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ABSTRACT 
 
Human activity recognition (HAR) is crucial for health tracking, fitness monitoring, 
and fall detection systems. Recently, convolutional neural network (CNN) models 
have been proven to be highly effective for HAR tasks. This study aimed to 
enhance HAR performance by integrating specific architectural improvements, 
namely identity, convolutional, and bottleneck blocks, into lightweight CNN 
models. To evaluate the effectiveness of these enhancements, two data sets were 
utilized: HAR using smartphones data set version 1.0 (UCI-HAR) and wireless 
sensor data mining activity prediction data set version 1.1. The results indicated 
that the convolutional and identity block models outperformed the original 
lightweight CNN model on both data sets. The proposed models strike a balance 
between high performance and computational complexity, thereby making them 
suitable for real-world applications. The findings of this study contribute to the field 
of HAR and provide valuable insights for improving the recognition and 
classification of human activities. 
 
Keywords: human activity recognition; convolutional neural networks; lightweight; identity block; 
convolutional block; bottleneck block 
 
 

1. INTRODUCTION                                    
 
Human activity recognition (HAR) plays a crucial role in 
health tracking, fitness monitoring, and fall detection systems 
(Gupta et al., 2022). It utilizes data such as acceleration, 
rotational speed, and location to accurately classify human 
actions (Wang et al., 2016), representing an important 
intersection between technology and human factors. Among 
the various machine-learning methods used in HAR, 
convolutional neural networks (CNNs) have demonstrated 
exceptional effectiveness (Phukan et al., 2022; Wang et al., 
2019). Although recurrent neural networks (Murad and 
Pyun, 2017) and long short-term memory networks are 
effective in recognizing temporal patterns, they often fall 
short in HAR tasks owing to their extensive computational 

demands and less efficient spatial pattern learning than CNNs 
(Kashyap et al., 2022). 
       CNNs autonomously learn complex patterns from  
raw data and offer significant advantages for HAR 
(Straczkiewicz et al., 2021), eliminating the need for feature 
extraction (Souza et al., 2021), simplifying data preparation, 
and minimizing errors. In contrast to regular CNNs, 
lightweight CNNs are designed to balance model 
performance and computational efficiency (Zhou et al., 
2020), making them suitable for resource-constrained 
applications, such as real-time or on-device implementations 
(Chen and Shen, 2017). MobileNet, a model often cited in HAR 
research for its lightweight design (Zhongkai et al., 2022), 
faces criticism for not achieving high performance, despite its 
suitability for high-end smartphones. Furthermore, one-
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dimensional (1D) CNNs have demonstrated good 
performance in HAR tasks when customized properly 
(Kashyap et al., 2022; Xu et al., 2020). 
       The integration of block enhancements, such as identity, 
convolutional, and bottleneck blocks, can improve the CNN 
architecture (Barakbayeva and Demirci, 2023). The identity 
block enables the input from an early layer to bypass some 
layers and merge with the output of a later layer, mitigating 
gradient problems and facilitating the training of deeper 
networks (Negi et al., 2021). The convolutional block, 
comprising two convolutional layers with the same number 
of filters, enhances the model’s capacity to discern complex 
data features, leading to improved activity differentiation 
(Agac and Incel, 2023). However, the bottleneck block alters 
the input dimensions before and after the convolution layers, 
aiding in computational demands and fostering the learning 
of complex data representations (Teng et al., 2021). 
       Although these integrated block enhancements have been 
extensively studied in resource-heavy CNNs, such as ResNet 
(Agac and Incel, 2023; Barakbayeva and Demirci, 2023; Negi 
et al., 2021; Ronald et al., 2021; Teng et al., 2021), limited 
research has been conducted on their effects on lightweight 
1D CNNs. Therefore, this study aims to examine the effect of 
integrating these block enhancements into lightweight CNNs 
to enhance HAR performance tasks. By analyzing these 
effects, we aim to provide valuable insights that will advance 
the field of HAR. However, it is essential to enhance the 
recognition and classification of human activities, while also 
offering meaningful contributions to the broader field of HAR. 
 
