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ABSTRACT

Human activity recognition (HAR) is crucial for health tracking, fitness monitoring,
and fall detection systems. Recently, convolutional neural network (CNN) models
have been proven to be highly effective for HAR tasks. This study aimed to
enhance HAR performance by integrating specific architectural improvements,
namely identity, convolutional, and bottleneck blocks, into lightweight CNN
models. To evaluate the effectiveness of these enhancements, two data sets were
utilized: HAR using smartphones data set version 1.0 (UCI-HAR) and wireless
sensor data mining activity prediction data set version 1.1. The results indicated
that the convolutional and identity block models outperformed the original
lightweight CNN model on both data sets. The proposed models strike a balance
between high performance and computational complexity, thereby making them
suitable for real-world applications. The findings of this study contribute to the field
of HAR and provide valuable insights for improving the recognition and
classification of human activities.

Keywords: human activity recognition; convolutional neural networks; lightweight; identity block;
convolutional block; bottleneck block

demands and less efficient spatial pattern learning than CNNs
(Kashyap etal,, 2022).

Human activity recognition (HAR) plays a crucial role in
health tracking, fitness monitoring, and fall detection systems
(Gupta et al, 2022). It utilizes data such as acceleration,
rotational speed, and location to accurately classify human
actions (Wang et al, 2016), representing an important
intersection between technology and human factors. Among
the various machine-learning methods used in HAR,
convolutional neural networks (CNNs) have demonstrated
exceptional effectiveness (Phukan et al,, 2022; Wang et al,
2019). Although recurrent neural networks (Murad and
Pyun, 2017) and long short-term memory networks are
effective in recognizing temporal patterns, they often fall
short in HAR tasks owing to their extensive computational
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CNNs autonomously learn complex patterns from
raw data and offer significant advantages for HAR
(Straczkiewicz et al.,, 2021), eliminating the need for feature
extraction (Souza et al,, 2021), simplifying data preparation,
and minimizing errors. In contrast to regular CNNs,
lightweight CNNs are designed to balance model
performance and computational efficiency (Zhou et al,
2020), making them suitable for resource-constrained
applications, such as real-time or on-device implementations
(Chen and Shen, 2017). MobileNet, a model often cited in HAR
research for its lightweight design (Zhongkai et al,, 2022),
faces criticism for not achieving high performance, despite its
suitability for high-end smartphones. Furthermore, one-
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dimensional (1D) CNNs have demonstrated good
performance in HAR tasks when customized properly
(Kashyap etal,, 2022; Xu et al,, 2020).

The integration of block enhancements, such as identity,
convolutional, and bottleneck blocks, can improve the CNN
architecture (Barakbayeva and Demirci, 2023). The identity
block enables the input from an early layer to bypass some
layers and merge with the output of a later layer, mitigating
gradient problems and facilitating the training of deeper
networks (Negi et al, 2021). The convolutional block,
comprising two convolutional layers with the same number
of filters, enhances the model’s capacity to discern complex
data features, leading to improved activity differentiation
(Agac and Incel, 2023). However, the bottleneck block alters
the input dimensions before and after the convolution layers,
aiding in computational demands and fostering the learning
of complex data representations (Teng et al,, 2021).

Although these integrated block enhancements have been
extensively studied in resource-heavy CNNs, such as ResNet
(Agac and Incel, 2023; Barakbayeva and Demirci, 2023; Negi
et al, 2021; Ronald et al, 2021; Teng et al.,, 2021), limited
research has been conducted on their effects on lightweight
1D CNNs. Therefore, this study aims to examine the effect of
integrating these block enhancements into lightweight CNNs
to enhance HAR performance tasks. By analyzing these
effects, we aim to provide valuable insights that will advance
the field of HAR. However, it is essential to enhance the
recognition and classification of human activities, while also
offering meaningful contributions to the broader field of HAR.

