

1

Service priority classification using
machine learning

Teratam Boonprapapan, Pusadee Seresangtakul*, and Punyaphol Horata

Department of Computer Science, College of Computing, Khon Kaen University, Khon Kaen
40002, Thailand

*Corresponding author:

Pusadee Seresangtakul
pusadee@kku.ac.th

Received: 17 February 2023
Revised: 8 January 2024

Accepted: 27 January 2024
Published: 3 October 2024

Citation:
Boonprapapan, T.,

Seresangtakul, P., and Horata,
P. (2024). Service priority

classification using machine
learning. Science, Engineering

and Health Studies, 18,
24020002.

ABSTRACT

This article details a procedure for classifying service cases with various priority
levels based on machine learning (ML). It accurately defines the priority level of
each service case. The presence of imbalanced datasets in service cases poses
a challenge for achieving reliable classification accuracy. To address this, the use
of the synthetic minority over-sampling technique (SMOTE) was proposed as the
method for balancing the datasets prior to applying the ML method. From these
experimental results, an improvement in the precision of the learning process was
observed, which led to better outcomes in the test sets. This improvement was
measured using the efficiency metrics from the confusion matrix. The experiment
involved 6,182 service cases, categorized into four levels: critical, serious,
moderate, and low. These were based on test comparisons with other ML
methods. The accuracy achieved in the test data was 94.37%. By employing a
hybrid technique to address the imbalance in SMOTE and the support vector
machine model, it was found to be more effective than the comparative term
frequency-inverse document frequency model that was used in conjunction with
cosine similarity, which achieved an evaluation score of 70.14%.

Keywords: machine learning; classification; imbalanced data; SMOTE

1. INTRODUCTION

The classification analysis for service delivery is grounded
in service level agreements (SLAs). Numerous businesses
and organizations utilize SLA-based techniques to improve
service delivery and the efficiency of their employees by
categorizing services, which are typically described in
textual form. The service categories within the SLA dataset
are divided into four levels: critical, serious, moderate,
and low. The accurate classification of the service types
within the SLA dataset is crucial in order to ensure
the appropriate delivery of services by organizations.
Boonprapapan et al. (2022) reported that using the
term frequency-inverse document frequency (TF-IDF)
technique and combining it with cosine similarities can
classify service categories (Boonprapapan et al., 2022).
However, the accuracy of the study was not found to be
adequate for application in real situations due to the SLA
dataset being imbalanced.

 To address the imbalance data classification
problem, numerous studies have widely examined the
issue. Khamphakdee and Seresangtakul (2021) studied
sentiment analysis for the classification of opinions at the
levels of sentences and documents. The article discussed
the use of machine learning (ML) algorithms with data
extraction by dichotomizing the classification of reviews.
The research compared many algorithms. The most
suitable ML for classifying opinion polarities using
datasets was collected from online media. It was based on
the 11 steps of preprocessing and used the Delta TF-IDF,
TF-IDF, N-Gram, and Word2Vec techniques for features
extraction, as well as many ML for the classification of
opinions.
 Chemchem et al. (2019) presented an estimated wheat
yield based on meteorological data, in which the synthetic
minority over-sampling technique (SMOTE) method was
employed to solve the problem of the unbalanced datasets.
The ML process and SMOTE in combination with the

Science, Engineering and Health Studies
https://li01.tci-thaijo.org/index.php/sehs

