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ABSTRACT 
 
This article details a procedure for classifying service cases with various priority 
levels based on machine learning (ML). It accurately defines the priority level of 
each service case. The presence of imbalanced datasets in service cases poses 
a challenge for achieving reliable classification accuracy. To address this, the use 
of the synthetic minority over-sampling technique (SMOTE) was proposed as the 
method for balancing the datasets prior to applying the ML method. From these 
experimental results, an improvement in the precision of the learning process was 
observed, which led to better outcomes in the test sets. This improvement was 
measured using the efficiency metrics from the confusion matrix. The experiment 
involved 6,182 service cases, categorized into four levels: critical, serious, 
moderate, and low. These were based on test comparisons with other ML 
methods. The accuracy achieved in the test data was 94.37%. By employing a 
hybrid technique to address the imbalance in SMOTE and the support vector 
machine model, it was found to be more effective than the comparative term 
frequency-inverse document frequency model that was used in conjunction with 
cosine similarity, which achieved an evaluation score of 70.14%. 
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1. INTRODUCTION                                    
 
The classification analysis for service delivery is grounded 
in service level agreements (SLAs). Numerous businesses 
and organizations utilize SLA-based techniques to improve 
service delivery and the efficiency of their employees by 
categorizing services, which are typically described in 
textual form. The service categories within the SLA dataset 
are divided into four levels: critical, serious, moderate,  
and low. The accurate classification of the service types 
within the SLA dataset is crucial in order to ensure  
the appropriate delivery of services by organizations. 
Boonprapapan et al. (2022) reported that using the  
term frequency-inverse document frequency (TF-IDF) 
technique and combining it with cosine similarities can 
classify service categories (Boonprapapan et al., 2022). 
However, the accuracy of the study was not found to be 
adequate for application in real situations due to the SLA 
dataset being imbalanced. 

       To address the imbalance data classification 
problem, numerous studies have widely examined the 
issue.  Khamphakdee and Seresangtakul (2021) studied 
sentiment analysis for the classification of opinions at the 
levels of sentences and documents. The article discussed 
the use of machine learning (ML) algorithms with data 
extraction by dichotomizing the classification of reviews. 
The research compared many algorithms. The most 
suitable ML for classifying opinion polarities using 
datasets was collected from online media. It was based on 
the 11 steps of preprocessing and used the Delta TF-IDF, 
TF-IDF, N-Gram, and Word2Vec techniques for features 
extraction, as well as many ML for the classification of 
opinions. 
       Chemchem et al. (2019) presented an estimated wheat 
yield based on meteorological data, in which the synthetic 
minority over-sampling technique (SMOTE) method was 
employed to solve the problem of the unbalanced datasets. 
The ML process and SMOTE in combination with the 
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random forest (RF) algorithm yielded the best results. The 
supervised learning method was also compared to the 
nine-machine learning algorithm and served as an example 
of using the imbalance classification framework. 
       Sreejith et al. (2020) presented an imbalance 
classification framework, which involved a dataset that 
could be used to develop a clinical decision support system 
(CDSS) that can address similar imbalances. Three datasets 
were tested, which were measured using a RF classifier. 
The most suitable accuracy (89.04%) was achieved by 
employing the PID dataset. 
       Intayoad et al. (2018) presented a classification and 
grouping of passing or failing students. The educational 
(test) data used was both diverse and unbalanced. This 
research optimized the accuracy of the classified data using 
web data, by conducting comparative experiments on 
SMOTE, Borderline-SMOTE1, Borderline-SMOTE2, and 
SVM-SMOTE. All of these are balancing methods for the 
dataset, which were performed in conjunction with the 
classification. This study determined that synthetic 
minority over-sampling methods had improved the 
detection of minority classes and had also improved 
classification performances in precision, recall, and F1-score. 
This was a comparison experiment of balancing methods. 
       Davagdorj et al. (2020) examined a comparative 
technique of ML techniques to solve dataset imbalances 
using SMOTE techniques and an adaptive synthetic 
(ADASYN). The prediction model and subsequent F1-score 
results of the analyses demonstrated that the SMOTE and 
ADASYN balancing techniques, which were used in 
combination with the gradient of the classifier boosting 
trees (GBT), RF, and multilayer perceptron neural network 
(MLP), had performed the best. 
       The imbalance handling techniques motivated us to 
apply the techniques with supervisor classification methods 
in ML in order to remedy the effects of imbalances in the 
service case priority dataset. Therefore, this paper proposes 
a hybrid model to address the data imbalance problem of the 
service case priority data set through the combination of 
SMOTE, ADASYN, Borderline SMOTE, and Near-Miss for 
algorithm balancing with various ML techniques in order to 
study their classifying effectiveness. Therefore, the relevant 
balancing techniques are first discussed in this article. 
       Chawla et al. (2002) introduced SMOTE, a method 
employed in data science and ML to tackle the challenge of 
class imbalance in classification problems. Class 
imbalances arise when the instances of one class 
significantly outnumber those of another, potentially 
leading to biased or inaccurate predictions by models. 
SMOTE effectively addresses this issue by generating 
synthetic samples for the minority class. The processes of 
SMOTE can be outlined in the following manner: 