 
2. MATERIALS AND METHODS    
 
2.1 Data sets 
The models were trained and tested independently on two 
public HAR data sets: the activity recognition using 
smartphones data set version 1.0 (UCI-HAR) (Reyes-Ortiz 
et al., 2012) and the wireless sensor data mining (WISDM) 
activity prediction data set version 1.1 (Weiss, 2019). The 
UCI-HAR data set encompasses six activity classes (walking, 
going upstairs, going downstairs, sitting, standing, and lying 
down). The data set records the 3-axial linear acceleration 
and 3-axial angular velocity at a constant sampling rate of 50 
Hz. Owing to its simplicity and thorough documentation, UCI-
HAR has become a staple benchmark in HAR research 
(Ronald et al., 2021; Yin et al., 2022). In contrast, the WISDM 
data set exhibits different numbers of classes across its 
versions. This research used WISDM 1.1, which classified 
activities into six classes like those by UCI-HAR: walking, 
jogging, going upstairs, going downstairs, sitting, and 
standing). This dataset also captured the 3-axial linear 
acceleration and 3-axial angular velocity, albeit at a constant 
rate of 20 Hz. Training the models on these two data sets 
ensured a consistent evaluation of their performance across 
diverse data conditions. 
 
2.2 Model architecture 
The models were developed using Tensorflow with Keras on 
a computer equipped with an Intel® CoreTM i7-6700 CPU 
running at 3.40 GHz, 16 GB RAM, and a GeForce GTX1060 
GPU with 6 GB memory. The architectures of the proposed 
models are shown in Figure 1, with a detailed breakdown of 
the parameters listed in Table 1. The original lightweight 
CNN (2.2.1) (Ronald et al., 2021) utilized 1D convolutional 
layers and rectified linear unit (ReLU) activation functions, 

which served as a baseline for HAR tasks. Building upon this, 
we introduced three variants of lightweight CNNs, each 
integrating specialized blocks to enhance the performance. 
The first variant, a lightweight CNN with an identity block 
(2.2.2.1) (Negi et al., 2021) enhanced the original by enabling 
inputs from an early layer to bypass certain layers and 
merges with the output of a subsequent layer. The second 
variant, a lightweight CNN with a convolutional block 
(2.2.2.2) (Agac and Incel, 2023) incorporates a shortcut that 
includes a convolutional layer. Finally, the third variant, a 
lightweight CNN with a bottleneck block (2.2.2.3) (Teng et al., 
2021) enhanced the original by introducing a multi-layered 
approach to feature extraction. 
 
2.2.1 Original lightweight CNN  
In this study, an original lightweight CNN model, specifically 
designed for HAR tasks (Ronald et al., 2021), was 
implemented. This model architecture comprised three 
convolutional sections, each featuring a 1D convolutional 
layer, batch normalization layer, and ReLU activation 
function. These sections were configured using 32, 64, and 
32 filters respectively, each utilizing a kernel size of three. 
The 1D convolutional layer applied adjustable filters to 
process the input data and generate distinct feature maps. 
To prevent overfitting, a weight regularizer incorporating  
an L2 regularization factor of 0.0001 was applied. The 
inclusion of a batch normalization layer enhanced the 
model’s performance, whereas the ReLU activation function 
introduced non-linearity into the system. 
       The processed output was then flattened into a 1D  
vector and relayed to a fully connected layer containing  
100 neurons. This layer was responsible for classifying  
the extracted and down-sampled features. Another ReLU 
activation function processed the output before it progressed 
to the model’s final stage. At this stage, the model featured a 
fully connected output layer equipped with a number of 
neurons equal to the output classes. It utilized a SoftMax 
activation function to produce a probability distribution 
across multiple classes, rendering it suitable for multiclass 
classification tasks. 
       The model used the Adam optimizer with a learning  
rate of 0.0005. It was constructed using categorical  
cross-entropy as the loss function and accuracy as the 
performance evaluation metric. The final output layer was 
designed for multiclass classification, rendering the model 
suitable for HAR tasks. The output ensured a probability 
distribution for each activity class, thereby delivering 
comprehensive and interpretable results. 
 
