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ABSTRACT 
 
For software development to succeed, qualified developers with the necessary 
abilities are required to provide a high-performance solution. Since people have a 
wide range of skills, considering a wide range of developers to include in a team is 
an integral part of the selection process. This problem becomes more aggravating 
in online open-source software settings, where developers from around the globe 
become viable candidates. This paper proposed a method for recommending 
developers for a specific software task using knowledge graph embedding. The 
knowledge graph using data from Moodle, an open-source software project housed 
in the JIRA platform, was crafted. The constructed knowledge graph represented 
the relationship among software development factors, such as skills, developers' 
collaboration, task dependencies, task locality, and task creation dates. The link 
prediction protocol was used to recommend a list of developer candidates. The 
comparison of techniques with the existing developer recommendation algorithms 
showed that the developed approach outperformed those state-of-the-art 
recommendation baselines. The experiment results are encouraging and shed light 
on the possibility of extending the proposed algorithm to recommend software team 
members for various other roles, such as reviewers, testers, and integrators. 
 
Keywords: developer recommendation; knowledge graph embedding; graph representation learning 
 
 

1. INTRODUCTION                                    
 
Due to growing communities of collaborative software 
development, numerous open-source and proprietary 
software projects are available for all-around users. The 
stakeholders involved in those projects consider multiple 
factors before releasing quality products. Those projects 
contain both success and failure, which are caused by 
various reasons. The consequences directly affect users, 
who use the particular software, especially in a startup 
company that usually fails at the early stage (Giardino et 
al., 2014). 
       Successful software projects are found to have the 
right combination of scope, time, cost, team compatibility, 

and skills. The exploratory survey by Agarwal and Rathod 
(2006) showed that the main success criteria include the 
software project's scope to understand the developed 
software's functionality and limitation. In addition, the 
analysis of open-source software in Sourceforge (Singh, 
2010) significantly impacts a successful project because of 
the collaboration network between developers. Therefore, 
appropriate developers for a specific project are essential 
for the software product in the management, develop-
ment, and evaluation aspects. However, manually selecting 
developers is challenging, especially in online open-source 
software settings, because the project leader must 
evaluate many developer candidates from a large pool of 
software practitioners worldwide. 
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       Due to the general selection of candidates being a 
challenging problem, developer recommendations have 
been proposed to solve the selection of the proper person 
for a particular software project. They consider several 
aspects of developers and software development information 
and use different techniques affecting the development of 
progress procedure. For instance, DevRec is a recommend-
dation system that recommends the developer for open-
source software projects (Zhang et al. 2017). RECAST is a 
software team recommendation algorithms (Tuarob et al., 
2021) that use machine learning techniques to extract 
meaningful team features to recommend developers with 
a high chance of success (Liu et al., 2014). However, the 
past research did not directly use the network relation 
between developers and tasks that could potentially 
significantly impact a project's success. Moreover, the 
knowledge graph is a novel relationship representation 
technique, and it is adapted to various domains, including 
the recommendation system. 
       This work proposed the developer recommendation 
framework in online open-source software development, 
which applied the knowledge graph to represent the 
relations between defined users and task entities. As a case 
study, the proposed method was evaluated on the Moodle 
project due to its reputation and the completeness of the 
data. We evaluated the developer recommendation from 
Moodle's tasks and formulated the problem for the 
knowledge graph structure with the link prediction 
technique.  
 
 
2. MATERIALS AND METHODS 
 
2.1 Dataset 
The Moodle dataset containing the data pertaining to 
software development activities in Moodle’s projects and 
tasks was used. Moodle is a well-known open-source 
platform in education that has been continuously updated 
and maintained. It uses JIRA for tracking its collaborative 
activities. The tracking system contained task information 
as well as the developers, who solve the task. Figure 1 
illustrates the detail of a real-world task from Moodle, 
generally containing various information to describe the 
task, such as the users who work on the task and the 
essential descriptions of items that need to be done. 
       The Moodle dataset used in this research contained 
88,655 tasks from several software projects, and the 
development dates commenced from 05/09/2002 to 
22/05/2019. The projects consisted of various roles, 
including developers, integrators, reviewers, and testers. 
Specifically, there were 450 developers, who correspond-
ded to the requirements in different tasks. The historical 
task data comprised the details describing the task 
characteristics, such as task dependency, task 
components, task type, and users working it. To project 
these pieces of task information into a knowledge graph's 
perspective, we extracted entities and relations from the 
Moodle tasks and used them to construct the knowledge 
graph. Figure 2 illustrates example of a real-world 
development task in knowledge graph constructed from 
the Moodle dataset. 
       The complete knowledge graph merged multiple sub-
knowledge graphs, including user role, user expertise, user 
collaboration, task dependency, task locality, and task 
creation date graphs. Table 1 presents the knowledge 

