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ABSTRACT 
 
Honeybees play a critical role as natural pollinator and are essential to global food 
production. Monitoring honeybee population densities can provide valuable 
insights into the environmental status of a given region, although effectively 
carrying out such monitoring is challenging. To address this issue, this study 
focused on the development of a mathematical model to predict population density 
and detect potential colony collapse. The model utilized a set of effective arrays 
of differential equations that consider crucial parameters. Analyzing actual data 
using the model revealed that regions with higher flower densities experienced 
reduced vulnerability to unnatural deaths or diseases, while those with lower 
flower densities tended to have smaller populations. Furthermore, numerical 
simulations showed that unnatural death rates exerted the most significant impact 
on the model. In adverse environmental conditions, forager populations decline 
first, leading to decreased food availability and potential colony collapse. This 
model, as a highly practical tool, holds immense value for environmentalists 
seeking precise predictions of honeybee population density within their respective 
regions. 
 
Keywords: honeybee population; honey storage; honeybee colony size; colony collapse;  
multi–stage model 
 
 
 

1. INTRODUCTION                                    
 
As the world becomes more densely populated, food 
shortages have become a critical issue for humanity. Plants 
and trees serve as major sources of food for humans and 
animals, providing grains, seeds, and fruits. Moreover, 
previous research has discovered that over three-quarters 
of all flowering plants, which constitute a significant part 
of the human diet, depend on animal pollination (Klatt et 
al., 2014; Feldman, 2006). Bees are among the most common 
pollinators, spending most of their time accumulating pollen 
and nectar. The short hair on their bodies facilitates pollen 
adherence, ensuring easy transfer of pollen. 

       Despite the benefits honeybees bring to the ecosystem, 
their population densities have been unstable over the past 
fifty years, depending on environmental condition of their 
habitats. Globally, research indicated that since 1973, 
honeybee colony densities in Asia have increased nearly 3-
fold, while in North America, they have decreased to 
around 43% of the initial level (Jacobson et al., 2018). 
       Monitoring the population density of honeybees 
presents a practical challenge, as it cannot be determined 
simply by counting the number of bees. Instead, it is 
assessed by measuring the weight of the hive itself, 
requiring special expertise and expensive equipment 
(Fitzgerald et al., 2015). Another complicating factor is that 
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the measured hive weight includes not only bees but also 
honey and wax. This makes it difficult to directly correlate 
weight with population, especially during rapid declines, 
as the weight of wax does not decrease at the same rate. 
Moreover, using scales in harsh or remote environments  
is often unfeasible and, under harsh environmental 
conditions, it can lead to erroneous results. 
       Computational analysis is emerging as a superior 
alternative for acquiring and predicting honeybee 
population size, as it can simplify data collection and be 
more cost-effective. Such analyses typically rely on initial 
conditions within the hive, such as the queen's egg-laying 
rate, which is time-dependent and influenced by seasonal 
variations (Messan et al., 2021; Kang et al., 2016). The 
duration of each stage in the honeybee life cycle has also 
been investigated, with drones spending approximately 24 
days in the brood stage and workers spending around 21 
days (Chen, 2020). 
       Existing honeybee population prediction models 
often employ a multi-stage approach, dividing the 
honeybee life cycle into stages such as brood and adult 
(Chen et al., 2020). Some models have utilized 
recruitment rates, referring to the rate of development 
from one stage to the next (Dennis and Kemp, 2016). 
Other multi-stage models incorporate worker sub-stages 
and consider food storage within the hive (Perry et al., 
2015). However, these models primarily serve as 
frameworks and are not specifically designed for 
predicting colony collapse under real-world conditions. 
       Therefore, this report introduced a honeybee 
population model that has been developed, 
encompassing a broader spectrum of life stages than 
existing models. Our model considered multiple bee life 
cycle stages, fluctuating queen egg-laying rates, seasonal 
variations, the weight of honey stored in the hive, forager 
activity rates, and population density, and was capable of 
predicting instances of potential colony collapse. Our 
model aimed to assist beekeepers and environmentalists 
in adapting their treatment plans for apiaries, ensuring 
integrity of the colony population while maximizing 
honey production. 
 