2.2.2 Proposed lightweight CNNs with integrated 
blocks 
The proposed lightweight CNN models with integrated 
blocks refine the architecture of the original lightweight CNN 
by introducing enhancements through distinct integrated 
blocks: the identity, the convolutional, and the bottleneck 
blocks. The development of these enhanced models stems 
from a series of trials and adjustments, drawing inspiration 
from more resource-intensive models, such as ResNet (Agac 
and Incel, 2023; Barakbayeva and Demirci, 2023; Negi et al., 
2021; Ronald et al., 2021; Teng et al., 2021), which have 
previously demonstrated excellent performance in HAR 
tasks. To preserve the lightweight concept of the original 
model and facilitate comparisons, all the proposed models 
strategically integrated these blocks while keeping the number 
of layers as close as possible to the original architecture. 
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Figure 1. Model architecture: (a) original lightweight CNN (Ronald et al., 2021), (b) proposed lightweight CNN with an 
identity block, (c) proposed lightweight CNN with a convolutional block, and (d) proposed lightweight CNN with a 
bottleneck block 
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Table 1. Various parameters for models 
 

Model Total Trainable Non-trainable 
(a) Original CNN (Ronald et al., 2021) 269,934 269,672 262 
(b) Proposed lightweight CNN with identity block 90,702 90,568 134 
(c) Proposed lightweight CNN with convolutional block 91,886 91,688 198 
(d) Proposed lightweight CNN with bottleneck block 171,054 170,856 198 

 

2.2.2.1 Proposed lightweight CNN with an identity 
block  
The proposed lightweight CNN model, featuring an identity 
block, begins with a 1D convolutional layer with 32 filters 
and a kernel size of three, followed by an identity block. 
This block comprises two 1D convolutional layers, each 
equipped with 32 filters and a kernel size of three. A ReLU 
activation function and batch normalization were applied 
between the convolutional layers. This block includes a 
shortcut connection that directly adds the input to the 
output, thus mitigating the vanishing gradient problem 
that often arises in deeper networks. Diverging from the 
original lightweight CNN design, this model introduces an 
average pooling layer with a pool size of three precedes 
right before the flattening layer. This addition reduces the 
output size and summarizes the extracted features, 
whereas the remaining network architecture emulates the 
original lightweight CNN architecture. 
 
2.2.2.2 Proposed lightweight CNN with a 
convolutional block 
The proposed lightweight CNN with a convolutional  
block comprising a 1D convolutional layer utilizing 32  
filters and a kernel size of three, followed by connection  
to a convolutional block. This block comprises two 1D 
convolutional layers, each with 32 filters and a kernel size  
of three. These layers were interspersed using a ReLU 
activation function and batch normalization. This model  
also included a shortcut path in the convolutional block. 
Here, the input is first processed through a 1D convolutional 
layer with 32 filters and a kernel size of one before it is added 
to the block output. An average pooling layer with a pool size 
of three precedes a flattening layer. The remaining network 
architecture closely mimicked the original lightweight CNN. 
 
2.2.2.3 Proposed lightweight CNN with a bottleneck 
block 
The proposed lightweight CNN with a bottleneck block 
comprises a 1D convolutional layer equipped with 64 filters 
and a kernel size of three, which then connects to a 
bottleneck block. This block consisted of three 1D 
convolutional layers. The first layer uses 16 filters (1/4 of 
64) with a kernel size of one, the second layer uses 16 filters 
but expands the kernel size to three, and the third layer 
increases the number of filters to 64, maintaining a kernel 
size of one. Following each convolutional layer, a ReLU 
activation function was applied. This block features a 
shortcut connection that directly adds an input to the output. 
An average pooling layer with a pool size of three was 
initiated prior to the flattening layer. The remaining network 
architecture closely mimicked the original lightweight CNN. 
 
2.3 Model evaluation 
This study utilized a robust evaluation methodology for 
models, using a K-fold cross-validation approach (Ismail et 