ISSN (Online): 2630-0087

 Research Article

Service priority classification using machine learning

2

random forest (RF) algorithm yielded the best results. The
supervised learning method was also compared to the
nine-machine learning algorithm and served as an example
of using the imbalance classification framework.
 Sreejith et al. (2020) presented an imbalance
classification framework, which involved a dataset that
could be used to develop a clinical decision support system
(CDSS) that can address similar imbalances. Three datasets
were tested, which were measured using a RF classifier.
The most suitable accuracy (89.04%) was achieved by
employing the PID dataset.
 Intayoad et al. (2018) presented a classification and
grouping of passing or failing students. The educational
(test) data used was both diverse and unbalanced. This
research optimized the accuracy of the classified data using
web data, by conducting comparative experiments on
SMOTE, Borderline-SMOTE1, Borderline-SMOTE2, and
SVM-SMOTE. All of these are balancing methods for the
dataset, which were performed in conjunction with the
classification. This study determined that synthetic
minority over-sampling methods had improved the
detection of minority classes and had also improved
classification performances in precision, recall, and F1-score.
This was a comparison experiment of balancing methods.
 Davagdorj et al. (2020) examined a comparative
technique of ML techniques to solve dataset imbalances
using SMOTE techniques and an adaptive synthetic
(ADASYN). The prediction model and subsequent F1-score
results of the analyses demonstrated that the SMOTE and
ADASYN balancing techniques, which were used in
combination with the gradient of the classifier boosting
trees (GBT), RF, and multilayer perceptron neural network
(MLP), had performed the best.
 The imbalance handling techniques motivated us to
apply the techniques with supervisor classification methods
in ML in order to remedy the effects of imbalances in the
service case priority dataset. Therefore, this paper proposes
a hybrid model to address the data imbalance problem of the
service case priority data set through the combination of
SMOTE, ADASYN, Borderline SMOTE, and Near-Miss for
algorithm balancing with various ML techniques in order to
study their classifying effectiveness. Therefore, the relevant
balancing techniques are first discussed in this article.
 Chawla et al. (2002) introduced SMOTE, a method
employed in data science and ML to tackle the challenge of
class imbalance in classification problems. Class
imbalances arise when the instances of one class
significantly outnumber those of another, potentially
leading to biased or inaccurate predictions by models.
SMOTE effectively addresses this issue by generating
synthetic samples for the minority class. The processes of
SMOTE can be outlined in the following manner:

− Identifying the minority class: SMOTE first identifies the
minority class that needs to be over-sampled to balance
the class distribution.

− Synthetic sample generation: For each instance in the
minority class, SMOTE considers its nearest neighbors
(usually the k-nearest neighbors). Then it randomly
selects one of those neighbors and computes a vector
between the instance and its neighbor. A new, synthetic
sample is created by adding a fraction of this vector to
the original instance. This fraction is multiplied by a

random number between 0 and 1, which allows the
synthetic sample to be a point along the line segment
between the original instance and its selected neighbor.

− Increasing variety: By varying the fraction for each
synthetic sample, SMOTE creates diverse instances rather
than exact copies, which adds more generalization to the
model.

− Balancing the dataset: The process is repeated until the
class distribution has been sufficiently balanced, allowing
the models trained on the dataset to better generalize and
to not be biased towards the majority class.

 The advantage of SMOTE lies in its ability to create new,
proper instances of the minority class instead of merely
duplicating the existing ones, which can cause overfitting.
This approach leads to a more varied and representative
dataset.
 ADASYN is a sampling algorithm proposed by He et al.
(2008). It works similarly to the SMOTE algorithm by
selecting the closest neighbor k adaptively (Brandt and
Lanzén, 2021). The weighted distribution of the minority
samples can be divided by their level of learning difficulty,
in which the synthetic data generates minority samples
that are more difficult to learn. This reduces the learning
bias caused by an unbalanced distribution of data, which
can also shift the decision boundaries to reach a sample
that is difficult to learn (He et al., 2008).
 Borderline-SMOTE represents an improvement from
the original SMOTE method. However, unlike SMOTE,
Borderline-SMOTE creates synthetic instances near its
boundaries, where instances on or near the boundary line
are more likely to be misclassified than those instances
that are further away from the boundaries in classification.
As a result, the classifier's efficiency is enhanced (Wang et
al., 2015). Its performance is similar to the density-based
spatial clustering of applications with noise (DBSCAN).
 Near-Miss, which is a technique for balancing a low-
sampling unbalanced dataset with a balanced class
distribution, randomly eliminates most classes when two
points belonging to different classes are very close. This
algorithm eliminates the data points of larger classes. Of
the sampling techniques, the Near-Miss method is the most
widely used (IIT Kanpur, Prutor Online Academy).

2. MATERIALS AND METHODS

The model sequence for service case priorities, utilizing
comparative ML algorithms in collaboration with SMOTE
before applying an ML method. The first part was
presented the imported dataset and the term frequency-
inverse document frequency (TF-IDF) used for feature
extraction in preprocessing with weighting, which
represents a statistical calculation that determines how
important a word is to a document. The second part
calculated similarity scoring by evaluating the sentence
from word embedding and service case testing, which
consists of five processes: data collection, preprocessing,
feature extraction, ML algorithm, and evaluating the ML
algorithms & analysis (Figure 1).

Boonprapapan, T., et al.

