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ABSTRACT

Honeybees play a critical role as natural pollinator and are essential to global food
production. Monitoring honeybee population densities can provide valuable
insights into the environmental status of a given region, although effectively
carrying out such monitoring is challenging. To address this issue, this study
focused on the development of a mathematical model to predict population density
and detect potential colony collapse. The model utilized a set of effective arrays
of differential equations that consider crucial parameters. Analyzing actual data
using the model revealed that regions with higher flower densities experienced
reduced vulnerability to unnatural deaths or diseases, while those with lower
flower densities tended to have smaller populations. Furthermore, numerical
simulations showed that unnatural death rates exerted the most significant impact
on the model. In adverse environmental conditions, forager populations decline
first, leading to decreased food availability and potential colony collapse. This
model, as a highly practical tool, holds immense value for environmentalists
seeking precise predictions of honeybee population density within their respective
regions.

Keywords: honeybee population; honey storage; honeybee colony size; colony collapse;
multi-stage model

Despite the benefits honeybees bring to the ecosystem,
their population densities have been unstable over the past

As the world becomes more densely populated, food
shortages have become a critical issue for humanity. Plants
and trees serve as major sources of food for humans and
animals, providing grains, seeds, and fruits. Moreover,
previous research has discovered that over three-quarters
of all flowering plants, which constitute a significant part
of the human diet, depend on animal pollination (Klatt et
al, 2014; Feldman, 2006). Bees are among the most common
pollinators, spending most of their time accumulating pollen
and nectar. The short hair on their bodies facilitates pollen
adherence, ensuring easy transfer of pollen.
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fifty years, depending on environmental condition of their
habitats. Globally, research indicated that since 1973,
honeybee colony densities in Asia have increased nearly 3-
fold, while in North America, they have decreased to
around 43% of the initial level (Jacobson et al.,, 2018).
Monitoring the population density of honeybees
presents a practical challenge, as it cannot be determined
simply by counting the number of bees. Instead, it is
assessed by measuring the weight of the hive itself,
requiring special expertise and expensive equipment
(Fitzgerald et al., 2015). Another complicating factor is that
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the measured hive weight includes not only bees but also
honey and wax. This makes it difficult to directly correlate
weight with population, especially during rapid declines,
as the weight of wax does not decrease at the same rate.
Moreover, using scales in harsh or remote environments
is often unfeasible and, under harsh environmental
conditions, it can lead to erroneous results.

Computational analysis is emerging as a superior
alternative for acquiring and predicting honeybee
population size, as it can simplify data collection and be
more cost-effective. Such analyses typically rely on initial
conditions within the hive, such as the queen's egg-laying
rate, which is time-dependent and influenced by seasonal
variations (Messan et al,, 2021; Kang et al, 2016). The
duration of each stage in the honeybee life cycle has also
been investigated, with drones spending approximately 24
days in the brood stage and workers spending around 21
days (Chen, 2020).

Existing honeybee population prediction models
often employ a multi-stage approach, dividing the
honeybee life cycle into stages such as brood and adult
(Chen et al, 2020). Some models have utilized
recruitment rates, referring to the rate of development
from one stage to the next (Dennis and Kemp, 2016).
Other multi-stage models incorporate worker sub-stages
and consider food storage within the hive (Perry et al,
2015). However, these models primarily serve as
frameworks and are not specifically designed for
predicting colony collapse under real-world conditions.

Therefore, this report introduced a honeybee
population model that has been developed,
encompassing a broader spectrum of life stages than
existing models. Our model considered multiple bee life
cycle stages, fluctuating queen egg-laying rates, seasonal
variations, the weight of honey stored in the hive, forager
activity rates, and population density, and was capable of
predicting instances of potential colony collapse. Our
model aimed to assist beekeepers and environmentalists
in adapting their treatment plans for apiaries, ensuring
integrity of the colony population while maximizing
honey production.

2. MATERIALS AND METHODS

2.1 Materials

Numerical simulations were conducted using Python
version 3.10.12 along with the following mathematical
libraries (NumPy version 1.22.4, Pandas version 1.5.3,
Matplotlib version 3.7.1, Scikit-learn version 1.2.2, and
Seaborn version 0.12.2), operating on the MacOS Ventura
operating system.

Values for the male brood/entire brood ratio, the time
immature workers and drones spend in the brood stage,
and the time foragers spend in the immature worker stage
were obtained from Chen et al. (2020), Khoury et al.
(2013), DeGrandi-Hoffman et al. (1989), and Page and
Metcalf (1984). Otherwise, all other model inputs were
estimated to fall within the habitable range.