al., 2023; Wang et al., 2023). This method involved dividing 
the data set into K subsets (k = 10 in this case), training the 
model on K-1 subsets, and evaluating it on the remaining 
subsets. This process was repeated K times, using a 
different subset as the test set. 
       Each model was compiled using the categorical cross-
entropy loss function, which is a common choice for 
multiclass classification problems (Zhou et al., 2019). The 
Adam optimizer was selected for training the models 
because of its proven effectiveness and efficiency. The 
initial learning rate was set to 0.0005 (Ronald et al., 
2021), and the models were trained for 1,000 epochs. The 
training process was performed using a batch size of 64 
(Ronald et al., 2021). 
       To prevent overfitting and unnecessary training, the 
training process integrated an early stopping mechanism 
that halted training when no discernible improvement was 
observed in the model performance on the validation set 
for 100 consecutive epochs. 
       Moreover, a learning rate scheduler was employed to 
reduce the learning rate by a factor of 0.8 to a minimum 
threshold of 0.0001 (Ronald et al., 2021). This occurred 
when the model performance did not show significant 
improvement after 10 epochs, a condition determined by 
the patience parameter. 
       To capture and preserve the best model performance 
throughout the training process, the weights were saved at 
the end of each epoch. This method ensured that the 
optimal set of weights was retained, safeguarding against 
potential declines in the model performance in subsequent 
epochs. For data sets characterized by an imbalanced class 
distribution, class weights were calculated to adjust the 
loss function, signaling the model to account for the 
imbalance. 
 
2.4 Performance metrics 
Model effectiveness in HAR tasks was assessed using 
widely accepted performance metrics: accuracy, precision, 
recall, and F1-score. The accuracy of the model reflected 
the proportion of all correctly predicted observations. 
Precision measured the proportion of correctly predicted 
positive observations. Recall, also known as sensitivity, 
signified the ability of the model to correctly identify all 
actual positive cases. The F1-score combined precision and 
recall into a single measure by calculating their weighted 
average, offering a balanced perspective for both metrics 
(Wang et al., 2023). 
       These performance metrics were computed in two 
stages: initially, during each iteration of the K-fold cross-
validation process, the metrics were calculated using the 
validation set of the current fold. This process provides a 
measure of the model’s performance during the training 
phase. Following the completion of all the cross-validation 
folds, the metrics were assessed using an unseen test set. 
This step provided an unbiased evaluation of the 
performance of the fully trained model. 
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3. RESULTS  
 

3.1 UCI-HAR 
The analysis of the model performance on the UCI-HAR 
data set revealed insightful findings. Figures 2–9 show 
the changes in accuracy and loss across epochs for each 
of the four models, including the original lightweight 
CNN and three proposed lightweight CNNs with 
integrated blocks. Table 2 outlines the average 
performance metrics for each model on the UCI-HAR 
data set, sorted by the F1 score achieved during testing. 
The proposed lightweight CNN with a convolutional 
block yielded the highest F1 score of 0.9625 for testing 
and 0.9927 for validation, slightly outperforming the 
original lightweight CNN scores of 0.9623 (testing) and 
0.9912 (validation). This pattern was consistent across 
other metrics, such as accuracy, recall, and precision, 

suggesting that the convolutional block model slightly 
improved the model’s performance. Following closely 
was the proposed lightweight CNN with an identity 
block, which exhibited F1 scores of 0.9609 (testing) and 
0.9927 (validation). The proposed lightweight CNN  
with a bottleneck block demonstrated the lowest 
performance, with F1 scores of 0.9557 (testing) and 
0.9924 (validation). Despite being the lowest, these 
scores still indicate a relatively high and robust 
performance level. Figure 10 shows the best confusion 
matrix for fold 8 of the proposed lightweight CNN with 
a convolutional block on the UCI-HAR data set, 
providing insights into true positive, false positive, true 
negative, and false negative predictions. Additionally, 
Figures 11 and 12 depict the accuracy vs. epoch and loss 
vs. epoch plots, respectively, for the same fold and 
model on the UCI-HAR data set.

 

 
Figure 2. Accuracy vs. epoch plot of the original lightweight CNN on the UCI-HAR data set 
 
 

         
Figure 3. Loss vs. epoch plot of the original lightweight CNN on the UCI-HAR data set     
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Figure 4. Accuracy vs. epoch plot of the proposed lightweight CNN with an identity block on the UCI-HAR data set 
 

Figure 5. Loss vs. epoch plot of the proposed lightweight CNN with an identity block on the UCI-HAR data set 
 

Figure 6. Accuracy vs. epoch plot of the proposed lightweight CNN with a convolutional block on the UCI-HAR data set 
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Figure 7. Loss vs. epoch plot of the proposed lightweight CNN with a convolutional block on the UCI-HAR data set  

 

Figure 8. Accuracy vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the UCI-HAR data set 

Figure 9. Loss vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the UCI-HAR data set 
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Table 2. Performance metrics on the UCI-HAR data set sorted using the F1 score of testing 
 