3

Figure 1. The step-by-step overview of similarity measurements using the machine learning technique

 As seen in Figure 1, this research aimed to improve the
efficiency of the classification accuracy of the service case
priorities and to predict the learning performance in ML.
The study was developed within the organization’s service
management system, which aimed at categorizing the
criticality of the service cases in order to meet the
requirements for classification in the aforementioned
study by Boonprapapan et al. (2022). The authors built on
the problem of unbalanced datasets, which resulted in low
accuracy, leading to inaccurate predictions in order of
importance. Our solution to this problem was to manage
and balance the input dataset across all classes, which
consisted of four techniques: SMOTE, ADASYN, Borderline-
SMOTE, and Near-Miss. Further methods were offered for
optimizing ML models with hyperparameter optimization,
which resulted in a model with high accuracy and/or with
a reduction of any loss to the lowest value. Lastly, the

performance of that type of model was compared to
determine the most suitable model for classification.

2.1 Data collection
Datasets were imported from the corporate web service
database in Microsoft Dynamics 365® (2022) to create an
experimental dataset based on real-world data from
within the organization. To easily refer to this, the
collected dataset was named as the service case and
priority (SCP) dataset. This system is capable of providing
access to service data for employees, such as engineers.
The input data is comprised of two main elements: the
service details and the service case priorities, with four
identified priority classes and their corresponding
scores: (1) critical, (2) serious, (3) moderate, and (4) low.
Table 1 shows the number and description of the samples
for each class in the SCP dataset.

Feature

extraction

ML tuning

hyperparameter

Preprocessing

Data
collection

TF-IDF

Evaluating the ML

algorithms & analysis

SMOTE,
ADASYN,

Borderline-SMOTE,
Near-Miss

ML algorithm

ML tuning

hyperparameter

Evaluating the ML

algorithms & analysis

ML algorithm

LR, RD,
PA, DT,
LSVM,

SVM, RF,
MLP

Balancing
technique

Machine learning
algorithm

Service priority classification using machine learning

4

Table 1. The service case

Number Priority Data
numbers

Description

1 Critical 243 There are equipment or system failures, unresponsiveness, or equipment
failures without provisioning a redundant system, which will severely affect the
serviceability. The problem must be fixed and be back in use within four hours.

2 Serious 435 Access to the system is unavailable or there is incomplete operation of the
system, including the inefficiency of the device. Troubleshooting must be
completed within twenty-four hours.

3 Moderate 4,208 There is the occurrence of usability problems with systems or devices that are
not important or have little impact on users and systems, which are not difficult
to fix. The corrective actions must be resolved within three days.

4 Low 1,296 There is incomplete access to the application or there is little impact on the user
because basic advice can be given, and the basic problems can be fixed.
Troubleshooting is usually resolved within five days.

2.2 The preprocessing stages
In the preprocessing stage, also known as data preparation,
feature extraction was employed to transform the service
cases into vectors. This transformation occurred within a
sub-process of the data collection phase. Initially, the data
was imported from the corporate web service as raw data
and was then formatted to meet the requirements of the
TF-IDF feature extraction method. Preprocessing involved
several steps: word segmentation, stop word removal,
text normalization, and the application of the name-entity
recognition techniques. Data preparation entailed
manipulating the data to align with the chosen model for
feature extraction. After this process, the dataset was

prepared for model training in the vector format, as applied
in the researcher's experimental model, which is illustrated
in Figure 1 in the feature extraction selection portion. This
process was detailed by Boonprapapan et al. (2022). The
Python® Package (Python Programming Language, 2022)
and the PyThaiNLP library (PyThaiNLP, 2022) were used for
these tasks. Tables 2 and 3 present the examples of the
preprocessing attributes and the service cases, respectively.
Table 2 provides the explanatory information about the
research-relevant variables, such as the service cases and
priority cases, while Table 3 describes the examples of the
service cases and their associated priority levels used in the
research

Table 2. Examples of the data preprocessing attributes

Number Attributes Descriptions
1 Service cases Service cases arise from service tasks between the organization and the customer: "The

building network device is unavailable."
2 Priority cases Service case priorities are defined by the service level agreements: critical, serious, moderate,

and low.

Table 3. Examples of data preprocessing in the service cases

Number Service cases Priority
1 ปุ่มกดถ่ายทอดสดสูญหายจากโปรแกรม Teams ของผูใ้ชง้าน

(The live event button disappears from Teams client.)
1 (Critical)

2 รายงานผูใ้ชง้านจากภายนอกไม่สามารถส่งออกอเีมลไปยงัผูใ้ชง้าน

(The user report from external cannot send mail to the user.)
2 (Serious)

3 เขยีนสครปิต์ยา้ยนักศกึษาทีจ่บการศกึษาไปเป็น Alumni และลบ Account บุคลากรทีล่าออก
(Write a script to transfer the graduating students to alumni, and then delete the
resigned personnel account.)