2.2 Model formation

The life cycle of a honeybee consists of four distinct stages:
egg, larva, pupa, and adult. In this context, we refer to
the combination of egg, larva, and pupa as a brood.
Additionally, adult honeybees were classified into different
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groups based on their roles. Females were divided into
immature workers, and foragers, while males are drones.

After spending approximately 21 to 26 days within the
hive as brood, the female pupae will be fully developed into
immature workers and the male pupae will have developed
into drones. The role of the honeybee depends on their age
polytheism; a young worker spends their day cleaning the
hive and nursing broods, while a forager spends their day
harvesting pollen and nectar (Moore et al,, 1987; Johnson,
2010). Therefore, natural and predatory death rates cannot
be equal in each life cycle stage.

A previous model was constructed by dividing the bee
life cycle into 2 stages: brood and adult (Chen et al., 2020).
However, in our model, we aimed to improve accuracy by
dividing the life cycle into 3 stages: brood, immature
worker, and forager, due to the fact that each type of adult
honeybee serves a different role in the dynamic of the
colony population.

The construction of the model was based on the
following assumptions. To introduce variability and
enhance the realism of the number of eggs laid per day, a
normally distributed egg-laying rate was assumed.
Typically, a queen bee has an average lifespan of over 3
years, and in some cases, it may exceed 5 years. As the
queen bee typically remains within the hive, rendering the
risk of predation negligible, her lifespan can be set at the
maximum level. Since drones have a significant impact on
the colony's population, they are treated as a separate class
from other groups, and their sole role is to mate with the
queen, they remain inside the hive.

Environmental factors (climate and temperature, and
season) can profoundly impact honeybee populations. The
equation from Messan et al. (2021) was modified to define
a seasonal factor (Q;) as shown in Equation (1):

0, =1+0cos (D 4 ) 1)
where t is the time since the simulation started, 9 is the
seasonal impact degree, ranging from -1 to 1, and ¢ is the
seasonal phase constant. The seasonal phase constant is
added in the cosine term to accommodate the initial phase
of seasonality.

2.2.1 Egg-laying rate

The number of eggs laid daily by the queen bee is
dependent on season. Previous research has indicated
that as the queen ages, her egg production rate
continuously decreases, a trend reflected in our model
through exponential decay (Coffey, 2007; Di Pasquale and
Jacobi, 1998; DeGrandi-Hoffman et al., 1989). Equation
(2) describes the number of eggs laid per day (r;) as
follows:

e = ,’,.Oe—d—,tQt (2)

where 1} is the maximal mean eggs laid per day, and t is the
time since the simulation started which resets to 0 every 5
years. This reset corresponds to the assumption of a 5-year
queen bee lifespan.

2.2.2 Rate of survival

At each stage of development, whether transitioning
from brood to drone or immature worker, or from
immature worker to forager, only a specific portion of
the population will survive. It is important to note that
the survival rate of all honeybees within the colony is
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influenced by their workload intensity, which we refer
to as the level of activity. The exact definition and
further explanation of this concept will be provided in
section 2.2.5.2. Hence, to model the rate of survival, we
modified the equation structure based on the activity
level equation presented by Kang et al. (2016). We
define the rate of survival ¥; following Equation (3):

__lar
£ K+[A?Y,

3)

where [4,] is the number of adult bees at time ¢, VK is the
colony size at which brood survival rate is half maximum,
and Y; is the level of activity at time t. As the level
of activity increases, the rate of survival decrease;
conversely, as the population size increases the rate of
survival increases.

2.2.3 Brood demographics and population
dynamics
The ratio between male brood and entire brood is defined
as the constant A. In other words, the number of male
broods and female broods corresponds to A[B] and
(1 — V[B], respectively. The constant 2 is generally found
to be in the range of 10%-15%, but for the ease of
calculations, in the case of our model, it is fixed at 10%
(Chen et al, 2020; Page and Metcalf, 1984).

By using the egg-laying rate (Equation (2)), and the rate
of survival (Equation (3)), the rate of change in brood
population can be described by Equation (4):

% [Be] = 1t — We—r[Be—] (4)

(2)

where [B;] is the population of brood at time ¢, 1; is the
egg-laying rate at time ¢, 7 is the time a drone spends in
the brood stage, 1y, is the time an immature worker
spends in the brood stage, and W;_;[B;_.] is the number
of broods that progress into adult bees. We assumed that
the natural death rate of the brood is already
incorporated into in the fluctuation of the egg-laying rate
of the queen bee.