 Model F1 Score Accuracy Recall Precision 
Testing Validation Testing Validation Testing Validation Testing Validation 

Proposed lightweight CNN 
with convolutional block 

0.9625 0.9927 0.9627 0.9927 0.9627 0.9927 0.9641 0.9927 

Original lightweight CNN 
(Ronald et al., 2021) 

0.9623 0.9912 0.9624 0.9912 0.9624 0.9912 0.9637 0.9912 

Proposed lightweight CNN 
with identity block 

0.9609 0.9927 0.9612 0.9927 0.9612 0.9927 0.9625 0.9927 

Proposed lightweight CNN 
with bottleneck block  

0.9557 0.9924 0.9559 0.9924 0.9559 0.9924 0.9577 0.9924 

 

Figure 10. The best confusion matrix for fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR 
data set 

 

Figure 11. Accuracy vs. epoch plot of fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR 
data set 



Sittiwanchai, T., et al. 

   
9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Loss vs. epoch plot of fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR data set 

 
3.2 WISDM 
The evaluation of the models on the WISDM data set offers 
further insight into their performance. Figures 13–20 show 
the evolution of the accuracy and loss across epochs for all 
four models, including the original lightweight CNN and 
the three proposed lightweight CNNs with integrated 
blocks. Table 3 lists the average performance metrics for 
each model for the WISDM data set. Interestingly, the 
proposed lightweight CNN with an identity block delivered 
the highest F1 scores of 0.9520 and 0.9553 during testing 
and validation, respectively. This finding was attributed to 
the proposed lightweight CNN with a convolutional block, 
with F1 scores of 0.9511 (testing) and 0.9544 (validation).  
 

The proposed lightweight CNN with a bottleneck block 
and the original lightweight CNN exhibited slightly lower 
performance, achieving F1 scores of 0.9471 and 0.9445 
for testing and 0.9513 and 0.9521 for validation, 
respectively. This pattern was mirrored across the 
accuracy, recall, and precision metrics, implying that the 
identity block model slightly outperformed the others. 
Figure 21 shows the optimal confusion matrix for fold 3 
of the proposed lightweight CNN with an identity block 
on the WISDM data set. In addition, Figures 22 and 23 
show the accuracy vs. epoch and loss vs. epoch plots, 
respectively, for the same fold and model on the WISDM 
data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Accuracy vs. epoch plot of the original lightweight CNN on the WISDM data set 
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Figure 14. Loss vs. epoch plot of the original lightweight CNN on the WISDM data set 

Figure 15. Accuracy vs. epoch plot of the proposed lightweight CNN with an identity block on the WISDM data set 

Figure 16. Loss vs. epoch plot of the proposed lightweight CNN with an identity block on the WISDM data set 
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Figure 17. Accuracy vs. epoch plot of the proposed lightweight CNN with a convolutional block on the WISDM data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Loss vs. epoch plot of the proposed lightweight CNN with a convolutional block on the WISDM data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Accuracy vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the WISDM data set 
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Figure 20. Loss vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the WISDM data set  

Table 3. Performance metrics on the WISDM data set sorted by the F1 score of testing 
 

Model F1 Score Accuracy Recall Precision 
Testing Validation Testing Validation Testing Validation Testing Validation 

Proposed lightweight CNN 
with identity block 

0.9520 0.9553 0.9523 0.9554 0.9520 0.9556 0.9523 0.9554 

Proposed lightweight CNN 
with convolutional block 

0.9511 0.9544 0.9513 0.9546 0.9511 0.9549 0.9513 0.9546 

Proposed lightweight CNN 
with bottleneck block  

0.9471 0.9513 0.9472 0.9513 0.9477 0.9520 0.9472 0.9513 

Original lightweight CNN 
(Ronald et al., 2021) 

0.9445 0.9521 0.9450 0.9522 0.9448 0.9523 0.9450 0.9522 

 

Figure 21. The best confusion matrix for fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set 
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Figure 22. Accuracy vs. epoch plot of fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set 

 

Figure 23. Loss vs. epoch plot of fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set 

  