− Identifying the minority class: SMOTE first identifies the 
minority class that needs to be over-sampled to balance 
the class distribution. 

− Synthetic sample generation: For each instance in the 
minority class, SMOTE considers its nearest neighbors 
(usually the k-nearest neighbors). Then it randomly 
selects one of those neighbors and computes a vector 
between the instance and its neighbor. A new, synthetic 
sample is created by adding a fraction of this vector to 
the original instance. This fraction is multiplied by a 

random number between 0 and 1, which allows the 
synthetic sample to be a point along the line segment 
between the original instance and its selected neighbor. 

− Increasing variety: By varying the fraction for each 
synthetic sample, SMOTE creates diverse instances rather 
than exact copies, which adds more generalization to the 
model. 

− Balancing the dataset: The process is repeated until the 
class distribution has been sufficiently balanced, allowing 
the models trained on the dataset to better generalize and 
to not be biased towards the majority class. 

       The advantage of SMOTE lies in its ability to create new, 
proper instances of the minority class instead of merely 
duplicating the existing ones, which can cause overfitting. 
This approach leads to a more varied and representative 
dataset. 
       ADASYN is a sampling algorithm proposed by He et al. 
(2008). It works similarly to the SMOTE algorithm by 
selecting the closest neighbor k adaptively (Brandt and 
Lanzén, 2021). The weighted distribution of the minority 
samples can be divided by their level of learning difficulty, 
in which the synthetic data generates minority samples 
that are more difficult to learn.  This reduces the learning 
bias caused by an unbalanced distribution of data, which 
can also shift the decision boundaries to reach a sample 
that is difficult to learn (He et al., 2008). 
       Borderline-SMOTE represents an improvement from 
the original SMOTE method. However, unlike SMOTE, 
Borderline-SMOTE creates synthetic instances near its 
boundaries, where instances on or near the boundary line 
are more likely to be misclassified than those instances 
that are further away from the boundaries in classification. 
As a result, the classifier's efficiency is enhanced (Wang et 
al., 2015). Its performance is similar to the density-based 
spatial clustering of applications with noise (DBSCAN). 
       Near-Miss, which is a technique for balancing a low-
sampling unbalanced dataset with a balanced class 
distribution, randomly eliminates most classes when two 
points belonging to different classes are very close. This 
algorithm eliminates the data points of larger classes. Of 
the sampling techniques, the Near-Miss method is the most 
widely used (IIT Kanpur, Prutor Online Academy). 
 