2. MATERIALS AND METHODS

2.1 Data sets

The models were trained and tested independently on two
public HAR data sets: the activity recognition using
smartphones data set version 1.0 (UCI-HAR) (Reyes-Ortiz
et al, 2012) and the wireless sensor data mining (WISDM)
activity prediction data set version 1.1 (Weiss, 2019). The
UCI-HAR data set encompasses six activity classes (walking,
going upstairs, going downstairs, sitting, standing, and lying
down). The data set records the 3-axial linear acceleration
and 3-axial angular velocity at a constant sampling rate of 50
Hz. Owing to its simplicity and thorough documentation, UCI-
HAR has become a staple benchmark in HAR research
(Ronald et al., 2021; Yin et al., 2022). In contrast, the WISDM
data set exhibits different numbers of classes across its
versions. This research used WISDM 1.1, which classified
activities into six classes like those by UCI-HAR: walking,
jogging, going upstairs, going downstairs, sitting, and
standing). This dataset also captured the 3-axial linear
acceleration and 3-axial angular velocity, albeit at a constant
rate of 20 Hz. Training the models on these two data sets
ensured a consistent evaluation of their performance across
diverse data conditions.

2.2 Model architecture

The models were developed using Tensorflow with Keras on
a computer equipped with an Intel® Core™ i7-6700 CPU
running at 3.40 GHz, 16 GB RAM, and a GeForce GTX1060
GPU with 6 GB memory. The architectures of the proposed
models are shown in Figure 1, with a detailed breakdown of
the parameters listed in Table 1. The original lightweight
CNN (2.2.1) (Ronald et al,, 2021) utilized 1D convolutional
layers and rectified linear unit (ReLU) activation functions,
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which served as a baseline for HAR tasks. Building upon this,
we introduced three variants of lightweight CNNs, each
integrating specialized blocks to enhance the performance.
The first variant, a lightweight CNN with an identity block
(2.2.2.1) (Negi et al,, 2021) enhanced the original by enabling
inputs from an early layer to bypass certain layers and
merges with the output of a subsequent layer. The second
variant, a lightweight CNN with a convolutional block
(2.2.2.2) (Agac and Incel, 2023) incorporates a shortcut that
includes a convolutional layer. Finally, the third variant, a
lightweight CNN with a bottleneck block (2.2.2.3) (Teng etal,,
2021) enhanced the original by introducing a multi-layered
approach to feature extraction.

2.2.1 Original lightweight CNN

In this study, an original lightweight CNN model, specifically
designed for HAR tasks (Ronald et al, 2021), was
implemented. This model architecture comprised three
convolutional sections, each featuring a 1D convolutional
layer, batch normalization layer, and ReLU activation
function. These sections were configured using 32, 64, and
32 filters respectively, each utilizing a kernel size of three.
The 1D convolutional layer applied adjustable filters to
process the input data and generate distinct feature maps.
To prevent overfitting, a weight regularizer incorporating
an L2 regularization factor of 0.0001 was applied. The
inclusion of a batch normalization layer enhanced the
model’s performance, whereas the ReLU activation function
introduced non-linearity into the system.

The processed output was then flattened into a 1D
vector and relayed to a fully connected layer containing
100 neurons. This layer was responsible for classifying
the extracted and down-sampled features. Another ReLU
activation function processed the output before it progressed
to the model’s final stage. At this stage, the model featured a
fully connected output layer equipped with a number of
neurons equal to the output classes. It utilized a SoftMax
activation function to produce a probability distribution
across multiple classes, rendering it suitable for multiclass
classification tasks.

The model used the Adam optimizer with a learning
rate of 0.0005. It was constructed using categorical
cross-entropy as the loss function and accuracy as the
performance evaluation metric. The final output layer was
designed for multiclass classification, rendering the model
suitable for HAR tasks. The output ensured a probability
distribution for each activity class, thereby delivering
comprehensive and interpretable results.