4. DISCUSSION 
 

The analysis of the proposed models provides valuable 
insights. The lightweight CNN with integrated blocks, 
particularly the convolutional and identity block models, 
outperformed the original lightweight CNN model (Ronald 
et al., 2021) across both the UCI-HAR and WISDM data sets. 
The accuracy and epoch plots exhibited fluctuations, 
reflecting the dynamic interplay between model training 
and data variability, arising from the inherent variability 
introduced by K-fold validation to train and evaluate 
different data subsets. 
       On the UCI-HAR data set, the convolutional block model 
recorded the highest F1 score, closely followed by the 
original lightweight CNN and the identity block models, 
which suggested minor performance differences among 
them. Despite exhibiting the least impressive results, the 
bottleneck block model demonstrated a high F1 score, 
highlighting its robustness (Wang et al., 2023). 
       The identity block model marginally surpassed the 
convolutional block model upon examining the WISDM 

data set, which was superior to the UCI-HAR data set. These 
results illustrate that model performance can vary with the 
data set, suggesting that the optimal model choice can vary 
based on specific data set characteristics (Yin et al., 2022). 
The bottleneck block model and original lightweight CNN 
exhibited comparatively lower performance. 
       A significant observation is the consistent performance 
patterns exhibited by all models across the four metrics, 
suggesting a uniform performance regardless of the 
evaluation metric used. Another important factor was that 
the model validation scores consistently surpassed the 
testing scores. This finding indicates that the models 
possess good generalization capabilities and can adapt 
aptly to unseen data. Evidently, even minor differences 
between the models can potentially become significant in 
specific applications where slight improvements may lead 
to a substantial impact (Wang et al., 2023). 
       The results revealed that the proposed lightweight 
CNN with a convolutional block outperformed other 
models, considering the F1 score for the UCI-HAR data set, 
whereas the proposed lightweight CNN with an identity 
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block achieved the highest F1 score on the WISDM data set. 
Despite these slight improvements, they are significant 
when considering the computational complexity. As 
indicated in Figure 1, the lightweight CNN models with 
integrated blocks exhibited a strong performance while 
simultaneously reducing the computational requirements, 
making them a suitable choice for deployment in devices 
with limited resources (Chen and Shen, 2017). 
       However, the most suitable model may vary based on 
the data set, underlining the significance of tailoring 
optimizations to specific data sets (Raziani and 
Azimbagirad, 2022). Despite minor variations in 

performance, all models exhibited commendable and 
consistent results across different evaluation metrics. 
Therefore, the lightweight CNN models with integrated 
blocks hold substantial potential for future research and 
real-world applications in HAR.  
       In Table 4, the performances of different models are 
compared, and the proposed models surpass the accuracy 
of previous state-of-the-art models (Ignatov, 2018; Peppas 
et al., 2020; Ronald et al., 2021). This finding further 
strengthens the conclusion that the proposed lightweight 
CNN models with integrated blocks offer viable 
alternatives to the existing models for HAR tasks.

Table 4. Comparison of model performance 
 

Model Accuracy 
UCI-HAR WISDM 

CNN (Ignatov, 2018) 0.9531 0.9332 
CNN (Peppas et al., 2020) - 0.9436 
iSPL Inception (Ronald et al., 2021) 0.9509 - 
Original CNN (Ronald et al., 2021) 0.9624 0.9450 
Proposed lightweight CNN with convolutional block 0.9627 0.9513 
Proposed lightweight CNN with identity block 0.9612 0.9523 

 
 
5. CONCLUSION 
 
This investigation into lightweight CNN models with 
integrated blocks demonstrated their potential for 
improved HAR. Notably, the convolutional and identity 
block models outperformed the original lightweight 
CNN model across the UCI-HAR and WISDM data sets. 
However, the optimal model may differ, depending on 
the data set. All models, despite minor variations, 
highlight robust performance across various evaluation 
metrics, balancing high performance with reduced 
computational complexity, rendering them appropriate 
for environments with limited computing resources. 
       Although the findings of this study are promising, 
they also recognize certain limitations and suggest 
directions for future research. One such limitation is the 
focus on only two data sets, emphasizing the necessity 
for broader testing across diverse data sets to ensure 
the generalizability of the proposed models. The second 
step involves the optimization of the integrated blocks 
to further enhance the overall model performance  
and efficiency. In addition, exploring real-world 
implementations could provide an intriguing avenue for 
future investigation. 
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