 
2. MATERIALS AND METHODS    
 
2.1 Materials 
Numerical simulations were conducted using Python 
version 3.10.12 along with the following mathematical 
libraries (NumPy version 1.22.4, Pandas version 1.5.3, 
Matplotlib version 3.7.1, Scikit-learn version 1.2.2, and 
Seaborn version 0.12.2), operating on the MacOS Ventura 
operating system. 
       Values for the male brood/entire brood ratio, the time 
immature workers and drones spend in the brood stage, 
and the time foragers spend in the immature worker stage 
were obtained from Chen et al. (2020), Khoury et al. 
(2013), DeGrandi-Hoffman et al. (1989), and Page and 
Metcalf (1984). Otherwise, all other model inputs were 
estimated to fall within the habitable range. 
      
2.2 Model formation 
The life cycle of a honeybee consists of four distinct stages: 
egg, larva, pupa, and adult. In this context, we refer to  
the combination of egg, larva, and pupa as a brood. 
Additionally, adult honeybees were classified into different 

groups based on their roles. Females were divided into 
immature workers, and foragers, while males are drones. 
       After spending approximately 21 to 26 days within the 
hive as brood, the female pupae will be fully developed into 
immature workers and the male pupae will have developed 
into drones. The role of the honeybee depends on their age 
polytheism; a young worker spends their day cleaning the 
hive and nursing broods, while a forager spends their day 
harvesting pollen and nectar (Moore et al., 1987; Johnson, 
2010). Therefore, natural and predatory death rates cannot 
be equal in each life cycle stage. 
       A previous model was constructed by dividing the bee 
life cycle into 2 stages: brood and adult (Chen et al., 2020). 
However, in our model, we aimed to improve accuracy by 
dividing the life cycle into 3 stages: brood, immature 
worker, and forager, due to the fact that each type of adult 
honeybee serves a different role in the dynamic of the 
colony population. 
      The construction of the model was based on the 
following assumptions. To introduce variability and 
enhance the realism of the number of eggs laid per day, a 
normally distributed egg-laying rate was assumed. 
Typically, a queen bee has an average lifespan of over 3 
years, and in some cases, it may exceed 5 years. As the 
queen bee typically remains within the hive, rendering the 
risk of predation negligible, her lifespan can be set at the 
maximum level. Since drones have a significant impact on 
the colony's population, they are treated as a separate class 
from other groups, and their sole role is to mate with the 
queen, they remain inside the hive. 
       Environmental factors (climate and temperature, and 
season) can profoundly impact honeybee populations. The 
equation from Messan et al. (2021) was modified to define 
a seasonal factor (Ω𝑡𝑡) as shown in Equation (1): 

 𝛺𝛺𝑡𝑡 = 1 + 𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋(𝑡𝑡−45)
365

+ 𝜙𝜙�                 (1) 

where 𝑡𝑡 is the time since the simulation started, 𝜗𝜗 is the 
seasonal impact degree, ranging from –1 to 1, and 𝜙𝜙 is the 
seasonal phase constant. The seasonal phase constant is 
added in the cosine term to accommodate the initial phase 
of seasonality. 
 
2.2.1 Egg-laying rate 
The number of eggs laid daily by the queen bee is 
dependent on season. Previous research has indicated 
that as the queen ages, her egg production rate 
continuously decreases, a trend reflected in our model 
through exponential decay (Coffey, 2007; Di Pasquale and 
Jacobi, 1998; DeGrandi-Hoffman et al., 1989). Equation 
(2) describes the number of eggs laid per day (𝑟𝑟𝑡𝑡) as 
follows: 

 𝑟𝑟𝑡𝑡 = 𝑟𝑟0𝑒𝑒−𝑑𝑑𝑟𝑟𝑡𝑡Ω𝑡𝑡                  (2) 

where 𝑟𝑟0 is the maximal mean eggs laid per day, and 𝑡𝑡 is the 
time since the simulation started which resets to 0 every 5 
years. This reset corresponds to the assumption of a 5-year 
queen bee lifespan. 
 