3 (Moderate)

4 ยา้ย VM จากโปรแกรม Hyper-V ไปยงัเครื่อง AHV Nutanix
(Move VM from Hyper-V to AHV Nutanix.)

4 (Low)

2.3 Feature extraction
At this point, ML methods were utilized to extract the
existing features by transforming the data into a format
that could be utilized, thereby reducing the data size of the
model. In other words, a service case dataset is a vector-
based dataset requiring technical processing methods.
This is used to understand the context of the term
frequency and inverse document frequency text to find the
relevant content. The keywords in the sentences by the

service case can be converted to numbers to better
understand the relationship between them (Khamphakdee
and Seresangtakul, 2021). Feature extraction through the
employment of the TF-IDF technique was applied due to
the superior performance results achieved when it is used
with the SVM technique.
 Feature extraction conducted herein was comprised
of two equations. Equation 1 was used to calculate the
word frequency of the service case by measuring

Boonprapapan, T., et al.

5

the word frequency w in document d. Word frequency
serves as a measure of the word occurrences in a
document in contrast to the total number of words found
in a document.
 In the next step, Equation 2, the IDF variable was used
to define the importance of a word. The inverse document
frequency of the word w is defined as the total number of
documents (N) in the text corpus D divided by the number
of documents containing w, as follows:
 From the above equations, the TF and IDF can be
multiplied to get the TF-IDF weight for that term. A high
TF-IDF describes a term with high frequency in the
computed documents, yet a lower frequency in other
documents. Furthermore, calculating the TF-IDF weight
helps to filter out common terms, enabling only the
essential words in each document.

2.4 Experimental setup
To generate the training data, a random sequencing
function from SQL Server® (Transact-SQL) (Microsoft,
2019) was employed, which produced either a random
number or a number within a specified range. An example
of this data collection is presented in Table 3. The raw
materials used for conducting the research consisted of
Visual Studio Code, Jupyter Notebook, Anaconda,
Microsoft SQL Server, and a laptop with a 12th Gen
Intel(R) i5-1235U processor (1.30 GHz), 16.0 GB RAM,
and a 64-bit Windows 10 Enterprise operating system.
The experiments were set up based on the K-Fold cross-
validation approach to split a dataset into parts in order
to verify the model’s validity, in which k=10. This
process allowed us to avoid overfitting in a predictive
model, especially by limiting the data.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑

 (1)

 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑁𝑁)𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐷𝐷

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤
 (2)

3. EXPERIMENTS AND EVALUATION

3.1 Evaluation metrics
This research conducted performance evaluations of the
most frequently used ML approaches; such as the support
vector machine, decision tree classifier, RF classifier, multi-
layer perceptron classifier, logistic regression classifier,
passive-aggressive classifier, ridge regression classifier,
and the linear support vector classifier. This research
utilized three evaluation metrics (Hripcsak and Rothschild,
2005): F1-score, precision, and recall to evaluate the
classification performance of the comparative models for
the SCP dataset. The F1-score, Precession, and Recall were
computed as follows:

 F1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (3)

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4)

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (5)

where: TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives (Chemchem and Drias,
2015).
 The results indicated that the accuracy caused by the
recall value had been low (<0.5). In contrast, most of the
precision values had been high (Table 4). The recall
values affirmed that if the input data had been unbalanced,
the classification of most datasets was found to be
problematic, given a value of less than 0.5, which indicated
a higher FN value. Conversely, both the TP and FP values
had been low. When the precision was high, this effect was
inefficient, which designated a low FP. Our experiments,
therefore, investigated techniques in which problems can
be solved in those instances, in which the precision was
high, and the recall was low, as seen in the Venn diagram
of recall and the high precision values (Klintberg, 2017).
The recommended preprocessing steps were performed
on the unbalanced dataset to evaluate the performance of
the dataset with the various ML models: SVM; DT; RF; MLP;