2.2.4 Drone population dynamics

Drones (male honeybees) only represent a small portion of
the whole population of a colony, but they are vital for its
survival. The life cycle of a male honeybee is shown in
Figure 1 (a).

To visualize the whole drone population dynamic, the
natural death rate dj is considered along with time spent
in the brood stage. The time spent as brood for drones is
around 24 days, or 7, = 24 (Chen et al,, 2020; Khoury et
al, 2013; DeGrandi-Hoffman et al., 1989). Therefore, the
rate of change in the drone population can be described
by Equation (5):

(D] = 2%, [By—s,] — dpQe[Dr] (5)

where [D;] is the population of drones at time t, 7, is the
time a drone spends in the brood stage, [B;_,] is the
population of brood at time t — 7j, and d, is the drone death
rate. The positive term on the right-hand side of the
differential equation, AW;_, [Bt_TD], represents the number
of newly developed drones factored with the survival rate of
the brood at time t — t4. The time stamp t — 74 in the
survival rate is used because the newly developed drones
originate from male brood at time t — 7.

Figure 1. The life cycle of (a) male honeybee, and (b) female honeybee

2.2.5 Worker population dynamics

The honeybee population is primarily comprised of
workers, and the number of workers in the colony has a
ripple effect on the population dynamics of other
honeybee segments. For example, the population of
workers affects the survival rate of the brood, which
directly impacts the population of drones. In this study,
adult workers were further categorized into two sub-
stages: immature workers and foragers. These sub-stages
were interconnected, transitioning from worker brood to
immature, from immature to foraging, and eventually
finally to death. The life cycle of a worker is illustrated in
Figure 1 (b).
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2.2.5.1 Immature worker

The population dynamics of immature workers and
drones are generally similar. Nevertheless, mortality
resulting from the activity level has remained subtle
given the less intensive role of the immature worker,
compared to that of a forager. The population dynamics
of immature workers are dependent upon the same rate
of survival as the drone. The main difference is that as the
immature worker ages, they tend to have a higher chance
of surviving throughout the immature phase, and
therefore the rate of survival of the immature worker can
be modeled as the term e~ %*w, The rate of change in the
immature worker population is defined by Equation (6):
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where [W; ;] is the population of immature workers at time
t, Ty is the time an immature worker spends in the brood

% [Wl,t] =1 -D¥—q, [Bt—‘rw] - e_d”""l{"t—rw [Wl,t—‘rw] —d [Wl,t] (6)
- Ha.
Y= ] 8

stage, and 7 is the time a forager spends in the immature
worker stage. The first term on the right-hand side of the
equation represents the number of broods that develop
into immature workers at time t, the second term defines
the number of immature workers that develop into
foragers, and the third term corresponds to the death rate
of immature workers.

2.2.5.2 Honey storage dynamics

The ability of a colony to store honey is another crucial
factor dictating its survivability. Honey is made by
collecting pollen and nectar from flowers outside the
hive. Foragers are responsible for the duty of collecting
ingredients for honey production, and for this reason, we
define a level of activity coefficient that indicates how
intensive the foragers are at harvesting. The higher the
level of activity coefficient becomes, the more the
foragers work. To construct this coefficient, the dynamics
of honey storage need to be analyzed and translated. The
rate of change in honey storage can be modeled by
Equation (7):

Wa,tl

[H] = aﬁe_TQt[Wz,t] —valAd —ve[B] (7)

d
dt
where [H;] is the amount of honey at time ¢, a is the honey
production coefficient, § is the flower density, [W, ;] is the
population of foragers at time t, 77 is the honey production
efficiency, (), is the seasonal flower blooming factor, [4;] is
the population of adult honeybees at time ¢, [B;] is the
population of broods at time t, y, is the consumption
coefficient of an adult honeybee, and y is the consumption
coefficient of a brood. The exponential decay term on the
right-hand side accounts for the interference created as the
forager population grows.
Following the construction of the honey storage
dynamics model, Equation (8) defines the level of activity
of the forager:

where Y, is the level of activity of the forager at time t, f is
the amount of honey at half maximum, (), is the seasonal
impact factor, and [H,] is the amount of honey at time t.

2.2.5.3 Forager population dynamics

Following on from the definition of honey storage in
Equation (7) and the level of activity in Equation (8) the
population dynamics of the forager is calculable by the
Equation (9) below:

% [WZ,t] = e_d”Fq’t—rF [Wl,f—Tp] =Y [Wz,t] 9

where [W, ] is the population of the foragers at time t.