2.2.2 Rate of survival 
At each stage of development, whether transitioning 
from brood to drone or immature worker, or from 
immature worker to forager, only a specific portion of 
the population will survive. It is important to note that 
the survival rate of all honeybees within the colony is 
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influenced by their workload intensity, which we refer 
to as the level of activity. The exact definition and 
further explanation of this concept will be provided in 
section 2.2.5.2. Hence, to model the rate of survival, we 
modified the equation structure based on the activity 
level equation presented by Kang et al. (2016). We 
define the rate of survival Ψ𝑡𝑡 following Equation (3): 

 Ψ𝑡𝑡 = [𝐴𝐴𝑡𝑡]2

𝐾𝐾+[𝐴𝐴𝑡𝑡]2Υ𝑡𝑡
                  (3) 

where [𝐴𝐴𝑡𝑡] is the number of adult bees at time 𝑡𝑡, √𝐾𝐾 is the 
colony size at which brood survival rate is half maximum, 
and Υt is the level of activity at time 𝑡𝑡. As the level  
of activity increases, the rate of survival decrease; 
conversely, as the population size increases the rate of 
survival increases. 
 
2.2.3 Brood demographics and population 
dynamics 
The ratio between male brood and entire brood is defined 
as the constant 𝜆𝜆. In other words, the number of male 
broods and female broods corresponds to 𝜆𝜆[𝐵𝐵] and 
(1 − 𝜆𝜆)[𝐵𝐵], respectively. The constant 𝜆𝜆 is generally found 
to be in the range of 10%–15%, but for the ease of 
calculations, in the case of our model, it is fixed at 10% 
(Chen et al., 2020; Page and Metcalf, 1984). 
       By using the egg-laying rate (Equation (2)), and the rate 
of survival (Equation (3)), the rate of change in brood 
population can be described by Equation (4): 

 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝐵𝐵𝑡𝑡] = 𝑟𝑟𝑡𝑡 − Ψ𝑡𝑡−𝜏𝜏[𝐵𝐵𝑡𝑡−𝜏𝜏]                 (4) 

where [𝐵𝐵𝑡𝑡] is the population of brood at time 𝑡𝑡, 𝑟𝑟𝑡𝑡 is the 
egg-laying rate at time 𝑡𝑡, 𝜏𝜏𝐷𝐷  is the time a drone spends in 
the brood stage, 𝜏𝜏𝑊𝑊  is the time an immature worker 
spends in the brood stage, and Ψ𝑡𝑡−𝜏𝜏[𝐵𝐵𝑡𝑡−𝜏𝜏] is the number 
of broods that progress into adult bees. We assumed that 
the natural death rate of the brood is already 
incorporated into in the fluctuation of the egg-laying rate 
of the queen bee. 
 
2.2.4 Drone population dynamics 
Drones (male honeybees) only represent a small portion of 
the whole population of a colony, but they are vital for its 
survival. The life cycle of a male honeybee is shown in 
Figure 1 (a). 
       To visualize the whole drone population dynamic, the 
natural death rate 𝑑𝑑𝐷𝐷  is considered along with time spent 
in the brood stage. The time spent as brood for drones is 
around 24 days, or 𝜏𝜏𝐷𝐷 = 24 (Chen et al., 2020; Khoury et 
al., 2013; DeGrandi-Hoffman et al., 1989). Therefore, the 
rate of change in the drone population can be described 
by Equation (5): 