LR; PA; RR; and LSVM methods (Figure 1). An experiment
employing the TF-IDF method in combination with cosine
similarity showed that the efficacy evaluation of the model
had been low. The experiment was, therefore, redesigned
using the original dataset (Figure 1), consisting of the
service and priority cases (Table 4), which encompassed
the original data set, as well as an adaptation of the original
rebalanced data set.
 F1-scores, as well as precision and recall, were used to
evaluate the performance of each model. As shown in Table
4, the recall was found to have had a low efficiency in the first
part of the performance evaluation. It is a metric that
quantifies the correct number of positive predictions out of
all the possible positive predictions, as opposed to that of the
precision value. In this way, recall provides some concepts
that are related to positive class coverage and is also used to
measure the coverage performance of the minority class
within the unbalanced datasets. Therefore, it may be
concluded that the problems created from the experiment
results of the first part had been caused by the unbalanced
dataset affecting the evaluation of the performance of
various models measured as the recall value. Within the
second part of the process, the researcher added the
following balancing techniques to the experiment: SMOTE,
ADASYN, Borderline-SMOTE, and Near-Miss.
 Recall measures positive predictions by building on
all the positive samples of the dataset (Mohajon, 2020).
The values of low recall and high precision values that
were displayed showed that the error of the positive
sample had been high, or the FN had been high. Yet, the
predicted examples had been positive, truly positive (low
FP). In this paper, the focus was on enhancing the
classifier in order to achieve a high recall value. A high
recall value implies that there are fewer false negative
cases, which, in turn, enhances the service quality of
those corporations that utilize this application.

3.2 Hyperparameter tuning
The objective of hyperparameter tuning is to find the
parameters with the highest model performance and the
lowest error rates. Hyperparameter optimization is a

Service priority classification using machine learning

6

model characteristic that is defined by constants, which
describe the process of setting variables before learning
or testing the data in order to obtain the best value for the
model. Methods were used such as GridSearchCV, which is
a customized hyperparameter tuning approach that strives
to obtain the most suitable variables for the desired model.

As a built-in function, there is the scikit-learn® package
(scikit-learn, GridSearchCV). The trial hyperparameter
tuning, which utilized different methods during model
development, helped to improve model performance. The
most important hyperparameters, which were discovered
for the ML algorithms, are depicted in Table 4.

Table 4. The tuning of the hyperparameters

Models Parameters

Support vector machine (SVM) kernel = rbf, c = 50, gamma = scale
Random forest (RF) n_estimators = 1,000, max_features = log2,

min_samples_split = 2, min_samples_leaf = 1
Multi-layer perceptron (MLP) solver = lbfgs, learning_rate = constant, activation = tanh
Logistic regression (LR) c = 100, max_iter = 100, tol = 1e-4
Passive aggressive (PA) c = 0.1, tol = 1e-3, max_iter=1,000
Linear support vector machine (LSVM) c=10, penalty='l2'
Ridge regression (RR) alpha=0.5, tol=1e-3
Decision tree (DT) criterion = entropy, max_features = log2, max_depth = 100

3.3 Evaluating the classifier performance on an
unbalanced SCP dataset: A comparative analysis
of ML algorithms
To assess the impact of training various classifiers with
an SCP dataset characterized by unbalanced properties,
Table 5 presents the precision, recall, and F1-scores
for eight ML algorithms: SVM, RF, MLP, LR, PA, LSVM,
RR, and DT. The findings indicated that using an
unbalanced dataset without hyperparameter tuning had
resulted in the highest accuracy for RF, followed by SVM,
setting them up with 10-fold cross-validation. However,
these results revealed that the performance metrics of

all eight methods had remained low, rendering them
unsuitable for practical applications.
 Additionally, the aim was to explore the classification
performance of each class in SVM, when specifically
trained using input data without preprocessing by
imbalance techniques. Table 6 displays the low recall
values for Class 1, Class 2, and Class 4. In contrast, Class
3 demonstrated a high recall value. This discrepancy
was attributed to the initial dataset used for the
experiment, which contained a large number of
instances in Class 3, leading to higher recall accuracy for
that class.

Table 5. Predicting the comparison of the machine learning algorithms for testing the unbalanced samples

Models Term frequency – inverse document frequency

Precision Recall F1-scores Accuracies

SVM 0.756 0.333 0.353 0.710
RF 0.648 0.361 0.391 0.715
MLP 0.519 0.319 0.329 0.697
LR 0.675 0.331 0.348 0.702
PA 0.494 0.378 0.404 0.661
LSVM 0.542 0.315 0.321 0.697
RR 0.464 0.386 0.409 0.667
DT 0.541 0.273 0.251 0.682

Table 6. A comparison of the average confusion matrix values, categorized by service case classes, using the SVM algorithm
without imbalance handling on the unbalanced test samples

Classes Precision Recall F1-scores Support

1 0.95 0.17 0.29 243
2 0.67 0.01 0.03 435
3 0.71 0.98 0.82 4,208
4 0.69 0.17 0.27 1,296

Boonprapapan, T., et al.