2.2.2 Proposed lightweight CNNs with integrated
blocks

The proposed lightweight CNN models with integrated
blocks refine the architecture of the original lightweight CNN
by introducing enhancements through distinct integrated
blocks: the identity, the convolutional, and the bottleneck
blocks. The development of these enhanced models stems
from a series of trials and adjustments, drawing inspiration
from more resource-intensive models, such as ResNet (Agac
and Incel, 2023; Barakbayeva and Demirci, 2023; Negi et al.,
2021; Ronald et al, 2021; Teng et al, 2021), which have
previously demonstrated excellent performance in HAR
tasks. To preserve the lightweight concept of the original
model and facilitate comparisons, all the proposed models
strategically integrated these blocks while keeping the number
of layers as close as possible to the original architecture.
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Figure 1. Model architecture: (a) original lightweight CNN (Ronald et al,, 2021), (b) proposed lightweight CNN with an
identity block, (c) proposed lightweight CNN with a convolutional block, and (d) proposed lightweight CNN with a
bottleneck block
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Table 1. Various parameters for models

Model Total Trainable Non-trainable
(a) Original CNN (Ronald et al.,, 2021) 269,934 269,672 262
(b) Proposed lightweight CNN with identity block 90,702 90,568 134
(c) Proposed lightweight CNN with convolutional block 91,886 91,688 198
(d) Proposed lightweight CNN with bottleneck block 171,054 170,856 198

2.2.2.1 Proposed lightweight CNN with an identity
block

The proposed lightweight CNN model, featuring an identity
block, begins with a 1D convolutional layer with 32 filters
and a kernel size of three, followed by an identity block.
This block comprises two 1D convolutional layers, each
equipped with 32 filters and a kernel size of three. A ReLU
activation function and batch normalization were applied
between the convolutional layers. This block includes a
shortcut connection that directly adds the input to the
output, thus mitigating the vanishing gradient problem
that often arises in deeper networks. Diverging from the
original lightweight CNN design, this model introduces an
average pooling layer with a pool size of three precedes
right before the flattening layer. This addition reduces the
output size and summarizes the extracted features,
whereas the remaining network architecture emulates the
original lightweight CNN architecture.

2.2.2.2 Proposed lightweight CNN with a
convolutional block

The proposed lightweight CNN with a convolutional
block comprising a 1D convolutional layer utilizing 32
filters and a kernel size of three, followed by connection
to a convolutional block. This block comprises two 1D
convolutional layers, each with 32 filters and a kernel size
of three. These layers were interspersed using a ReLU
activation function and batch normalization. This model
also included a shortcut path in the convolutional block.
Here, the input is first processed through a 1D convolutional
layer with 32 filters and a kernel size of one before itis added
to the block output. An average pooling layer with a pool size
of three precedes a flattening layer. The remaining network
architecture closely mimicked the original lightweight CNN.

2.2.2.3 Proposed lightweight CNN with a bottleneck
block

The proposed lightweight CNN with a bottleneck block
comprises a 1D convolutional layer equipped with 64 filters
and a kernel size of three, which then connects to a
bottleneck block. This block consisted of three 1D
convolutional layers. The first layer uses 16 filters (1/4 of
64) with a kernel size of one, the second layer uses 16 filters
but expands the kernel size to three, and the third layer
increases the number of filters to 64, maintaining a kernel
size of one. Following each convolutional layer, a ReLU
activation function was applied. This block features a
shortcut connection that directly adds an input to the output.
An average pooling layer with a pool size of three was
initiated prior to the flattening layer. The remaining network
architecture closely mimicked the original lightweight CNN.

2.3 Model evaluation
This study utilized a robust evaluation methodology for
models, using a K-fold cross-validation approach (Ismail et
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al,, 2023; Wang et al,, 2023). This method involved dividing
the data set into K subsets (k = 10 in this case), training the
model on K-1 subsets, and evaluating it on the remaining
subsets. This process was repeated K times, using a
different subset as the test set.

Each model was compiled using the categorical cross-
entropy loss function, which is a common choice for
multiclass classification problems (Zhou et al., 2019). The
Adam optimizer was selected for training the models
because of its proven effectiveness and efficiency. The
initial learning rate was set to 0.0005 (Ronald et al,
2021), and the models were trained for 1,000 epochs. The
training process was performed using a batch size of 64
(Ronald et al,, 2021).