 
2. MATERIALS AND METHODS    
 
The model sequence for service case priorities, utilizing 
comparative ML algorithms in collaboration with SMOTE 
before applying an ML method. The first part was 
presented the imported dataset and the term frequency-
inverse document frequency (TF-IDF) used for feature 
extraction in preprocessing with weighting, which 
represents a statistical calculation that determines how 
important a word is to a document. The second part 
calculated similarity scoring by evaluating the sentence 
from word embedding and service case testing, which 
consists of five processes: data collection, preprocessing, 
feature extraction, ML algorithm, and evaluating the ML 
algorithms & analysis (Figure 1).
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Figure 1. The step-by-step overview of similarity measurements using the machine learning technique 

 
       As seen in Figure 1, this research aimed to improve the 
efficiency of the classification accuracy of the service case 
priorities and to predict the learning performance in ML. 
The study was developed within the organization’s service 
management system, which aimed at categorizing the 
criticality of the service cases in order to meet the 
requirements for classification in the aforementioned 
study by Boonprapapan et al. (2022).  The authors built on 
the problem of unbalanced datasets, which resulted in low 
accuracy, leading to inaccurate predictions in order of 
importance. Our solution to this problem was to manage 
and balance the input dataset across all classes, which 
consisted of four techniques: SMOTE, ADASYN, Borderline-
SMOTE, and Near-Miss. Further methods were offered for 
optimizing ML models with hyperparameter optimization, 
which resulted in a model with high accuracy and/or with 
a reduction of any loss to the lowest value. Lastly, the 

performance of that type of model was compared to 
determine the most suitable model for classification. 
 
2.1 Data collection 
Datasets were imported from the corporate web service 
database in Microsoft Dynamics 365® (2022) to create an 
experimental dataset based on real-world data from 
within the organization. To easily refer to this, the 
collected dataset was named as the service case and 
priority (SCP) dataset. This system is capable of providing 
access to service data for employees, such as engineers. 
The input data is comprised of two main elements: the 
service details and the service case priorities, with four 
identified priority classes and their corresponding 
scores: (1) critical, (2) serious, (3) moderate, and (4) low. 
Table 1 shows the number and description of the samples 
for each class in the SCP dataset.
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Table 1. The service case 
 

Number Priority Data 
numbers  

Description 

1 Critical 243 There are equipment or system failures, unresponsiveness, or equipment 
failures without provisioning a redundant system, which will severely affect the 
serviceability. The problem must be fixed and be back in use within four hours. 

2 Serious 435 Access to the system is unavailable or there is incomplete operation of the 
system, including the inefficiency of the device. Troubleshooting must be 
completed within twenty-four hours. 

3 Moderate 4,208 There is the occurrence of usability problems with systems or devices that are 
not important or have little impact on users and systems, which are not difficult 
to fix. The corrective actions must be resolved within three days. 

4 Low 1,296 There is incomplete access to the application or there is little impact on the user 
because basic advice can be given, and the basic problems can be fixed. 
Troubleshooting is usually resolved within five days. 

 
2.2 The preprocessing stages 
In the preprocessing stage, also known as data preparation, 
feature extraction was employed to transform the service 
cases into vectors. This transformation occurred within a 
sub-process of the data collection phase. Initially, the data 
was imported from the corporate web service as raw data 
and was then formatted to meet the requirements of the  
TF-IDF feature extraction method. Preprocessing involved 
several steps: word segmentation, stop word removal,  
text normalization, and the application of the name-entity 
recognition techniques. Data preparation entailed 
manipulating the data to align with the chosen model for 
feature extraction. After this process, the dataset was  
 

prepared for model training in the vector format, as applied 
in the researcher's experimental model, which is illustrated 
in Figure 1 in the feature extraction selection portion. This 
process was detailed by Boonprapapan et al. (2022). The 
Python® Package (Python Programming Language, 2022) 
and the PyThaiNLP library (PyThaiNLP, 2022) were used for 
these tasks. Tables 2 and 3 present the examples of the 
preprocessing attributes and the service cases, respectively. 
Table 2 provides the explanatory information about the 
research-relevant variables, such as the service cases and 
priority cases, while Table 3 describes the examples of the 
service cases and their associated priority levels used in the 
research

Table 2. Examples of the data preprocessing attributes 
 

Number Attributes Descriptions 
1 Service cases Service cases arise from service tasks between the organization and the customer: "The 

building network device is unavailable." 
2 Priority cases Service case priorities are defined by the service level agreements: critical, serious, moderate, 

and low. 
 