7

 Table 6 displays the confusion matrix results for the
SVM algorithm. These results show that the prediction
accuracy had been the highest for Class 3, with the
accuracy having been significantly influenced by the
distribution of the data across classes. For instance, Class 1
(as seen in Table 6) had shown an exceptionally low recall
value of 0.17. This implied that, in those instances, in which
the actual class was Class 1, the model correctly predicted
only 17% of these cases. Specifically, out of the 243
instances, in which the true class was Class 1, the model
had accurately predicted only 42 cases and had incorrectly
predicted 201 cases. Such findings indicated a markedly
low prediction accuracy for instances, in Class 1.
 Additionally, the unbalanced nature of the ML test
dataset is referenced in Table 7. With the results, ML
calculated the highest dataset and probability of
prediction in Class 3. The first recall value, which was

0.17, had been the result of the ML algorithm's ability to
correctly predict the critical class out of 42 from a total of
243 classes. However, 201 were predicted incorrectly.
The second recall value for Class 2 was 0.01, which had
been derived from the correct ML prediction of six
serious cases out of 435 classes, but 429 were incorrectly
predicted. The third recall value, 0.98, had resulted
from the correct prediction of 4,125 out of 4,206
moderate classes, with 81 being incorrectly predicted.
The last recall value for Class 4 had been 0.17, which
resulted from the ML's correct prediction of 215
low classes out of 1,296 classes, in which 1,081 were
incorrectly predicted. The results described above
showed that the model had predicted the answers for
Class 3 (moderate), which indicated that the dataset used
for training the model had been unbalanced for all
classes.

Table 7. Predictions of the service case numbers divided by class using SVM without balancing techniques: demonstrating
the impact on class-specific recall

 Service case labels (actual)
Critical (1) Serious (2) Moderate (3) Low (4) Totals

Machine
output
(predicted)

1 42 0 194 7 243
2 0 6 419 10 435
3 2 3 4,125 78 4,208
4 0 0 1,081 215 1,296

Total 6,182

 Table 7 displays the confusion matrix results for the
SVM algorithm. These results showed that that the
prediction accuracy had been the highest for Class 3, with
the accuracy having been significantly influenced by the
distribution of the data across classes. For instance, Class
1 had an exceptionally low recall value of 0.17. This
implied that in actual Class 1 instances, the model had
correctly predicted only 17% of these cases. Specifically,
out of 243 instances in which the true class was Class 1,
the model had accurately predicted only 17 cases and

incorrectly predicted 226 cases. Such findings indicated
a markedly low prediction accuracy for those instances,
in which the actual class had been Class 1.
 The results, after addressing the imbalance issue of the
dataset using the SMOTE technique in combination with
the SVM algorithm, are shown in Table 8. They reveal
that the precision, recall, and F1-scores had significantly
improved compared to in Table 6. It was evident that using
imbalance handling techniques had had a positive impact
on the accuracy of the predictions in each class.

Table 8. Average of confusion metrics of the SVM algorithm with imbalanced handling for testing samples

Classes Precision Recall F1-scores Support
1 0.97 0.99 0.98 4,208
2 0.97 0.97 0.97 4,208
3 0.93 0.89 0.91 4,208
4 0.90 0.93 0.91 4,208

 From the prediction results in each class after
addressing the imbalance issue as shown in Table 9, the
accuracy measurements of the SVM algorithm were
presented in the form of a confusion matrix, which was
influenced by the number of instances in each class.
Specifically, according to Table 7, Class 1 (critical) had had
a total of 243 service cases, with predictions of 42 for Class
1 (critical), 0 for Class 2 (serious), 194 for Class 3
(moderate), and 7 for Class 4 (low). This indicated that the
predictions had shown an accuracy of 42 out of 243.
Furthermore, based on the results from Table 9, Class 1
(critical) had had a total of 4,290 service cases, with

predictions of 4,160 for Class 1 (critical), 47 for Class 2
(serious), 60 for Class 3 (moderate), and 23 for Class 4
(low). This indicated that the predictions had shown an
accuracy of 4,160 out of 4,290. Therefore, by addressing
the imbalance issue of the dataset, the accuracy of the
predictions for each class had been improved.
 Based on the number of instances of each class from
averaging across all 10 folds, a comparison can be seen of
the average without balancing (Figure 2) and with
balancing (Figure 3). It was found that the prediction
results for each class had increased when adjusted for
balance.