To prevent overfitting and unnecessary training, the
training process integrated an early stopping mechanism
that halted training when no discernible improvement was
observed in the model performance on the validation set
for 100 consecutive epochs.

Moreover, a learning rate scheduler was employed to
reduce the learning rate by a factor of 0.8 to a minimum
threshold of 0.0001 (Ronald et al, 2021). This occurred
when the model performance did not show significant
improvement after 10 epochs, a condition determined by
the patience parameter.

To capture and preserve the best model performance
throughout the training process, the weights were saved at
the end of each epoch. This method ensured that the
optimal set of weights was retained, safeguarding against
potential declines in the model performance in subsequent
epochs. For data sets characterized by an imbalanced class
distribution, class weights were calculated to adjust the
loss function, signaling the model to account for the
imbalance.

2.4 Performance metrics

Model effectiveness in HAR tasks was assessed using
widely accepted performance metrics: accuracy, precision,
recall, and F1-score. The accuracy of the model reflected
the proportion of all correctly predicted observations.
Precision measured the proportion of correctly predicted
positive observations. Recall, also known as sensitivity,
signified the ability of the model to correctly identify all
actual positive cases. The F1-score combined precision and
recall into a single measure by calculating their weighted
average, offering a balanced perspective for both metrics
(Wangetal,, 2023).

These performance metrics were computed in two
stages: initially, during each iteration of the K-fold cross-
validation process, the metrics were calculated using the
validation set of the current fold. This process provides a
measure of the model’s performance during the training
phase. Following the completion of all the cross-validation
folds, the metrics were assessed using an unseen test set.
This step provided an unbiased evaluation of the
performance of the fully trained model.
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3.RESULTS

3.1 UCI-HAR

The analysis of the model performance on the UCI-HAR
data set revealed insightful findings. Figures 2-9 show
the changes in accuracy and loss across epochs for each
of the four models, including the original lightweight
CNN and three proposed lightweight CNNs with
integrated blocks. Table 2 outlines the average
performance metrics for each model on the UCI-HAR
data set, sorted by the F1 score achieved during testing.
The proposed lightweight CNN with a convolutional
block yielded the highest F1 score of 0.9625 for testing
and 0.9927 for validation, slightly outperforming the
original lightweight CNN scores of 0.9623 (testing) and
0.9912 (validation). This pattern was consistent across
other metrics, such as accuracy, recall, and precision,
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suggesting that the convolutional block model slightly
improved the model’s performance. Following closely
was the proposed lightweight CNN with an identity
block, which exhibited F1 scores of 0.9609 (testing) and
0.9927 (validation). The proposed lightweight CNN
with a bottleneck block demonstrated the lowest
performance, with F1 scores of 0.9557 (testing) and
0.9924 (validation). Despite being the lowest, these
scores still indicate a relatively high and robust
performance level. Figure 10 shows the best confusion
matrix for fold 8 of the proposed lightweight CNN with
a convolutional block on the UCI-HAR data set,
providing insights into true positive, false positive, true
negative, and false negative predictions. Additionally,
Figures 11 and 12 depict the accuracy vs. epoch and loss
vs. epoch plots, respectively, for the same fold and
model on the UCI-HAR data set.
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Figure 2. Accuracy vs. epoch plot of the original lightweight CNN on the UCI-HAR data set
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Figure 3. Loss vs. epoch plot of the original lightweight CNN on the UCI-HAR data set
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Figure 4. Accuracy vs. epoch plot of the proposed lightweight CNN with an identity block on the UCI-HAR data set
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Figure 7. Loss vs. epoch plot of the proposed lightweight CNN with a convolutional block on the UCI-HAR data set
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Figure 9. Loss vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the UCI-HAR data set
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Table 2. Performance metrics on the UCI-HAR data set sorted using the F1 score of testing