Table 3. Examples of data preprocessing in the service cases 
 

Number Service cases Priority 
1 ปุ่มกดถ่ายทอดสดสูญหายจากโปรแกรม Teams ของผูใ้ชง้าน 

(The live event button disappears from Teams client.) 
1 (Critical) 

2 รายงานผูใ้ชง้านจากภายนอกไม่สามารถส่งออกอเีมลไปยงัผูใ้ชง้าน 

(The user report from external cannot send mail to the user.) 
2 (Serious) 

3 เขยีนสครปิต์ยา้ยนักศกึษาทีจ่บการศกึษาไปเป็น Alumni และลบ Account บุคลากรทีล่าออก 
(Write a script to transfer the graduating students to alumni, and then delete the 
resigned personnel account.) 

3 (Moderate) 

4 ยา้ย VM จากโปรแกรม Hyper-V ไปยงัเครื่อง AHV Nutanix 
(Move VM from Hyper-V to AHV Nutanix.) 

4 (Low) 

 
2.3 Feature extraction 
At this point, ML methods were utilized to extract the 
existing features by transforming the data into a format 
that could be utilized, thereby reducing the data size of the 
model. In other words, a service case dataset is a vector-
based dataset requiring technical processing methods. 
This is used to understand the context of the term 
frequency and inverse document frequency text to find the 
relevant content. The keywords in the sentences by the 

service case can be converted to numbers to better 
understand the relationship between them (Khamphakdee 
and Seresangtakul, 2021). Feature extraction through the 
employment of the TF-IDF technique was applied due to 
the superior performance results achieved when it is used 
with the SVM technique. 
       Feature extraction conducted herein was comprised  
of two equations. Equation 1 was used to calculate the  
word frequency of the service case by measuring  



Boonprapapan, T., et al.  

   
5 

the word frequency w in document d. Word frequency 
serves as a measure of the word occurrences in a 
document in contrast to the total number of words found 
in a document. 
       In the next step, Equation 2, the IDF variable was used 
to define the importance of a word. The inverse document 
frequency of the word w is defined as the total number of 
documents (N) in the text corpus D divided by the number 
of documents containing w, as follows: 
       From the above equations, the TF and IDF can be 
multiplied to get the TF-IDF weight for that term. A high 
TF-IDF describes a term with high frequency in the 
computed documents, yet a lower frequency in other 
documents. Furthermore, calculating the TF-IDF weight 
helps to filter out common terms, enabling only the 
essential words in each document.  
 

2.4 Experimental setup 
To generate the training data, a random sequencing 
function from SQL Server® (Transact-SQL) (Microsoft, 
2019) was employed, which produced either a random 
number or a number within a specified range. An example 
of this data collection is presented in Table 3. The raw 
materials used for conducting the research consisted of 
Visual Studio Code, Jupyter Notebook, Anaconda, 
Microsoft SQL Server, and a laptop with a 12th Gen 
Intel(R) i5-1235U processor (1.30 GHz), 16.0 GB RAM, 
and a 64-bit Windows 10 Enterprise operating system.  
The experiments were set up based on the K-Fold cross-
validation approach to split a dataset into parts in order 
to verify the model’s validity, in which k=10. This 
process allowed us to avoid overfitting in a predictive 
model, especially by limiting the data.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑

 (1) 
 
 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑁𝑁)𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐷𝐷

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤
 (2) 

 
 
3. EXPERIMENTS AND EVALUATION 
 
3.1 Evaluation metrics 
This research conducted performance evaluations of the 
most frequently used ML approaches; such as the support 
vector machine, decision tree classifier, RF classifier, multi-
layer perceptron classifier, logistic regression classifier, 
passive-aggressive classifier, ridge regression classifier, 
and the linear support vector classifier. This research 
utilized three evaluation metrics (Hripcsak and Rothschild, 
2005): F1-score, precision, and recall to evaluate the 
classification performance of the comparative models for 
the SCP dataset. The F1-score, Precession, and Recall were 
computed as follows: 

