32 Fix Version/s: 32
Component/s Themes
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Affected Branches:
Fixed Branches:
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Pull from Repository:
Pull Master Branch
Pull Master Diff URL:

-master |es

v Test in clean and boost

5. Task locality graph: The task locality graph G, =
(Et, Eyp, Rin) comprises the tuples of task entity e; € E,, the
project entity e, € Ep, and 7, € Ry, denoting the relation
of tasks that locate in the project. The tasks in software
development are usually determined to develop techno-
logies or frameworks by the domain of a project. The task
entities connect to the local relation to the project entities.
6. Task creation date graph: The task creation date graph
Geca = (Eg, Eg, R.), where the task entity e; € E;, the date
entity e; € E;, and 1, € R, denotes the task creation
relation. The task creation date indicates the month and
year entities chronologically connected and represents the
time series of dates. Date entities link to task entities to
denote the creation date. The time series of tasks could
potentially allow the model to focus on more recent tasks
and improve the selection of a suitable developer.
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Figure 1. Example of a task description from Moodle
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Figure 2. Example of a real-world software development
task in knowledge graph representation
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Table 1. Knowledge graph statistics from the Moodle
dataset

Statistics Value
#User role nodes 71,928
#User role edges 162,191
#User expertise nodes 31,299
#User expertise edges 28,943
#User collaboration nodes 734
#User collaboration edges 13,660
#Task dependency nodes 31,299
#Task dependency edges 28,943
#Task locality nodes 88,673
#Task locality edges 88,665
#Date creation nodes 88,871
#Date creation edges 88,870
#Total nodes 90,666
#Total edges 505,759
Density 6.15x 10

2.2.2 Knowledge graph embedding

A knowledge graph is a combination of a mixture of entities
and relations. Ordinarily, the representative of the
knowledge graph is a set of triples. It consists of the subject,
predicate, and object with the (sub, pred, obj) notation. The
types of entities and relations are specific to the problem
domain and application.

Knowledge graph embedding is a technique to
semantically project the knowledge graph components,
including entities and relations, onto a low-dimensional
vector space. Different embedding models have different
scoring functions, depending on their architectures and
underlying computational principles. The scoring function
guides the embedding model to optimize each triple’s
vector to minimize the loss. The following knowledge
graph embedding models were evaluated in this work,
where eg denotes a subject entity vector, e, denotes an
object entity vector, and 7, denotes a predicate relation
vector.

1. TransE proposedthe L; or L, norm between embedded
subject entities using the difference between the
embedded predicate relation and embedded object entity
(Bordes etal., 2013).

Stranse = _”es + ) + eo”n (2)

2. DistMult proposed the trilinear dot product (Yangetal,,
2015).

Spistmuit = (Tp»es' € ) (3)

3. ComplEx proposed the extension of DistMult by using
the trilinear Hermitian dot product (Trouillon et al,, 2016).

SComplEx = Re(<rpv €s, ﬁ)) (4)
4. HolE proposed the circular correlation re-defined from

the ComplEx where n is the dimension of the complex
embedding (Nickel et al., 2016).

2
SHote = ;SComlEx (5)
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5. ConvKB proposed convolution layers with the dot
product where concat is the concatenate operator, g is the
non-linear activation function, * is the linear convolution
operator, () is a set of filters, and W is a weight vector
(Nguyen etal, 2017).

Sconvkp = concat (g([es,rp, eo] * Q)) W (6)

Since each triple score represents its plausibility, which
is essential for performing the missing link prediction
protocol, therefore, we can rank the top-K triple
combinations of each task by considering the score that
represents the chance of a candidate developer being chosen
for the task if he/she were to be selected by the assignee.
Note that since different knowledge graph embedding
algorithms have different scoring functions, the score range
of each function is also distinct and should not be directly
compared across different embedding algorithms.

2.2.3 Evaluation

To measure the developer recommendation performance
and to allow a fair comparison with the baselines, we
adopted the evaluation protocol and metrics used by
RECAST (Tuarob et al., 2021), including mean reciprocal
rank (MRR), mean rank (MR), Hit@K, mean average
precision (MAP). These evaluation metrics are defined as
follows:

1. MRR is an average of the correct recommended
developers' multiplicative inverse ranks, where Q is the
query set, and rank, is the rank of the first correctly
recommended developer.