Model F1 Score Accuracy Recall Precision

Testing  Validation Testing  Validation Testing  Validation Testing  Validation
Proposed lightweight CNN 0.9625 0.9927 0.9627 0.9927 0.9627 0.9927 0.9641 0.9927
with convolutional block
Original lightweight CNN 0.9623 0.9912 0.9624 0.9912 0.9624 0.9912 0.9637 0.9912
(Ronald etal, 2021)
Proposed lightweight CNN 0.9609 0.9927 0.9612 0.9927 0.9612 0.9927 0.9625 0.9927
with identity block
Proposed lightweight CNN 0.9557 0.9924 0.9559 0.9924 0.9559 0.9924 0.9577 0.9924
with bottleneck block
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Figure 10. The best confusion matrix for fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR
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Figure 11. Accuracy vs. epoch plot of fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR
data set
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Figure 12. Loss vs. epoch plot of fold 8 of the proposed lightweight CNN with a convolutional block on the UCI-HAR data set

3.2 WISDM

The evaluation of the models on the WISDM data set offers
further insight into their performance. Figures 13-20 show
the evolution of the accuracy and loss across epochs for all
four models, including the original lightweight CNN and
the three proposed lightweight CNNs with integrated
blocks. Table 3 lists the average performance metrics for
each model for the WISDM data set. Interestingly, the
proposed lightweight CNN with an identity block delivered
the highest F1 scores of 0.9520 and 0.9553 during testing
and validation, respectively. This finding was attributed to
the proposed lightweight CNN with a convolutional block,
with F1 scores of 0.9511 (testing) and 0.9544 (validation).
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The proposed lightweight CNN with a bottleneck block
and the original lightweight CNN exhibited slightly lower
performance, achieving F1 scores of 0.9471 and 0.9445
for testing and 0.9513 and 0.9521 for validation,
respectively. This pattern was mirrored across the
accuracy, recall, and precision metrics, implying that the
identity block model slightly outperformed the others.
Figure 21 shows the optimal confusion matrix for fold 3
of the proposed lightweight CNN with an identity block
on the WISDM data set. In addition, Figures 22 and 23
show the accuracy vs. epoch and loss vs. epoch plots,
respectively, for the same fold and model on the WISDM
data set.
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Figure 13. Accuracy vs. epoch plot of the original lightweight CNN on the WISDM data set
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Figure 16. Loss vs. epoch plot of the proposed lightweight CNN with an identity block on the WISDM data set
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Figure 17. Accuracy vs. epoch plot of the proposed lightweight CNN with a convolutional block on the WISDM data set
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Figure 18. Loss vs. epoch plot of the proposed lightweight CNN with a convolutional block on the WISDM data set
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Figure 19. Accuracy vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the WISDM data set
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Figure 20. Loss vs. epoch plot of the proposed lightweight CNN with a bottleneck block on the WISDM data set

Table 3. Performance metrics on the WISDM data set sorted by the F1 score of testing

Model

F1 Score

Accuracy

Recall

Precision

Testing Validation Testing Validation Testing

Validation Testing Validation

Proposed lightweight CNN 0.9520  0.9553 0.9523 0.9554 0.9520  0.9556 0.9523 0.9554
with identity block
Proposed lightweight CNN 0.9511 0.9544 0.9513 0.9546 0.9511 0.9549 0.9513 0.9546
with convolutional block
Proposed lightweight CNN 0.9471  0.9513 0.9472 0.9513 0.9477  0.9520 0.9472 0.9513
with bottleneck block
Original lightweight CNN 0.9445 0.9521 0.9450 0.9522 0.9448  0.9523 0.9450 0.9522
(Ronald et al., 2021)
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Figure 21. The best confusion matrix for fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set
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Figure 22. Accuracy vs. epoch plot of fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set

Loss

0.4

02 |
|}
1
LY

0.0

200
Epoch

0 100

=== Training
Validation

Figure 23. Loss vs. epoch plot of fold 3 of the proposed lightweight CNN with an identity block on the WISDM data set

4. DISCUSSION

The analysis of the proposed models provides valuable
insights. The lightweight CNN with integrated blocks,
particularly the convolutional and identity block models,
outperformed the original lightweight CNN model (Ronald
etal, 2021) across both the UCI-HAR and WISDM data sets.
The accuracy and epoch plots exhibited fluctuations,
reflecting the dynamic interplay between model training
and data variability, arising from the inherent variability
introduced by K-fold validation to train and evaluate
different data subsets.