graph statistics generated from the Moodle dataset. 
Specific sub-knowledge graphs independently had their 
entities and relations. The user collaboration graph had 
the smallest size, with 734 user entities, and was fewer 
than the total number of developers, with 16 developers 
working independently. However, the task creation graph 
was the most enormous and densest knowledge graph, 
representing the temporal relation of task creation. It 
contained every task entity connecting to the temporal 
(month-year) entity sequence. Eventually, the complete 
knowledge graph had distinct entities that added all 
relations from sub-knowledge graphs. In addition, the 
software development issue dataset also contained other 
roles, such as tester, integrator, and reviewer.  
       The graph density is the ratio between the number of 
entities and relations. It can measure the number of edges 
that can add to the graph. The graph density can be 
calculated from the following equation, where 𝑚𝑚 denotes 
the number of relations, and 𝑛𝑛 denotes the number of 
entities. 
 
        𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑚𝑚

𝑛𝑛(𝑛𝑛−1)                                                             (1) 
 
2.2 Methodology 
The developer recommendation framework was 
introduced for software development. The software 
development data was represented in a knowledge graph 
structure, which exposed the various relation and entity 
types. The constructed knowledge graph was interpreted 
from the embedding model before the developer candi-
dates were listed according to the score from the scoring 
function into the top-K ranking for particular tasks. The 
high level of the proposed framework is illustrated in 
Figure 3. 
 
2.2.1 Proposed collaborative software develop-
ment knowledge graph 
A knowledge graph is regularly used to represent the 
relationship between data. It is defined as several entities 
and relationships that can be interpreted as insightful 
knowledge. Since selecting a suitable developer is relevant 
to various factors from historical development and 
characteristics, such as developer collaboration, technical 
skills, and experiences, we transformed the Moodle dataset 
into various knowledge graph features. The factors were 
constructed into individual knowledge graphs and combined 
by unionizing entities and relations, of which the end entities 
were unique. The following items indicated the proposed 
knowledge graph types, relationships, and entities: 

1. User role graph: The user role graph 𝐺𝐺𝑢𝑢𝑢𝑢 = (𝐸𝐸𝑢𝑢,𝐸𝐸𝑡𝑡,𝑅𝑅𝑟𝑟) 
is a directed graph where 𝑒𝑒𝑢𝑢 ∈ 𝐸𝐸𝑢𝑢 represents a user 
(developer candidate), 𝑒𝑒𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡 represents a task entity, and 
𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑟𝑟 represents a role relation. This knowledge graph 
represents a developer as an entity connecting to a task 
entity to determine that he/she is a developer. The user 
role graph is also treated as the base graph since it contains 
the role relations that could be used to determine suitable 
developers for a given task. 
2. User expertise graph: The user expertise graph 𝐺𝐺𝑢𝑢𝑢𝑢 =
(𝐸𝐸𝑢𝑢,𝐸𝐸𝑡𝑡,𝐸𝐸𝑠𝑠,𝑅𝑅𝑢𝑢𝑢𝑢,𝑅𝑅𝑡𝑡𝑡𝑡) is a directed graph, where the user 
entity 𝑒𝑒𝑢𝑢 ∈ 𝐸𝐸𝑢𝑢, task entity 𝑒𝑒𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡, skill entity 𝑒𝑒𝑠𝑠 ∈ 𝐸𝐸𝑠𝑠. 𝑟𝑟𝑢𝑢𝑢𝑢 ∈
𝑅𝑅𝑢𝑢𝑢𝑢 is the relation of user expertise and 𝑟𝑟𝑡𝑡𝑡𝑡  ∈ 𝑅𝑅𝑡𝑡𝑡𝑡 is the 
relation of a required task skill. The technical skills are 
represented by the system components of a developer's 
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previous tasks. The user and task entities connect to the 
technical skills entities that represent the current user 
skills and required skills for the tasks. 
3. User collaboration graph: The user collaboration graph 
𝐺𝐺𝑢𝑢𝑢𝑢 = (𝐸𝐸𝑢𝑢,𝑅𝑅𝑐𝑐) is an undirected graph, where 𝑒𝑒𝑢𝑢 ∈ 𝐸𝐸𝑢𝑢 is a 
user entity, and 𝑟𝑟𝑐𝑐 ∈ 𝑅𝑅𝑐𝑐 is the relation of collaboration 
between two users. The software tracking system of 
Moodle consists of several past tasks and historical data of 
user work collaboration. Thus, the user entities mutually 
connect to represent an association between developers. 
4. Task dependency graph: The task dependency graph 
𝐺𝐺𝑡𝑡𝑡𝑡 = (𝐸𝐸𝑡𝑡,𝑅𝑅𝑑𝑑) is directed graph, where task entity 𝑒𝑒𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡 
and dependency relation 𝑟𝑟𝑑𝑑 ∈ 𝑅𝑅𝑑𝑑. The software tracking 
system has several dependencies between tasks to indicate 
their relatedness, such as duplication, clone, block, etc. 
Therefore, the task entities connect to other dependent 
tasks, and the relations are dependency types. 