Overall, the mechanism of the forager population
dynamics is akin to that of the drones except for the death
rate, which relies on the level of activity.

3. RESULTS

3.1 Simulation results

Since different landscape settings have their unique
environmental parameter values, this section summarizes
results of the numerical simulations with estimated
parameter values to highlight the capabilities of the model.

3.1.1 Population dynamics

The following results arose from numerical simulations using
our model, with inputs from a habitable environment. The
results showed a periodic fluctuation when the system
reached equilibrium, as illustrated in Figure 2, depicting the
impact of seasonality on colony population. Additionally,
Figure 3 (left) shows the rate of honey production over time,
while Figure 3 (right) demonstrates that the model is
sustained under an optimal conditional value, as the
correlations do not converge.
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Figure 2. Graphs illustrating the dynamics of the honeybee population by segment (left) and the adult honeybee population (right)
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Next, we simulated a scenario where the initial conditions
are unhabitable for honeybees, to demonstrate colony collapse.
The death rate was increased from day 1,000 until day 1,300.
The results are illustrated in a 3-dimensional graph, depicting

160000
140000

120000 G
100000 5

0 s
250 500

750 20

1o0c0 ! D
1 0.15

days 250]500 1750 0.10 é@

the relationship between the time interval, death rate, and
honeybee population in Figure 4 (left). Additionally, Figure 4
(right) shows the correlation between the time interval,
death rate, and the amount of honey (y-axis).
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0 10004550, 015"
days 1500750 0.10

Figure 4. Graphs depicting the honeybee population dynamics (left) and the honey storage dynamics (right) with an
increased death rate from day 1,000 until day 1,300, both illustrating the collapse of the honeybee colony

3.1.2 Colony collapse prediction

Given that natural conditions could not be replicated
consistently, our model was designed to determine the
relevant parameter thresholds, leading to the collapse of a bee
colony. Consequently, the model can be applied by beekeepers
to ensure the survival of their colonies. To apply the model

effectively, variables crucial to bee population dynamics, such
as flower density, death rate, and the maximal mean eggs laid
per day, must be taken into consideration. Subsequently, we
simulated our population dynamics model by varying these
significant variables. The overall mechanism of the honeybee
population dynamics model is shown in Figure 5.

Queen bee

Seasonal impact degree

Seasonality

Flower density —— Honey storage +——

Colony size

I— Rate of survival «—

Seasonality

|

Level of activity

l Immature worker J—-

Forager Death

Egg-laying rate —————

Female

Brood

Male

Drone Death

Rate of survival

Figure 5. Diagram illustrating the impact of each parameter on the mechanism of honeybee population dynamics
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3.1.2.1 Flower density cut-off threshold

Flower density is one of the most important environmental
parameters in our population dynamics model, as it
directly affects the forager population. Therefore,
population dynamics were simulated to examine the
impact of varying flower densities. The results of these
simulations are shown in Figures 6(a) and (b). Notably, the
simulations revealed that the honeybee colony could only
be sustained when the flower density in the area was not
lower than 1,420 flowers per square meter, based on our
parameter settings.

3.1.2.2 Birth and death rates cut-off threshold

Birth and death rates are undeniably one of the most
relevant terms to the causes of colony collapse. There are
many external factors contributing to the increase in birth
and death rates, for example, diseases and parasites.
Therefore, knowing the minimum birth rate or maximum
death rate of a colony before the collapse is crucial for
implementing protective treatments. In this study, we
conducted simulations of the population dynamics with
respect to the average number of eggs laid per day and the
death rates, respectively. The simulation results, after

pPopulation

50. .
(a) days 1500450 0 Q0

750

1000
1250 1000 N

(©) days 15001750 500 €0

varying the average number of eggs laid per day, are shown
in Figures 6(c) and (d), while the results from the death
rate variation simulation are shown in Figures 7(a), (b), (c),
and (d). The findings indicate that the honeybee colony
becomes unsustainable when the egg-laying rate is lower
than 1,130 eggs per day. Likewise, the colony will collapse
when the immature worker and forager death rates exceed
12.3% per day and 11.4% per day, respectively. Figure 6(b),
Figure 6(d), Figure 7(b) and (d) serve as indicators for
determining the critical condition leading to the collapse of
the honeybee colony, denoted by vertical blue lines.