On the UCI-HAR data set, the convolutional block model
recorded the highest F1 score, closely followed by the
original lightweight CNN and the identity block models,
which suggested minor performance differences among
them. Despite exhibiting the least impressive results, the
bottleneck block model demonstrated a high F1 score,
highlighting its robustness (Wang et al.,, 2023).

The identity block model marginally surpassed the
convolutional block model upon examining the WISDM

” Silpakorn Universtiy

data set, which was superior to the UCI-HAR data set. These
results illustrate that model performance can vary with the
data set, suggesting that the optimal model choice can vary
based on specific data set characteristics (Yin et al,, 2022).
The bottleneck block model and original lightweight CNN
exhibited comparatively lower performance.

A significant observation is the consistent performance
patterns exhibited by all models across the four metrics,
suggesting a uniform performance regardless of the
evaluation metric used. Another important factor was that
the model validation scores consistently surpassed the
testing scores. This finding indicates that the models
possess good generalization capabilities and can adapt
aptly to unseen data. Evidently, even minor differences
between the models can potentially become significant in
specific applications where slight improvements may lead
to a substantial impact (Wang et al., 2023).

The results revealed that the proposed lightweight
CNN with a convolutional block outperformed other
models, considering the F1 score for the UCI-HAR data set,
whereas the proposed lightweight CNN with an identity

13
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block achieved the highest F1 score on the WISDM data set.
Despite these slight improvements, they are significant
when considering the computational complexity. As
indicated in Figure 1, the lightweight CNN models with
integrated blocks exhibited a strong performance while
simultaneously reducing the computational requirements,
making them a suitable choice for deployment in devices
with limited resources (Chen and Shen, 2017).

However, the most suitable model may vary based on
the data set, underlining the significance of tailoring
optimizations to specific data sets (Raziani and
Azimbagirad, 2022). Despite minor variations in

Table 4. Comparison of model performance

performance, all models exhibited commendable and
consistent results across different evaluation metrics.
Therefore, the lightweight CNN models with integrated
blocks hold substantial potential for future research and
real-world applications in HAR.

In Table 4, the performances of different models are
compared, and the proposed models surpass the accuracy
of previous state-of-the-art models (Ignatov, 2018; Peppas
et al, 2020; Ronald et al, 2021). This finding further
strengthens the conclusion that the proposed lightweight
CNN models with integrated blocks offer viable
alternatives to the existing models for HAR tasks.

Model Accuracy

UCI-HAR WISDM
CNN (Ignatov, 2018) 0.9531 0.9332
CNN (Peppas et al.,, 2020) - 0.9436
iSPL Inception (Ronald et al.,, 2021) 0.9509 -
Original CNN (Ronald et al., 2021) 0.9624 0.9450
Proposed lightweight CNN with convolutional block 0.9627 0.9513
Proposed lightweight CNN with identity block 0.9612 0.9523

5.CONCLUSION

This investigation into lightweight CNN models with
integrated blocks demonstrated their potential for
improved HAR. Notably, the convolutional and identity
block models outperformed the original lightweight
CNN model across the UCI-HAR and WISDM data sets.
However, the optimal model may differ, depending on
the data set. All models, despite minor variations,
highlight robust performance across various evaluation
metrics, balancing high performance with reduced
computational complexity, rendering them appropriate
for environments with limited computing resources.

Although the findings of this study are promising,
they also recognize certain limitations and suggest
directions for future research. One such limitation is the
focus on only two data sets, emphasizing the necessity
for broader testing across diverse data sets to ensure
the generalizability of the proposed models. The second
step involves the optimization of the integrated blocks
to further enhance the overall model performance
and efficiency. In addition, exploring real-world
implementations could provide an intriguing avenue for
future investigation.
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