5. Task locality graph: The task locality graph 𝐺𝐺𝑡𝑡𝑡𝑡 =
�𝐸𝐸𝑡𝑡,𝐸𝐸𝑝𝑝,𝑅𝑅𝑖𝑖𝑖𝑖� comprises the tuples of task entity 𝑒𝑒𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡, the 
project entity 𝑒𝑒𝑝𝑝 ∈ 𝐸𝐸𝑝𝑝, and 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖𝑖𝑖, denoting the relation 
of tasks that locate in the project. The tasks in software 
development are usually determined to develop techno-
logies or frameworks by the domain of a project. The task 
entities connect to the local relation to the project entities. 
6. Task creation date graph: The task creation date graph 
𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 = (𝐸𝐸𝑡𝑡,𝐸𝐸𝑑𝑑 ,𝑅𝑅𝑐𝑐), where the task entity 𝑒𝑒𝑡𝑡 ∈ 𝐸𝐸𝑡𝑡, the date 
entity 𝑒𝑒𝑑𝑑 ∈ 𝐸𝐸𝑑𝑑, and 𝑟𝑟𝑐𝑐 ∈ 𝑅𝑅𝑐𝑐 denotes the task creation 
relation. The task creation date indicates the month and 
year entities chronologically connected and represents the 
time series of dates. Date entities link to task entities to 
denote the creation date. The time series of tasks could 
potentially allow the model to focus on more recent tasks 
and improve the selection of a suitable developer. 

 

 
 
Figure 1. Example of a task description from Moodle 
 
 

 
Figure 2. Example of a real-world software development 
task in knowledge graph representation 

 

 
Figure 3. Proposed method for developer recommendation 
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Table 1. Knowledge graph statistics from the Moodle 
dataset 
 

Statistics  Value  
#User role nodes  71,928  
#User role edges  162,191  
#User expertise nodes  31,299  
#User expertise edges  28,943  
#User collaboration nodes  734  
#User collaboration edges  13,660  
#Task dependency nodes  31,299  
#Task dependency edges  28,943  
#Task locality nodes  88,673  
#Task locality edges  88,665  
#Date creation nodes  88,871  
#Date creation edges  88,870  
#Total nodes  90,666  
#Total edges  505,759  
Density  6.15 x 10-5 

 
2.2.2 Knowledge graph embedding 
A knowledge graph is a combination of a mixture of entities 
and relations. Ordinarily, the representative of the 
knowledge graph is a set of triples. It consists of the subject, 
predicate, and object with the (sub, pred, obj) notation. The 
types of entities and relations are specific to the problem 
domain and application. 
       Knowledge graph embedding is a technique to 
semantically project the knowledge graph components, 
including entities and relations, onto a low-dimensional 
vector space. Different embedding models have different 
scoring functions, depending on their architectures and 
underlying computational principles. The scoring function 
guides the embedding model to optimize each triple’s 
vector to minimize the loss. The following knowledge 
graph embedding models were evaluated in this work, 
where 𝑒𝑒𝑠𝑠 denotes a subject entity vector, 𝑒𝑒𝑜𝑜 denotes an 
object entity vector, and 𝑟𝑟𝑝𝑝 denotes a predicate relation 
vector. 
 
1. TransE proposed the 𝐿𝐿1 or 𝐿𝐿2 norm between embedded 
subject entities using the difference between the 
embedded predicate relation and embedded object entity 
(Bordes et al., 2013). 
 
        𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�𝑒𝑒𝑠𝑠 + 𝑟𝑟𝑝𝑝 + 𝑒𝑒𝑜𝑜�𝑛𝑛                                                       (2) 
 
2. DistMult proposed the trilinear dot product (Yang et al., 
2015). 
 
        𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ⟨𝑟𝑟𝑝𝑝, 𝑒𝑒𝑠𝑠 , 𝑒𝑒𝑜𝑜 ⟩                                                                (3) 
 
3. ComplEx proposed the extension of DistMult by using 
the trilinear Hermitian dot product (Trouillon et al., 2016). 
 
        𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅��𝑟𝑟𝑝𝑝, 𝑒𝑒𝑠𝑠 , 𝑒𝑒𝑜𝑜�����                                                     (4) 
 
4. HolE proposed the circular correlation re-defined from 
the ComplEx where 𝑛𝑛 is the dimension of the complex 
embedding (Nickel et al., 2016). 
 
        𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 2

𝑛𝑛
𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                                                                       (5) 

 

5. ConvKB proposed convolution layers with the dot 
product where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the concatenate operator, 𝑔𝑔 is the 
non-linear activation function, ∗ is the linear convolution 
operator, Ω is a set of filters, and 𝑊𝑊 is a weight vector 
(Nguyen et al., 2017). 
 
        𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑔𝑔��𝑒𝑒𝑠𝑠, 𝑟𝑟𝑝𝑝, 𝑒𝑒𝑜𝑜� ∗ Ω�� ⋅ 𝑊𝑊                        (6) 
 
       Since each triple score represents its plausibility, which 
is essential for performing the missing link prediction 
protocol, therefore, we can rank the top-K triple 
combinations of each task by considering the score that 
represents the chance of a candidate developer being chosen 
for the task if he/she were to be selected by the assignee. 
Note that since different knowledge graph embedding 
algorithms have different scoring functions, the score range 
of each function is also distinct and should not be directly 
compared across different embedding algorithms. 
 
2.2.3 Evaluation 
To measure the developer recommendation performance 
and to allow a fair comparison with the baselines, we 
adopted the evaluation protocol and metrics used by 
RECAST (Tuarob et al., 2021), including mean reciprocal 
rank (MRR), mean rank (MR), Hit@K, mean average 
precision (MAP). These evaluation metrics are defined as 
follows: 
 
1. MRR is an average of the correct recommended 
developers' multiplicative inverse ranks, where 𝑄𝑄 is the 
query set, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑝𝑝 is the rank of the first correctly 
recommended developer. 
 
        𝑀𝑀𝑀𝑀𝑀𝑀 = 1

|𝑄𝑄|
∑ 1

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑝𝑝𝑝𝑝∈𝑄𝑄                                                                   (7) 
 
2. MR is an average of true recommended developers' 
ranks, where 𝑄𝑄 is the query set, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝 is the rank of 
the correct recommended developer. 
 
        𝑀𝑀𝑀𝑀 = 1

|𝑄𝑄|
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑝𝑝𝑝𝑝∈𝑄𝑄                                                                 (8) 

 
3. Hit@K is a ratio between the number of correct 
recommended developers in top-K ranks and total 
recommended developers where 𝐾𝐾 is the number of 
considered recommended developers, 𝑄𝑄 is the query set, 
and 𝐻𝐻�𝑑𝑑𝑖𝑖0 ,𝑑𝑑𝑖𝑖1..𝑘𝑘� is a function that returns 1 if task 𝑖𝑖's actual 
developer 𝑑𝑑𝑖𝑖0  is in recommended developers no more than 
K-th rank, otherwise returns 0. 
 
        𝐻𝐻𝐻𝐻𝐻𝐻@𝐾𝐾 = 1

|𝑄𝑄|
∑ 𝐻𝐻�𝑑𝑑𝑖𝑖0 ,𝑑𝑑𝑖𝑖1..𝑘𝑘�

|𝑄𝑄|
𝑖𝑖=1                                                    (9) 

 
4. MAP is an average evaluation of recommendation 
precision and is computed at considered several top-K 
recommended developers where 𝑄𝑄 is the query set, 𝐾𝐾 is the 
number of considered recommended developers, i.e., 𝐾𝐾 =
1,2,3, . . . ,10, and 𝐻𝐻(𝑑𝑑0,𝑑𝑑𝑖𝑖) is a function that returns 1 if 
developer 𝑑𝑑0 is equivalent to 𝑑𝑑𝑖𝑖 , otherwise returns 0. 
 