 F1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (3) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (5) 

where: TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives, and 
FN is the number of false negatives (Chemchem and Drias, 
2015).  
       The results indicated that the accuracy caused by the 
recall value had been low (<0.5). In contrast, most of the 
precision values had been high (Table 4). The recall  
values affirmed that if the input data had been unbalanced, 
the classification of most datasets was found to be 
problematic, given a value of less than 0.5, which indicated 
a higher FN value. Conversely, both the TP and FP values 
had been low. When the precision was high, this effect was 
inefficient, which designated a low FP. Our experiments, 
therefore, investigated techniques in which problems can 
be solved in those instances, in which the precision was 
high, and the recall was low, as seen in the Venn diagram 
of recall and the high precision values (Klintberg, 2017). 
The recommended preprocessing steps were performed 
on the unbalanced dataset to evaluate the performance of 
the dataset with the various ML models: SVM; DT; RF; MLP; 

LR; PA; RR; and LSVM methods (Figure 1). An experiment 
employing the TF-IDF method in combination with cosine 
similarity showed that the efficacy evaluation of the model 
had been low. The experiment was, therefore, redesigned 
using the original dataset (Figure 1), consisting of the 
service and priority cases (Table 4), which encompassed 
the original data set, as well as an adaptation of the original 
rebalanced data set.  
       F1-scores, as well as precision and recall, were used to 
evaluate the performance of each model. As shown in Table 
4, the recall was found to have had a low efficiency in the first 
part of the performance evaluation. It is a metric that 
quantifies the correct number of positive predictions out of 
all the possible positive predictions, as opposed to that of the 
precision value. In this way, recall provides some concepts 
that are related to positive class coverage and is also used to 
measure the coverage performance of the minority class 
within the unbalanced datasets. Therefore, it may be 
concluded that the problems created from the experiment 
results of the first part had been caused by the unbalanced 
dataset affecting the evaluation of the performance of 
various models measured as the recall value. Within the 
second part of the process, the researcher added the 
following balancing techniques to the experiment: SMOTE, 
ADASYN, Borderline-SMOTE, and Near-Miss. 
       Recall measures positive predictions by building on 
all the positive samples of the dataset (Mohajon, 2020). 
The values of low recall and high precision values that 
were displayed showed that the error of the positive 
sample had been high, or the FN had been high.  Yet, the 
predicted examples had been positive, truly positive (low 
FP). In this paper, the focus was on enhancing the 
classifier in order to achieve a high recall value. A high 
recall value implies that there are fewer false negative 
cases, which, in turn, enhances the service quality of 
those corporations that utilize this application. 
 
3.2 Hyperparameter tuning 
The objective of hyperparameter tuning is to find the 
parameters with the highest model performance and the 
lowest error rates. Hyperparameter optimization is a 
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model characteristic that is defined by constants, which 
describe the process of setting variables before learning 
or testing the data in order to obtain the best value for the 
model. Methods were used such as GridSearchCV, which is 
a customized hyperparameter tuning approach that strives 
to obtain the most suitable variables for the desired model. 

As a built-in function, there is the scikit-learn® package 
(scikit-learn, GridSearchCV). The trial hyperparameter 
tuning, which utilized different methods during model 
development, helped to improve model performance. The 
most important hyperparameters, which were discovered 
for the ML algorithms, are depicted in Table 4. 

 

Table 4. The tuning of the hyperparameters 
 

Models Parameters 

Support vector machine (SVM) kernel = rbf, c = 50, gamma = scale 
Random forest (RF) n_estimators = 1,000, max_features = log2,  

min_samples_split = 2, min_samples_leaf = 1 
Multi-layer perceptron (MLP) solver = lbfgs, learning_rate = constant, activation = tanh 
Logistic regression (LR) c = 100, max_iter = 100, tol = 1e-4 
Passive aggressive (PA) c = 0.1, tol = 1e-3, max_iter=1,000 
Linear support vector machine (LSVM) c=10, penalty='l2' 
Ridge regression (RR) alpha=0.5, tol=1e-3 
Decision tree (DT) criterion = entropy, max_features = log2, max_depth = 100 

 