1
ranky

1
MRR = EZPEQ (7)
2. MR is an average of true recommended developers'
ranks, where Q is the query set, and rank,, is the rank of
the correct recommended developer.

1
MR = WZPEQ rank, (8)

3. Hit@K is a ratio between the number of correct
recommended developers in top-K ranks and total
recommended developers where K is the number of
considered recommended developers, Q is the query set,
and H(dio, dil,.k) is a function that returns 1 if task i's actual
developer d; is in recommended developers no more than
K-th rank, otherwise returns 0.

Hit@K = %Z'ﬂ H(di, di, ) ©

4. MAP is an average evaluation of recommendation
precision and is computed at considered several top-K
recommended developers where Q is the query set, K is the
number of considered recommended developers, i.e, K =
1,2,3,...,10, and H(dy,d;) is a function that returns 1 if
developer d,, is equivalent to d;, otherwise returns 0.

K .
Precision@K = W (10)
= L ylol Zid, Precision@k
MAP =g 2= == (11)
4
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3. RESULTS

3.1 Knowledge graph embedding evaluation

To choose the most suitable knowledge graph model for
the software development data, we experimented with and
compared different embedding models in terms of the
ability to encode the semantics of the knowledge graph.
Accordingly, we randomly dropped 20% of the user role
triples as a test set, and the rest is the training set. The
knowledge graph embedding encoded the entities and
relation types into a vector of 200 dimensions. Then, the
link prediction found the true entity using the scoring
function to calculate the triples' scores from the test set
and ranked all user entities according to the scores. We
used MRR as the main evaluation criteria while also
considering MR, Hit@10, and Hit@100.

The evaluation results from Table 2 were evident that
TransE cannot capture the semantics of the knowledge
graph, resulting in the worst performance in all metrics.
Interestingly, HolE performs on par with DistMult, but the
MR of HolE was quite high because it could not interpret
some entities or relation types, consequently increasing
the average ranks. However, ConvKB outperformed other
models. Although ConvKB's MRR was equal to ComplEx's
at 0.43, it overcame ComplEx in other metrics, including
MR, Hit@10, and Hit@100. Thus, the ConvKB was chosen
as the graph embedding model for the next evaluation on
the developer recommendation task.

After the embedding model learns the semantics of the
knowledge graph, the entities and relations would become
a vector. According to the example embedded developer
vectors from Figure 4, the developers with comparable
characteristics were located close to each other when
converted to embedded vectors. Here, the principal
component analysis was used to reduce the dimensions for
visualization. Furthermore, the embedding space was also
generally close together to the same as other entity and
relation types.

Table 2. Knowledge graph embedding evaluation result
comparison between TransE, DistMult, ComplEx, HolE, and
ConvKB on the Moodle dataset

Model MRR MR Hit@10 Hit@100
TransE 0.00 787.05 0.00 0.01
DistMult 0.38 88.99 0.56 0.79
ComplEx  0.43 90.66 0.61 0.81
HolE 0.38 269.93 0.52 0.64
ConvKkB 0.43 18.56 0.69 0.96

Note: MRR = mean reciprocal rank, MR = mean rank, and MAP =
mean average precision

3.2 Developer recommendation evaluation

The developer recommendation applied the ConvKB, the
most appropriate model for our dataset. The developer
candidates comprised the users who used to be developers
in the previous tasks. Besides, the developers were filtered
by their activeness, where we considered the developers
who had activities within three months before creating a
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task. The scoring function calculated all developer
candidates that were combined with task entities and
developer relations for compatibility with the link
prediction protocol. The top-K triples with the highest
scores would be listed to present the most suitable
developers for a particular task.

According to the evaluation results in Table 3, our
approach surpassed the baselines, RECAST (Tuarob et al,,
2021) and Liu et al. (2014), in terms of MRR, MR, Hit@10,
Hit@100, and MAP. Specifically, our recommendations had
93% correct developers in the top 100 ranks of the tasks in
the test set, but RECAST (Tuarob et al, 2021) and the
method of Liu et al. (2014) yielded only 45% and 46%,
respectively. Furthermore, on average, a correct developer
was ranked among the top 10 recommendations. Our
method's MRR and MAP also outperformed RECAST
(Tuarob et al., 2021) by over 120%