        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃@𝐾𝐾 = ∑ 𝐻𝐻(𝑑𝑑0,𝑑𝑑𝑖𝑖)𝐾𝐾
𝑖𝑖=1

𝐾𝐾
                                                     (10) 

 

        𝑀𝑀𝑀𝑀𝑀𝑀 = 1
|𝑄𝑄|
∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃@𝐾𝐾10

𝑘𝑘=1
10

|𝑄𝑄|
𝑗𝑗=1                                            (11) 
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3. RESULTS 
 
3.1 Knowledge graph embedding evaluation 
To choose the most suitable knowledge graph model for 
the software development data, we experimented with and 
compared different embedding models in terms of the 
ability to encode the semantics of the knowledge graph. 
Accordingly, we randomly dropped 20% of the user role 
triples as a test set, and the rest is the training set. The 
knowledge graph embedding encoded the entities and 
relation types into a vector of 200 dimensions. Then, the 
link prediction found the true entity using the scoring 
function to calculate the triples' scores from the test set 
and ranked all user entities according to the scores. We 
used MRR as the main evaluation criteria while also 
considering MR, Hit@10, and Hit@100. 
       The evaluation results from Table 2 were evident that 
TransE cannot capture the semantics of the knowledge 
graph, resulting in the worst performance in all metrics. 
Interestingly, HolE performs on par with DistMult, but the 
MR of HolE was quite high because it could not interpret 
some entities or relation types, consequently increasing 
the average ranks. However, ConvKB outperformed other 
models. Although ConvKB's MRR was equal to ComplEx's 
at 0.43, it overcame ComplEx in other metrics, including 
MR, Hit@10, and Hit@100. Thus, the ConvKB was chosen 
as the graph embedding model for the next evaluation on 
the developer recommendation task. 
       After the embedding model learns the semantics of the 
knowledge graph, the entities and relations would become 
a vector. According to the example embedded developer 
vectors from Figure 4, the developers with comparable 
characteristics were located close to each other when 
converted to embedded vectors. Here, the principal 
component analysis was used to reduce the dimensions for 
visualization. Furthermore, the embedding space was also 
generally close together to the same as other entity and 
relation types. 
 
Table 2. Knowledge graph embedding evaluation result 
comparison between TransE, DistMult, ComplEx, HolE, and 
ConvKB on the Moodle dataset 
 

Model MRR MR Hit@10 Hit@100 
TransE 0.00 787.05 0.00 0.01 
DistMult 0.38 88.99 0.56 0.79 
ComplEx 0.43 90.66 0.61 0.81 
HolE 0.38 269.93 0.52 0.64 
ConvKB 0.43 18.56 0.69 0.96 

Note: MRR = mean reciprocal rank, MR = mean rank, and MAP = 
mean average precision 
 
3.2 Developer recommendation evaluation 
The developer recommendation applied the ConvKB, the 
most appropriate model for our dataset. The developer 
candidates comprised the users who used to be developers 
in the previous tasks. Besides, the developers were filtered 
by their activeness, where we considered the developers 
who had activities within three months before creating a 

task. The scoring function calculated all developer 
candidates that were combined with task entities and 
developer relations for compatibility with the link 
prediction protocol. The top-K triples with the highest 
scores would be listed to present the most suitable 
developers for a particular task. 
       According to the evaluation results in Table 3, our 
approach surpassed the baselines, RECAST (Tuarob et al., 
2021) and Liu et al. (2014), in terms of MRR, MR, Hit@10, 
Hit@100, and MAP. Specifically, our recommendations had 
93% correct developers in the top 100 ranks of the tasks in 
the test set, but RECAST (Tuarob et al., 2021) and the 
method of Liu et al. (2014) yielded only 45% and 46%, 
respectively. Furthermore, on average, a correct developer 
was ranked among the top 10 recommendations. Our 
method's MRR and MAP also outperformed RECAST 
(Tuarob et al., 2021) by over 120% 
       Table 4 shows an example of recommended developers 
for a task in the Moodle dataset. The usernames were 
anonymized for privacy. They are uniquely represented as 
Uxxx, and the user numbers were sequentially 
enumerated. This example task was related to removing 
the personal data of inactive users. In this task, our 
approach could raise the proper developer's rank to first 
rank, while RECAST had the correct developer at the tenth 
rank, and Liu's method could not find the correct developer 
in the top-ten results at all. 
 