3.3 Evaluating the classifier performance on an 
unbalanced SCP dataset: A comparative analysis 
of ML algorithms 
To assess the impact of training various classifiers with 
an SCP dataset characterized by unbalanced properties, 
Table 5 presents the precision, recall, and F1-scores  
for eight ML algorithms: SVM, RF, MLP, LR, PA, LSVM, 
RR, and DT. The findings indicated that using an 
unbalanced dataset without hyperparameter tuning had 
resulted in the highest accuracy for RF, followed by SVM, 
setting them up with 10-fold cross-validation. However, 
these results revealed that the performance metrics of 

all eight methods had remained low, rendering them 
unsuitable for practical applications. 
       Additionally, the aim was to explore the classification 
performance of each class in SVM, when specifically 
trained using input data without preprocessing by 
imbalance techniques. Table 6 displays the low recall 
values for Class 1, Class 2, and Class 4. In contrast, Class 
3 demonstrated a high recall value. This discrepancy 
was attributed to the initial dataset used for the 
experiment, which contained a large number of 
instances in Class 3, leading to higher recall accuracy for 
that class.

 

Table 5. Predicting the comparison of the machine learning algorithms for testing the unbalanced samples 
 

Models Term frequency – inverse document frequency 

Precision Recall F1-scores Accuracies 

SVM  0.756 0.333 0.353 0.710 
RF 0.648 0.361 0.391 0.715 
MLP 0.519 0.319 0.329 0.697 
LR 0.675 0.331 0.348 0.702 
PA 0.494 0.378 0.404 0.661 
LSVM 0.542 0.315 0.321 0.697 
RR 0.464 0.386 0.409 0.667 
DT 0.541 0.273 0.251 0.682 

 

Table 6. A comparison of the average confusion matrix values, categorized by service case classes, using the SVM algorithm 
without imbalance handling on the unbalanced test samples 
 

Classes Precision Recall F1-scores Support 

1 0.95 0.17 0.29 243 
2 0.67 0.01 0.03 435 
3 0.71 0.98 0.82 4,208 
4 0.69 0.17 0.27 1,296 
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       Table 6 displays the confusion matrix results for the 
SVM algorithm. These results show that the prediction 
accuracy had been the highest for Class 3, with the 
accuracy having been significantly influenced by the 
distribution of the data across classes. For instance, Class 1 
(as seen in Table 6) had shown an exceptionally low recall 
value of 0.17. This implied that, in those instances, in which 
the actual class was Class 1, the model correctly predicted 
only 17% of these cases. Specifically, out of the 243 
instances, in which the true class was Class 1, the model 
had accurately predicted only 42 cases and had incorrectly 
predicted 201 cases. Such findings indicated a markedly 
low prediction accuracy for instances, in Class 1. 
       Additionally, the unbalanced nature of the ML test 
dataset is referenced in Table 7. With the results, ML 
calculated the highest dataset and probability of 
prediction in Class 3. The first recall value, which was 

0.17, had been the result of the ML algorithm's ability to 
correctly predict the critical class out of 42 from a total of 
243 classes. However, 201 were predicted incorrectly. 
The second recall value for Class 2 was 0.01, which had 
been derived from the correct ML prediction of six 
serious cases out of 435 classes, but 429 were incorrectly 
predicted. The third recall value, 0.98, had resulted  
from the correct prediction of 4,125 out of 4,206 
moderate classes, with 81 being incorrectly predicted. 
The last recall value for Class 4 had been 0.17, which  
resulted from the ML's correct prediction of 215  
low classes out of 1,296 classes, in which 1,081 were 
incorrectly predicted. The results described above 
showed that the model had predicted the answers for 
Class 3 (moderate), which indicated that the dataset used 
for training the model had been unbalanced for all 
classes.