                           
𝑑𝑑
𝑑𝑑𝑑𝑑

[𝐷𝐷𝑡𝑡] = 𝜆𝜆Ψ𝑡𝑡−𝜏𝜏𝐷𝐷�𝐵𝐵𝑡𝑡−𝜏𝜏𝐷𝐷� − 𝑑𝑑𝐷𝐷Ω𝑡𝑡[𝐷𝐷𝑡𝑡]                        (5) 

where [𝐷𝐷𝑡𝑡] is the population of drones at time 𝑡𝑡, 𝜏𝜏𝐷𝐷  is the 
time a drone spends in the brood stage, [𝐵𝐵𝑡𝑡−𝜏𝜏𝐷𝐷] is the 
population of brood at time 𝑡𝑡 − 𝜏𝜏𝐷𝐷, and 𝑑𝑑𝐷𝐷  is the drone death 
rate. The positive term on the right-hand side of the 
differential equation, 𝜆𝜆Ψ𝑡𝑡−𝜏𝜏𝐷𝐷�𝐵𝐵𝑡𝑡−𝜏𝜏𝐷𝐷�, represents the number 
of newly developed drones factored with the survival rate of 
the brood at time 𝑡𝑡 − 𝜏𝜏𝑑𝑑 . The time stamp 𝑡𝑡 − 𝜏𝜏𝑑𝑑  in the 
survival rate is used because the newly developed drones 
originate from male brood at time 𝑡𝑡 − 𝜏𝜏𝑑𝑑 .

 

 

 

 

 
 
 
Figure 1. The life cycle of (a) male honeybee, and (b) female honeybee  
 
2.2.5 Worker population dynamics 
The honeybee population is primarily comprised of 
workers, and the number of workers in the colony has a 
ripple effect on the population dynamics of other 
honeybee segments. For example, the population of 
workers affects the survival rate of the brood, which 
directly impacts the population of drones. In this study, 
adult workers were further categorized into two sub-
stages: immature workers and foragers. These sub-stages 
were interconnected, transitioning from worker brood to 
immature, from immature to foraging, and eventually 
finally to death. The life cycle of a worker is illustrated in 
Figure 1 (b). 

2.2.5.1 Immature worker 
The population dynamics of immature workers and 
drones are generally similar. Nevertheless, mortality 
resulting from the activity level has remained subtle 
given the less intensive role of the immature worker, 
compared to that of a forager. The population dynamics 
of immature workers are dependent upon the same rate 
of survival as the drone. The main difference is that as the 
immature worker ages, they tend to have a higher chance 
of surviving throughout the immature phase, and 
therefore the rate of survival of the immature worker can 
be modeled as the term 𝑒𝑒−𝑑𝑑1𝜏𝜏𝑊𝑊 . The rate of change in the 
immature worker population is defined by Equation (6):
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𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑊𝑊1,𝑡𝑡� = (1 − 𝜆𝜆)Ψ𝑡𝑡−𝜏𝜏𝑊𝑊�𝐵𝐵𝑡𝑡−𝜏𝜏𝑊𝑊� − 𝑒𝑒−𝑑𝑑1𝜏𝜏𝐹𝐹Ψ𝑡𝑡−𝜏𝜏𝑊𝑊�𝑊𝑊1,𝑡𝑡−𝜏𝜏𝑊𝑊� − 𝑑𝑑1�𝑊𝑊1,𝑡𝑡�             (6)

where [𝑊𝑊1,𝑡𝑡] is the population of immature workers at time 
𝑡𝑡, 𝜏𝜏𝑊𝑊  is the time an immature worker spends in the brood 
stage, and 𝜏𝜏𝐹𝐹  is the time a forager spends in the immature 
worker stage. The first term on the right-hand side of the 
equation represents the number of broods that develop 
into immature workers at time 𝑡𝑡, the second term defines 
the number of immature workers that develop into 
foragers, and the third term corresponds to the death rate 
of immature workers. 
 