 
 
Figure 4. Example of randomly selected developers' 
embedded vectors projected onto the two-dimensional 
space using principal component analysis 
 
Table 3. Developer recommendation evaluation results on 
the Moodle dataset 
 

Metric Liu RECAST Current 
MRR 0.08 0.20 0.44 
MR 76.53 62.78 23.15 
Hit@10 0.12 0.41 0.59 
Hit@100 0.45 0.46 0.93 
MAP 0.07 0.20 0.43 

Note: MRR = mean reciprocal rank, MR = mean rank, and MAP = 
mean average precision
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Table 4. Example of top 10 recommended developers by 
Liu et al. (2014), RECAST (Tuarob et al., 2021), and the 
current approach 
 

Assignee U100 
Developer U101 
Rank Liu RECAST Current 
1 U102 U112 U101 
2 U103 U113 U113 
3 U104 U114 U121 
4 U105 U115 U122 
5 U106 U116 U123 
6 U107 U117 U117 
7 U108 U118 U124 
8 U109 U119 U125 
9 U110 U120 U126 
10 U111 U101 U127 

 
 
4. DISCUSSION  
 
The developer recommendation attempted to serve the 
most suitable developer for the task. Various 
recommendation techniques were used to solve the 
problem, emphasizing the different aspects of what 
considers an appropriate developer. Zhang et al. (2017) 
presented the developer recommendation, DevRec. Their 
algorithm considered two aspects, including development 
activity and knowledge-sharing activity. Social coding 
activities focus on Github's commits, forks, and watches of 
the specific repositories to represent developers' 
interests. Knowledge-sharing activities focus on tags in 
particular posts that the developers answered or asked 
questions on StackOverflow. Tuarob et al. (2021) 
proposed RECAST, a machine learning based software 
team recommendation algorithm that could be tweaked 
for individual role recommendation. They collected large-
scale software development datasets from successful 
open-source software tasks, including Moodle, Apache, 
and Atlassian. Their approach considers role 
requirements, technical skills, and team compatibility. The 
machine learning techniques, such as Logistic Regression 
and Random Forest, were applied as scoring functions 
before ranking the top-K candidate teams. Although the 
RECAST's main objective is to recommend suitable 
software teams for a task, it also has a single-role 
recommendation protocol for developers, integrators, 
testers, and reviewers. They presented several evaluation 
metrics, including MRR, MR, precision, and MAP. 
Additionally, they formulated the single recommendation 
protocol on Liu's work which also proposed a team 
recommendation algorithm that applies machine learning 
to learn the weights of team quality and experience 
features from historical project information. In their 
evaluation, the results in developer recommendations are 
compared to Liu's method and a random baseline.  
       The knowledge graph was also adopted in addition to 
software development. Ye et al. (2021) proposed a 
framework for drug-target interactions. They use the 
knowledge graph to learn a low-dimensional 
representation for each entity before combine with a 
neural factorization machine. This work consists of four 
main parts: discovering heterogeneous information, 
dimensional reduction with principal component analysis, 

information integration, and collaborative recommend-
dation. Gong et al. (2021) presented a framework for safe 
medicine recommendations. They used knowledge graph 
embedding to compress the medical information to lower 
dimensional space. The link prediction considers the 
diagnoses and drug reactions. 
 
 
5. CONCLUSION 
 
The developer suggestion for specific software 
development tasks was proposed by applying the 
knowledge graph technology to the Moodle dataset. The 
entities and relations in the knowledge graph were 
encoded into a latent vector using a graph embedding 
algorithm, which was then used to generate the latent 
vectors for entities and relations. The candidate 
developers were selected based on the results of the 
scoring function, which was used to determine their 
suitability for the task. The evaluation showed that the 
proposed approach outperformed the state-of-the-art 
techniques in all aspects.  
       Due to the fact that a software team comprises a 
variety of roles that are not exclusively for developers, we 
intend to extend the proposed developer recommendation 
to include these roles in our future work. Furthermore, 
because software development typically involves a team 
comprising a diverse range of individuals and roles to 
produce a high-quality product, we would like to modify 
the knowledge graph to recommend an entire team of 
software practitioners for a given task. In addition, we 
wish to investigate other open-source software projects to 
better understand their collaborative behaviors to 
improve our recommendation algorithms for 
generalization. 
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