Service priority classification using machine learning

8

Table 9. The accuracy measurements of the SVM algorithm, as indicated by the confusion matrix, were influenced by the
number of instances in each class

 Service case labels (actual)
Critical (1) Serious (2) Moderate (3) Low (4) Totals

Machine
output
(predicted)

1 4,160 20 4 24 4,208
2 47 4,067 11 83 4,208
3 60 74 3,758 316 4,208
4 23 36 249 3,900 4,208

Total 16,832

Figure 2. The average for each class of the SVM algorithm without balancing

Figure 3. The average for each class of the SVM algorithm with balancing

3.4 The effectiveness of the oversampling
techniques on the imbalanced data:
A comparative study using ML models
To evaluate the effectiveness of classification using
various techniques for handling the imbalanced data,
the findings indicated that using a balanced dataset
without hyperparameter tuning had resulted in the highest

accuracy for SVM, followed by balancing techniques. In the
preprocessing step, the dataset was oversampled by creating
synthetic samples with methods, such as SMOTE, Borderline
SMOTE, ADASYN, and Near-Miss. Subsequently, the models
were trained using various ML methods by setting them up
with 10-fold cross-validation. The experimental results of
this process are presented in Table 10.

Boonprapapan, T., et al.

9

Table 10. The accuracy measurements of various ML models that were preprocessed using the balancing techniques

Models SMOTE Borderline SMOTE ADASYN Near-Miss
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

SVM 0.918 0.918 0.918 0.905 0.905 0.908 0.913 0.913 0.913 0.633 0.630 0.630
RF 0.900 0.893 0.893 0.913 0.903 0.905 0.898 0.893 0.893 0.570 0.568 0.558
MLP 0.900 0.895 0.893 0.888 0.880 0.878 0.900 0.898 0.895 0.460 0.463 0.463
LR 0.868 0.865 0.865 0.858 0.858 0.855 0.855 0.853 0.850 0.495 0.495 0.493
PA 0.850 0.850 0.850 0.850 0.850 0.845 0.865 0.868 0.865 0.455 0.458 0.455
LSVM 0.873 0.868 0.863 0.873 0.870 0.868 0.868 0.865 0.860 0.500 0.503 0.498
RR 0.868 0.860 0.855 0.855 0.853 0.848 0.855 0.850 0.845 0.485 0.490 0.483
DT 0.833 0.828 0.828 0.850 0.845 0.845 0.828 0.825 0.823 0.503 0.520 0.520

 The comparison of different balancing techniques
showed that in our experiment, integrating SMOTE
with the SVM model had produced the most favorable
outcomes. This combination achieved a high precision
of 0.918 and improved accuracy. To attain a data
balance, the SMOTE algorithm was employed as a
preprocessing step, in conjunction with the TF-IDF
processing method.
 After applying hyperparameter tuning through
GridSearchCV, the performance of various ML algorithms
were trained on the SCP dataset, which had undergone
preprocessing with imbalance handling techniques, such

as SMOTE, ADASYN, Borderline-SMOTE, and Near-Miss.
The findings, which are illustrated in Table 11,
highlighted the fact that the SVM combined with SMOTE
had achieved the most effective results, attaining the
highest score of 0.994 across all metrics, particularly
in the F1-score. This high F1-score suggested the
remarkable ability of the model to accurately classify,
while also maintaining minimal false error rates. Such an
approach was proven to be highly effective in addressing
the imbalance issue prevalent in the service priority
dataset, thereby ensuring the accuracy and relevance of
its importance classification.

Table 11. The accuracy measurements for the machine learning algorithm after applying hyperparameter tuning through
GridSearchCV

Models Term frequency – inverse document frequency
Synthetic minority oversampling technique
Precision Recall F1-scores Accuracies

SVM 0.944 0.944 0.944 0.944
RF 0.926 0.923 0.924 0.923
MLP 0.912 0.911 0.909 0.913
LR 0.891 0.890 0.887 0.890
PA 0.878 0.875 0.871 0.879
LSVM 0.879 0.877 0.872 0.877
RR 0.863 0.859 0.854 0.859
DT 0.826 0.828 0.827 0.826

4. CONCLUSION

Our experimental model followed six essential steps:
preprocessing, feature extraction, the SMOTE application,
hyperparameter tuning, ML algorithm implementation
(including SVM, DT, RF, MLP, LR, PA, RR, and LSVM),
and algorithm evaluation. To understand service case
frequency, service case datasets were used via analyzing
word weight frequencies. This helped to assess the
impact of the unbalanced datasets, which can often lead
to lower performance outcomes.
 To combat dataset imbalance, SMOTE was applied,
facilitating a comparison between the balanced and
unbalanced data via hyperparameter tuning. Eight ML
algorithms were evaluated with a focus on identifying the
most effective classifier, using the confusion matrix
for performance assessment. This research primarily
targeted service case classification, examining various
learning methods across these algorithms. The SVM had

achieved the highest classification accuracy of 0.944,
addressing the key challenge of the imbalanced data
distribution due to employee service assessments.
 The SVM-SMOTE combination emerged as the most
effective method. Looking ahead, there are plans to
broaden our experiments to include diverse datasets and
to explore advanced feature extraction techniques like
Delta-TFIDF. The goals are to refine our model for
prioritizing a wider range of datasets and to enhance its
capacity for proposing solutions to complex service cases.
This research aimed at boosting operational efficiency and
effectiveness in the organizational and employee contexts.