2.2.5.2 Honey storage dynamics 
The ability of a colony to store honey is another crucial 
factor dictating its survivability. Honey is made by 
collecting pollen and nectar from flowers outside the 
hive. Foragers are responsible for the duty of collecting 
ingredients for honey production, and for this reason, we 
define a level of activity coefficient that indicates how 
intensive the foragers are at harvesting. The higher the 
level of activity coefficient becomes, the more the 
foragers work. To construct this coefficient, the dynamics 
of honey storage need to be analyzed and translated. The 
rate of change in honey storage can be modeled by 
Equation (7): 

𝑑𝑑
𝑑𝑑𝑑𝑑

[𝐻𝐻𝑡𝑡] = 𝛼𝛼𝛼𝛼𝑒𝑒−
[𝑊𝑊2,𝑡𝑡]
𝜂𝜂 Ω𝑡𝑡�𝑊𝑊2,𝑡𝑡� − 𝛾𝛾𝐴𝐴[𝐴𝐴𝑡𝑡] − 𝛾𝛾𝐵𝐵[𝐵𝐵𝑡𝑡]     (7) 

where [𝐻𝐻𝑡𝑡] is the amount of honey at time 𝑡𝑡, 𝛼𝛼 is the honey 
production coefficient, 𝛽𝛽 is the flower density, [𝑊𝑊2,𝑡𝑡] is the 
population of foragers at time 𝑡𝑡, 𝜂𝜂 is the honey production 
efficiency, Ω𝑡𝑡 is the seasonal flower blooming factor, [𝐴𝐴𝑡𝑡] is 
the population of adult honeybees at time 𝑡𝑡, [𝐵𝐵𝑡𝑡] is the 
population of broods at time 𝑡𝑡, 𝛾𝛾𝐴𝐴 is the consumption 
coefficient of an adult honeybee, and 𝛾𝛾𝐵𝐵 is the consumption 
coefficient of a brood. The exponential decay term on the 
right-hand side accounts for the interference created as the 
forager population grows. 
       Following the construction of the honey storage 
dynamics model, Equation (8) defines the level of activity 
of the forager: 

 Υt = 𝐻𝐻�Ω𝑡𝑡
[𝐻𝐻𝑡𝑡]

                  (8) 

where Υt is the level of activity of the forager at time 𝑡𝑡, 𝐻𝐻� is 
the amount of honey at half maximum, Ω𝑡𝑡 is the seasonal 
impact factor, and [𝐻𝐻𝑡𝑡] is the amount of honey at time 𝑡𝑡. 
 
2.2.5.3 Forager population dynamics 
Following on from the definition of honey storage in 
Equation (7) and the level of activity in Equation (8) the 
population dynamics of the forager is calculable by the 
Equation (9) below: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑊𝑊2,𝑡𝑡� = 𝑒𝑒−𝑑𝑑1𝜏𝜏𝐹𝐹Ψ𝑡𝑡−𝜏𝜏𝐹𝐹�𝑊𝑊1,𝑡𝑡−𝜏𝜏𝐹𝐹� − Υ𝑡𝑡�𝑊𝑊2,𝑡𝑡�        (9) 

where [𝑊𝑊2,𝑡𝑡] is the population of the foragers at time 𝑡𝑡. 
       Overall, the mechanism of the forager population 
dynamics is akin to that of the drones except for the death 
rate, which relies on the level of activity. 
 
 
3. RESULTS  
 
3.1 Simulation results 
Since different landscape settings have their unique 
environmental parameter values, this section summarizes 
results of the numerical simulations with estimated 
parameter values to highlight the capabilities of the model. 
 
3.1.1 Population dynamics 
The following results arose from numerical simulations using 
our model, with inputs from a habitable environment. The 
results showed a periodic fluctuation when the system 
reached equilibrium, as illustrated in Figure 2, depicting the 
impact of seasonality on colony population. Additionally, 
Figure 3 (left) shows the rate of honey production over time, 
while Figure 3 (right) demonstrates that the model is 
sustained under an optimal conditional value, as the 
correlations do not converge. 
 