3.1.2.3 Colony size cut-off threshold

Another relevant variable in our model is the colony size,
VK, which is largely responsible for brood development
rate and egg fertility. Accordingly, we analyzed the
relevance of this variable by varying its value (10,000-
79,000 honeybees), and visualizing the bee population
dynamics as a 3-dimensional graph as shown in Figure
8(a) and as a corresponding time projection graph,
shown in Figure 8(b). According to the simulation results,
colonies with more than 98,742 honeybees are not able
to maintain their integrity.
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Figure 6. Graphs depicting (a) honeybee population dynamics and their (b) corresponding time projection with the
colony collapse cut-off threshold in response to varying flower densities (0-2,000 flowers per square meter), and (c)
the honeybee population dynamics and (d) their corresponding time projection with the colony collapse cut-off
threshold for different maximal mean of eggs laid per day (1,000-4,000 eggs per day)
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Figure 7. Graphs depicting (a) honeybee population dynamics and their (b) corresponding time projection with the colony
collapse cut-off threshold in response to varying immature worker death rates (0.0-17.5% per day), and (c) honeybee
population dynamics and (d) their corresponding time projection with the colony collapse cut-off threshold for different

forager death rates (0-20% per day)
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Figure 8. Graphs depicting honeybee population dynamics (left) and their corresponding time projection (right) with

varying colony sizes (10,000-79,000 honeybees)

3.1.3 Seasonal impact degree cut-off threshold

Seasonal impact degree is an adjustable parameter,
responsible for controlling the expressiveness of the
seasonality in the region of interest. However, theoretically,
the parameter should be readjusted whenever the model is
used with a new environmental constraint. Therefore, we
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conducted a sensitivity analysis of the parameter to
ascertain its significance in shaping the dynamics of the
honeybee population. We varied the seasonal impact degree
from 0.000-1.000 and visualized the outcome, as shown in
Figure 9. The cut-off threshold of the seasonal impact degree
was found to be 0.77.
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Figure 9. Graphs depicting the honeybee population dynamics (left) and their corresponding time projection (right) with

varying seasonal impact degrees (0-1)

4. DISCUSSION

The strength of our model lies in its high adaptability,
achieved through the segmentation of the bee life cycle
stages. This segmentation enables us to predict rare,
unpredictable events that specifically impact bees at
certain life cycle stages to be predicted through minor
adjustments. Additionally, the converting differential
equations to difference equations reduces numerical
simulation time, enabling a more efficient use of
computational resources.

During the prediction of colony collapse, it became
evident that each parameter possesses a varying degree
of influence on the simulation. Notably, parameters such
as egg-laying rate, flower density, and colony size at
which brood survival rate is half maximum exhibit a
linear relationship with the predicted population.
However, the model demonstrates heightened sensitivity
to the death rate, with colony viability confined to a
narrower range of death rates. The impact of the death
rate on the population follows a non-linear pattern,
fitting a second-order regression equation.

Due to the absence of a definitive metric for converting
population size to beehive weight, we employed the trend of
honey storage within the hive as an alternative measure,
correlating it with the beehive weight data from the previous
research of Lecocq et al. (2015). The comparison yielded
remarkable results, indicating a correlation between the
amount of honey stored and the overall weight of the hive.
Figure 10 illustrates the monthly predicted amount of
honey, aligning with the observed fluctuations in measured
hive weight over the year, thereby validating the model. The
trend initiates at its lowest point, experiences a sharp incline
throughout the year, and concludes with a slight decline.

Despite its strengths, the model does have certain
limitations and opportunities for improvement. It does not
account for extreme scenarios involving the destruction of
hives by natural disasters or other animals. Furthermore, the
model lacks a death rate coefficient associated with
maintenance workload. The deconstruction of hives has a
distinct impact on population dynamics, as workload
distribution differs during hive reconstruction. Consequently,
the model predictions may not align with real-world
outcomes in these cases.
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Figure 10. Amount of honey in the hive by month in a 4-year simulation
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5. CONCLUSION

This research focused on modeling honeybee population
dynamics and the quantity of honey within the colony
using differential equations and numerical simulations.
Based on our findings, the critical thresholds for various
parameters were determined. These include a flower
density cutoff of 1,420 flowers per square meter, an egg-
laying rate of 1,130 eggs per day, an immature worker
death rate of 12.3% per day, a forager death rate of
11.4%, a colony size of 98,742 honeybees, and a seasonal
impact degree of 0.77, respectively. Notably, the impact
of the egg-laying rate, flower density, colony size, and
seasonal impact degree on the predicted honeybee
population displayed a linear relationship, whereas the
death rates exhibited a second-degree relationship.

Importantly, the simulation results align well with
previous research, confirming the validity and reliability of
our model.
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