 

Table 7. Predictions of the service case numbers divided by class using SVM without balancing techniques: demonstrating 
the impact on class-specific recall 
 

 Service case labels (actual)  
Critical (1) Serious (2) Moderate (3) Low (4) Totals 

Machine 
output 
(predicted) 

1  42 0 194 7 243 
2 0 6 419 10 435 
3 2 3 4,125 78 4,208 
4 0 0 1,081 215 1,296 

Total      6,182 
 

       Table 7 displays the confusion matrix results for the 
SVM algorithm. These results showed that that the 
prediction accuracy had been the highest for Class 3, with 
the accuracy having been significantly influenced by the 
distribution of the data across classes. For instance, Class 
1 had an exceptionally low recall value of 0.17. This 
implied that in actual Class 1 instances, the model had 
correctly predicted only 17% of these cases. Specifically, 
out of 243 instances in which the true class was Class 1, 
the model had accurately predicted only 17 cases and 

incorrectly predicted 226 cases. Such findings indicated 
a markedly low prediction accuracy for those instances, 
in which the actual class had been Class 1. 
       The results, after addressing the imbalance issue of the 
dataset using the SMOTE technique in combination with 
the SVM algorithm, are shown in Table 8. They reveal  
that the precision, recall, and F1-scores had significantly 
improved compared to in Table 6. It was evident that using 
imbalance handling techniques had had a positive impact 
on the accuracy of the predictions in each class.

 

Table 8. Average of confusion metrics of the SVM algorithm with imbalanced handling for testing samples 
 

Classes Precision Recall F1-scores Support 
1  0.97 0.99 0.98 4,208 
2 0.97 0.97 0.97 4,208 
3 0.93 0.89 0.91 4,208 
4 0.90 0.93 0.91 4,208 

 
       From the prediction results in each class after 
addressing the imbalance issue as shown in Table 9, the 
accuracy measurements of the SVM algorithm were 
presented in the form of a confusion matrix, which was 
influenced by the number of instances in each class. 
Specifically, according to Table 7, Class 1 (critical) had had 
a total of 243 service cases, with predictions of 42 for Class 
1 (critical), 0 for Class 2 (serious), 194 for Class 3 
(moderate), and 7 for Class 4 (low). This indicated that the 
predictions had shown an accuracy of 42 out of 243. 
Furthermore, based on the results from Table 9, Class 1 
(critical) had had a total of 4,290 service cases, with 

predictions of 4,160 for Class 1 (critical), 47 for Class 2 
(serious), 60 for Class 3 (moderate), and 23 for Class 4 
(low). This indicated that the predictions had shown an 
accuracy of 4,160 out of 4,290. Therefore, by addressing 
the imbalance issue of the dataset, the accuracy of the 
predictions for each class had been improved. 
       Based on the number of instances of each class from 
averaging across all 10 folds, a comparison can be seen of 
the average without balancing (Figure 2) and with 
balancing (Figure 3). It was found that the prediction 
results for each class had increased when adjusted for 
balance. 
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Table 9. The accuracy measurements of the SVM algorithm, as indicated by the confusion matrix, were influenced by the 
number of instances in each class 
 

 Service case labels (actual)  
Critical (1) Serious (2) Moderate (3) Low (4) Totals 

Machine 
output 
(predicted) 

1  4,160 20 4 24 4,208 
2 47 4,067 11 83 4,208 
3 60 74 3,758 316 4,208 
4 23 36 249 3,900 4,208 

Total      16,832 
 

 
Figure 2. The average for each class of the SVM algorithm without balancing 
 

 
Figure 3. The average for each class of the SVM algorithm with balancing 
 

3.4 The effectiveness of the oversampling 
techniques on the imbalanced data:  
A comparative study using ML models 
To evaluate the effectiveness of classification using  
various techniques for handling the imbalanced data,  
the findings indicated that using a balanced dataset 
without hyperparameter tuning had resulted in the highest 

accuracy for SVM, followed by balancing techniques. In the 
preprocessing step, the dataset was oversampled by creating 
synthetic samples with methods, such as SMOTE, Borderline 
SMOTE, ADASYN, and Near-Miss. Subsequently, the models 
were trained using various ML methods by setting them up 
with 10-fold cross-validation. The experimental results of 
this process are presented in Table 10. 
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Table 10. The accuracy measurements of various ML models that were preprocessed using the balancing techniques 
 

Models SMOTE Borderline SMOTE ADASYN Near-Miss 
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