 
 
 
 
 
 
 
 
 

Figure 2. Graphs illustrating the dynamics of the honeybee population by segment (left) and the adult honeybee population (right)  
 
 
 
 
 
 
 
 
 

Figure 3. Graphs illustrating the amount of honey over time (left) and the correlations between the number of adult 
honeybees and the amount of honey (right) 
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       Next, we simulated a scenario where the initial conditions 
are unhabitable for honeybees, to demonstrate colony collapse. 
The death rate was increased from day 1,000 until day 1,300. 
The results are illustrated in a 3–dimensional graph, depicting 

the relationship between the time interval, death rate, and 
honeybee population in Figure 4 (left). Additionally, Figure 4 
(right) shows the correlation between the time interval, 
death rate, and the amount of honey (y–axis).

 

Figure 4. Graphs depicting the honeybee population dynamics (left) and the honey storage dynamics (right) with an 
increased death rate from day 1,000 until day 1,300, both illustrating the collapse of the honeybee colony 

 
3.1.2 Colony collapse prediction 
Given that natural conditions could not be replicated 
consistently, our model was designed to determine the 
relevant parameter thresholds, leading to the collapse of a bee 
colony. Consequently, the model can be applied by beekeepers 
to ensure the survival of their colonies. To apply the model  
 

effectively, variables crucial to bee population dynamics, such 
as flower density, death rate, and the maximal mean eggs laid 
per day, must be taken into consideration. Subsequently, we 
simulated our population dynamics model by varying these 
significant variables. The overall mechanism of the honeybee 
population dynamics model is shown in Figure 5.  

 
Figure 5. Diagram illustrating the impact of each parameter on the mechanism of honeybee population dynamics 
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3.1.2.1 Flower density cut-off threshold 
Flower density is one of the most important environmental 
parameters in our population dynamics model, as it 
directly affects the forager population. Therefore, 
population dynamics were simulated to examine the 
impact of varying flower densities. The results of these 
simulations are shown in Figures 6(a) and (b). Notably, the 
simulations revealed that the honeybee colony could only 
be sustained when the flower density in the area was not 
lower than 1,420 flowers per square meter, based on our 
parameter settings. 
 
3.1.2.2 Birth and death rates cut-off threshold 
Birth and death rates are undeniably one of the most 
relevant terms to the causes of colony collapse. There are 
many external factors contributing to the increase in birth 
and death rates, for example, diseases and parasites. 
Therefore, knowing the minimum birth rate or maximum 
death rate of a colony before the collapse is crucial for 
implementing protective treatments. In this study, we 
conducted simulations of the population dynamics with 
respect to the average number of eggs laid per day and the 
death rates, respectively. The simulation results, after 

varying the average number of eggs laid per day, are shown 
in Figures 6(c) and (d), while the results from the death 
rate variation simulation are shown in Figures 7(a), (b), (c), 
and (d). The findings indicate that the honeybee colony 
becomes unsustainable when the egg-laying rate is lower 
than 1,130 eggs per day. Likewise, the colony will collapse 
when the immature worker and forager death rates exceed 
12.3% per day and 11.4% per day, respectively. Figure 6(b), 
Figure 6(d), Figure 7(b) and (d) serve as indicators for 
determining the critical condition leading to the collapse of 
the honeybee colony, denoted by vertical blue lines. 
 
3.1.2.3 Colony size cut-off threshold 
Another relevant variable in our model is the colony size, 
√𝐾𝐾, which is largely responsible for brood development 
rate and egg fertility. Accordingly, we analyzed the 
relevance of this variable by varying its value (10,000–
79,000 honeybees), and visualizing the bee population 
dynamics as a 3–dimensional graph as shown in Figure 
8(a) and as a corresponding time projection graph,  
shown in Figure 8(b). According to the simulation results, 
colonies with more than 98,742 honeybees are not able 
to maintain their integrity.