Table 4 shows an example of recommended developers
for a task in the Moodle dataset. The usernames were
anonymized for privacy. They are uniquely represented as
Uxxx, and the wuser numbers were sequentially
enumerated. This example task was related to removing
the personal data of inactive users. In this task, our
approach could raise the proper developer's rank to first
rank, while RECAST had the correct developer at the tenth
rank, and Liu's method could not find the correct developer
in the top-ten results at all.
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Figure 4. Example of randomly selected developers'
embedded vectors projected onto the two-dimensional
space using principal component analysis

Table 3. Developer recommendation evaluation results on
the Moodle dataset

Metric Liu RECAST Current
MRR 0.08 0.20 0.44
MR 76.53 62.78 23.15
Hit@10 0.12 0.41 0.59
Hit@100 0.45 0.46 0.93
MAP 0.07 0.20 0.43

Note: MRR = mean reciprocal rank, MR = mean rank, and MAP =
mean average precision
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Table 4. Example of top 10 recommended developers by
Liu et al. (2014), RECAST (Tuarob et al,, 2021), and the
current approach

Assignee U100

Developer U101

Rank Liu RECAST Current
1 U102 U112 U101
2 U103 U113 U113
3 U104 U114 U121
4 U105 U115 U122
5 U106 U116 U123
6 U107 U117 U117
7 U108 U118 U124
8 U109 U119 U125
9 U110 U120 U126
10 U111 U101 U127

4. DISCUSSION

The developer recommendation attempted to serve the
most suitable developer for the task. Various
recommendation techniques were used to solve the
problem, emphasizing the different aspects of what
considers an appropriate developer. Zhang et al. (2017)
presented the developer recommendation, DevRec. Their
algorithm considered two aspects, including development
activity and knowledge-sharing activity. Social coding
activities focus on Github's commits, forks, and watches of
the specific repositories to represent developers'
interests. Knowledge-sharing activities focus on tags in
particular posts that the developers answered or asked
questions on StackOverflow. Tuarob et al. (2021)
proposed RECAST, a machine learning based software
team recommendation algorithm that could be tweaked
for individual role recommendation. They collected large-
scale software development datasets from successful
open-source software tasks, including Moodle, Apache,
and Atlassian. Their approach considers role
requirements, technical skills, and team compatibility. The
machine learning techniques, such as Logistic Regression
and Random Forest, were applied as scoring functions
before ranking the top-K candidate teams. Although the
RECAST's main objective is to recommend suitable
software teams for a task, it also has a single-role
recommendation protocol for developers, integrators,
testers, and reviewers. They presented several evaluation
metrics, including MRR, MR, precision, and MAP.
Additionally, they formulated the single recommendation
protocol on Liu's work which also proposed a team
recommendation algorithm that applies machine learning
to learn the weights of team quality and experience
features from historical project information. In their
evaluation, the results in developer recommendations are
compared to Liu's method and a random baseline.

The knowledge graph was also adopted in addition to
software development. Ye et al. (2021) proposed a
framework for drug-target interactions. They use the
knowledge graph to learn a low-dimensional
representation for each entity before combine with a
neural factorization machine. This work consists of four
main parts: discovering heterogeneous information,
dimensional reduction with principal component analysis,
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information integration, and collaborative recommend-
dation. Gong et al. (2021) presented a framework for safe
medicine recommendations. They used knowledge graph
embedding to compress the medical information to lower
dimensional space. The link prediction considers the
diagnoses and drug reactions.

5. CONCLUSION

The developer suggestion for specific software
development tasks was proposed by applying the
knowledge graph technology to the Moodle dataset. The
entities and relations in the knowledge graph were
encoded into a latent vector using a graph embedding
algorithm, which was then used to generate the latent
vectors for entities and relations. The candidate
developers were selected based on the results of the
scoring function, which was used to determine their
suitability for the task. The evaluation showed that the
proposed approach outperformed the state-of-the-art
techniques in all aspects.

Due to the fact that a software team comprises a
variety of roles that are not exclusively for developers, we
intend to extend the proposed developer recommendation
to include these roles in our future work. Furthermore,
because software development typically involves a team
comprising a diverse range of individuals and roles to
produce a high-quality product, we would like to modify
the knowledge graph to recommend an entire team of
software practitioners for a given task. In addition, we
wish to investigate other open-source software projects to
better understand their collaborative behaviors to

improve  our recommendation algorithms for
generalization.
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