SVM  0.918 0.918 0.918 0.905 0.905 0.908 0.913 0.913 0.913 0.633 0.630 0.630 
RF 0.900 0.893 0.893 0.913 0.903 0.905 0.898 0.893 0.893 0.570 0.568 0.558 
MLP 0.900 0.895 0.893 0.888 0.880 0.878 0.900 0.898 0.895 0.460 0.463 0.463 
LR 0.868 0.865 0.865 0.858 0.858 0.855 0.855 0.853 0.850 0.495 0.495 0.493 
PA 0.850 0.850 0.850 0.850 0.850 0.845 0.865 0.868 0.865 0.455 0.458 0.455 
LSVM 0.873 0.868 0.863 0.873 0.870 0.868 0.868 0.865 0.860 0.500 0.503 0.498 
RR 0.868 0.860 0.855 0.855 0.853 0.848 0.855 0.850 0.845 0.485 0.490 0.483 
DT 0.833 0.828 0.828 0.850 0.845 0.845 0.828 0.825 0.823 0.503 0.520 0.520 

 
       The comparison of different balancing techniques 
showed that in our experiment, integrating SMOTE  
with the SVM model had produced the most favorable 
outcomes. This combination achieved a high precision 
of 0.918 and improved accuracy. To attain a data 
balance, the SMOTE algorithm was employed as a 
preprocessing step, in conjunction with the TF-IDF 
processing method. 
       After applying hyperparameter tuning through 
GridSearchCV, the performance of various ML algorithms 
were trained on the SCP dataset, which had undergone 
preprocessing with imbalance handling techniques, such 

as SMOTE, ADASYN, Borderline-SMOTE, and Near-Miss. 
The findings, which are illustrated in Table 11, 
highlighted the fact that the SVM combined with SMOTE 
had achieved the most effective results, attaining the 
highest score of 0.994 across all metrics, particularly 
in the F1-score. This high F1-score suggested the 
remarkable ability of the model to accurately classify, 
while also maintaining minimal false error rates. Such an 
approach was proven to be highly effective in addressing 
the imbalance issue prevalent in the service priority 
dataset, thereby ensuring the accuracy and relevance of 
its importance classification.

 
Table 11. The accuracy measurements for the machine learning algorithm after applying hyperparameter tuning through 
GridSearchCV 
 

Models Term frequency – inverse document frequency 
Synthetic minority oversampling technique 
Precision Recall F1-scores Accuracies 

SVM  0.944 0.944 0.944 0.944 
RF 0.926 0.923 0.924 0.923 
MLP 0.912 0.911 0.909 0.913 
LR 0.891 0.890 0.887 0.890 
PA 0.878 0.875 0.871 0.879 
LSVM 0.879 0.877 0.872 0.877 
RR 0.863 0.859 0.854 0.859 
DT 0.826 0.828 0.827 0.826 

 
 
4. CONCLUSION  
 
Our experimental model followed six essential steps: 
preprocessing, feature extraction, the SMOTE application, 
hyperparameter tuning, ML algorithm implementation 
(including SVM, DT, RF, MLP, LR, PA, RR, and LSVM),  
and algorithm evaluation. To understand service case 
frequency, service case datasets were used via analyzing 
word weight frequencies. This helped to assess the 
impact of the unbalanced datasets, which can often lead 
to lower performance outcomes. 
       To combat dataset imbalance, SMOTE was applied, 
facilitating a comparison between the balanced and 
unbalanced data via hyperparameter tuning. Eight ML 
algorithms were evaluated with a focus on identifying the 
most effective classifier, using the confusion matrix  
for performance assessment. This research primarily 
targeted service case classification, examining various 
learning methods across these algorithms. The SVM had 

achieved the highest classification accuracy of 0.944, 
addressing the key challenge of the imbalanced data 
distribution due to employee service assessments. 
       The SVM-SMOTE combination emerged as the most 
effective method. Looking ahead, there are plans to 
broaden our experiments to include diverse datasets and 
to explore advanced feature extraction techniques like 
Delta-TFIDF. The goals are to refine our model for 
prioritizing a wider range of datasets and to enhance its 
capacity for proposing solutions to complex service cases. 
This research aimed at boosting operational efficiency and 
effectiveness in the organizational and employee contexts. 
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