ACKNOWLEDGMENT

The Department of Computer Science, College of
Computing, Khon Kaen University, Thailand, supported
all research-related operations.

Service priority classification using machine learning

10

REFERENCES

Boonprapapan, T., Horata, P., and Seresangtakul, P. (2022).

Incident task sequence for service priority using cosine
similarity. In Proceedings of the 1st International
Conference on Technology Innovation and Its Applications
(ICTIIA), pp. 87–92. Tangerang, Indonesia.

Brandt, J., and Lanzén, E. (2021). A comparative review of
SMOTE and ADASYN in imbalanced data classification.
Bachelor Degree. Uppsala Universitet, Sweden.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W.
P. (2002). SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research, 16,
321–357.

Chemchem, A., Alin, F., and Krajecki, M. (2019). Combining
SMOTE sampling and machine learning for forecasting
wheat yields in France. In Proceedings of the IEEE
Second International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), pp. 9–
14. Sardinia, Italy.

Chemchem, A., and Drias, H. (2015). From data mining to
knowledge mining: Application to intelligent agents.
Expert Systems with Applications, 42(3), 1436–1445.

Davagdorj, K., Lee, J. S., Pham, V. H., and Ryu, K. H. (2020). A
comparative analysis of machine learning methods for
class imbalance in a smoking cessation intervention.
Applied Sciences, 10(9), 3307.

Dynamics 365. (2022). What is dynamics 365? [Online URL:
https://dynamics.microsoft.com/th-th/what-is-dyna
mics365/] accessed on July 24, 2022.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). ADASYN:
Adaptive synthetic sampling approach for imbalanced
learning. In Proceedings of the IEEE International Joint
Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pp. 1322–1328. Hong Kong.

Hripcsak, G., and Rothschild, A. S. (2005). Agreement, the
f-measure, and reliability in information retrieval.
Journal of the American Medical Informatics Association,
12(3), 296–298.

Intayoad, W., Kamyod, C., and Temdee, P. (2018). Synthetic
minority over-sampling for improving imbalanced data
in educational web usage mining. ECTI Transactions on
Computer and Information Technology, 12(2), 118–129.

Khamphakdee, N., and Seresangtakul, P. (2021). Sentiment
analysis for Thai language in hotel domain using machine
learning algorithms. Acta Informatica Pragensia, 10(2),
155–171.

Klintberg, A. (2017). Explaining precision and recall. Medium.
[Online URL: https://medium.com/@klintcho/explain
ing-precision-and-recall-c770eb9c69e9] accessed on
July 24, 2022.

Microsoft. (2019). Microsoft SQL Server. [Online URL:
https://www.microsoft.com/en-gb/sql-server/sql-
server-2019] accessed on July 24, 2022.

Mohajon, J. (2020). Confusion matrix for your multi-class
machine learning model. Medium. [Online URL:
https://towardsdatascience.com/confusion-matrix-for-
your-multi-class-machine-learning-model-ff9aa3bf7826]
accessed on July 24, 2023.

PyThaiNLP. (2022). PyThaiNLP Library. [Online URL:
https://pythainlp.org/] accessed on July 24, 2022.

Python Programming Language. (2022). Python. [Online
URL: https://www.python.org] accessed on July 24,
2022.

scikit-learn. (2022). GridSearchCV. [Online URL: https://scikit-
learn.org/stable/modules/generated/sklearn.model_se
lection.GridSearchCV.html] accessed on July 24, 2022.

Sreejith, S., Nehemiah, H. K., and Kannan, A. (2020). Clinical
data classification using an enhanced SMOTE and
chaotic evolutionary feature selection. Computers in
Biology and Medicine, 126, 103991.

Wang, K.-J., Adrian, A. M., Chen, K.-H., and Wang, K.-M.
(2015). A hybrid classifier combining Borderline-SMOTE
with AIRS algorithm for estimating brain metastasis
from lung cancer: A case study in Taiwan. Computer
Methods and Programs in Biomedicine, 119(2), 63–76.