 
 

 
Figure 6. Graphs depicting (a) honeybee population dynamics and their (b) corresponding time projection with the 
colony collapse cut-off threshold in response to varying flower densities (0–2,000 flowers per square meter), and (c) 
the honeybee population dynamics and (d) their corresponding time projection with the colony collapse cut-off 
threshold for different maximal mean of eggs laid per day (1,000–4,000 eggs per day) 
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Figure 7. Graphs depicting (a) honeybee population dynamics and their (b) corresponding time projection with the colony 
collapse cut-off threshold in response to varying immature worker death rates (0.0–17.5% per day), and (c) honeybee 
population dynamics and (d) their corresponding time projection with the colony collapse cut–off threshold for different 
forager death rates (0–20% per day) 
 
 

 

Figure 8. Graphs depicting honeybee population dynamics (left) and their corresponding time projection (right) with 
varying colony sizes (10,000–79,000 honeybees) 

 
3.1.3 Seasonal impact degree cut-off threshold 
Seasonal impact degree is an adjustable parameter, 
responsible for controlling the expressiveness of the 
seasonality in the region of interest. However, theoretically, 
the parameter should be readjusted whenever the model is 
used with a new environmental constraint. Therefore, we  
 

conducted a sensitivity analysis of the parameter to 
ascertain its significance in shaping the dynamics of the 
honeybee population. We varied the seasonal impact degree 
from 0.000–1.000 and visualized the outcome, as shown in 
Figure 9. The cut-off threshold of the seasonal impact degree 
was found to be 0.77.
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Figure 9. Graphs depicting the honeybee population dynamics (left) and their corresponding time projection (right) with 
varying seasonal impact degrees (0–1) 
 
 
4. DISCUSSION 
 
The strength of our model lies in its high adaptability, 
achieved through the segmentation of the bee life cycle 
stages. This segmentation enables us to predict rare, 
unpredictable events that specifically impact bees at 
certain life cycle stages to be predicted through minor 
adjustments. Additionally, the converting differential 
equations to difference equations reduces numerical 
simulation time, enabling a more efficient use of 
computational resources. 
       During the prediction of colony collapse, it became 
evident that each parameter possesses a varying degree 
of influence on the simulation. Notably, parameters such 
as egg-laying rate, flower density, and colony size at 
which brood survival rate is half maximum exhibit a 
linear relationship with the predicted population. 
However, the model demonstrates heightened sensitivity 
to the death rate, with colony viability confined to a 
narrower range of death rates. The impact of the death 
rate on the population follows a non-linear pattern, 
fitting a second-order regression equation. 

       Due to the absence of a definitive metric for converting 
population size to beehive weight, we employed the trend of 
honey storage within the hive as an alternative measure, 
correlating it with the beehive weight data from the previous 
research of Lecocq et al. (2015). The comparison yielded 
remarkable results, indicating a correlation between the 
amount of honey stored and the overall weight of the hive. 
Figure 10 illustrates the monthly predicted amount of 
honey, aligning with the observed fluctuations in measured 
hive weight over the year, thereby validating the model. The 
trend initiates at its lowest point, experiences a sharp incline 
throughout the year, and concludes with a slight decline. 
       Despite its strengths, the model does have certain 
limitations and opportunities for improvement. It does not 
account for extreme scenarios involving the destruction of 
hives by natural disasters or other animals. Furthermore, the 
model lacks a death rate coefficient associated with 
maintenance workload. The deconstruction of hives has a 
distinct impact on population dynamics, as workload 
distribution differs during hive reconstruction. Consequently, 
the model predictions may not align with real-world 
outcomes in these cases.

 

Figure 10. Amount of honey in the hive by month in a 4–year simulation 
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5. CONCLUSION 
 
This research focused on modeling honeybee population 
dynamics and the quantity of honey within the colony 
using differential equations and numerical simulations. 
Based on our findings, the critical thresholds for various 
parameters were determined. These include a flower 
density cutoff of 1,420 flowers per square meter, an egg-
laying rate of 1,130 eggs per day, an immature worker 
death rate of 12.3% per day, a forager death rate of 
11.4%, a colony size of 98,742 honeybees, and a seasonal 
impact degree of 0.77, respectively. Notably, the impact 
of the egg-laying rate, flower density, colony size, and 
seasonal impact degree on the predicted honeybee 
population displayed a linear relationship, whereas the 
death rates exhibited a second-degree relationship. 
       Importantly, the simulation results align well with 
previous research, confirming the validity and reliability of 
our model. 
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