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ABSTRACT

A combination of high-dimensional sparse data and multicollinearity problems can
lead to instabilities in a predictive model when applied to a new data set. The least
absolute shrinkage and selection operator (Lasso) is widely employed in machine-
learning algorithm for variable selection and parameter estimations. Although this
method is computationally feasible for high-dimensional data, it has some
drawbacks. Thus, the adaptive Lasso was developed using the adaptive weight on
penalty function. This adaptive weight is related to the power order of the estimators.
Hence, we focus on the power of adaptive weight on two penalty functions: adaptive
Lasso and adaptive elastic net. This study aimed to compare the performances of
the power of the adaptive Lasso and adaptive elastic net methods under high-
dimensional sparse data with multicollinearity. Moreover, the performances of four
penalized methods were compared: Lasso, elastic net, adaptive Lasso, and
adaptive elastic net. They were compared using the mean of the predicted mean
squared error for the simulation study and the classification accuracy for a real-data
application. The results showed that the higher-order of the adaptive Lasso method
performed best on very high-dimensional sparse data with multicollinearity when the
initial weight was determined using a ridge estimator. However, in the case of high-
dimensional sparse data with multicollinearity, the square root of the adaptive Lasso
together with the initial weight using Lasso was the best option.

Keywords: high-dimensional data; machine learning; multicollinearity; penalized logistic regression;
penalty function

(Sudjai et al.,, 2023a, 2023b). In the case of a binary
outcome variable, the classical method used to determine

Advances in technology have resulted in computers being
able to store vast amounts of data effectively. With such
large volumes of data, tools are desired that can extract
useful information. Particularly needed are predictive
models that can provide accurate results to help decision-
making. Logistic regression models are widely employed
in data analysis (Makalic & Schmidt, 2010; Sudjai &
Duangsaphon, 2020) and machine learning communities
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coefficients in the logistic regression model is maximum
likelihood estimation (MLE). However, the MLE is only
appropriate when the data is large enough and has no
multicollinearity (Hosmer et al., 2013; Kleinbaum & Klein,
2010; Senaviratna & Cooray, 2021). One of the challenges
in model building is high-dimensional data, which can lead
to model overfitting (Brimacombe, 2014). Another
challenge in model building is the presence of
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multicollinearity (Belsley et al., 1980), which can inflate
the variance of the MLEs in the logistic regression model
(Hosmer et al, 2013; Kleinbaum & Klein, 2010).
Consequently, the MLE used for coefficient estimation in
logistic regression is unstable and inappropriate for
building a classification model (Kastrin & Peterlin, 2010).

In order to remedy these two problems, the penalized
method can be employed in the logistic regression model.
This method can reduce variance in parameter estimation
and help alleviate model overfitting (Hosseinnataj et al.,
2019; Pavlou et al,, 2016). Presently, the popular methods
for penalty function are ridge regression, Lasso, and elastic
net (Hoerl & Kennard, 1970; Tibshirani, 1996; Zou &
Hastie, 2005). However, the performance of each method
is not the same for each data item. Thus, several previous
studies focused on developing an adaptive weight for the
penalty function (Zou, 2006; Zou & Zhang, 2009).

However, no studies have compared the performances
of penalized methods in logistic regression, focusing on the
power of adaptive weight on the penalty function under
high-dimensional sparse data with multicollinearity.
Therefore, this study focused on the power of adaptive
weight on the adaptive Lasso and adaptive elastic net
methods. The aim was to compare the performances of
the power of the adaptive Lasso and adaptive elastic
net methods under high-dimensional sparse data with
multicollinearity. Additionally, the performances of four
penalized methods (Lasso, elastic net, adaptive Lasso, and
adaptive elastic net) were compared on simulation study
and a real-data application.

2. MATERIALS AND METHODS

Binary logistic regression was employed to evaluate the
logistic regression coefficient, where a dependent variable
(Y;) is a dichotomous variable, i.e. 1 = positive class or 0 =
negative class. This dependent variable has a Bernoulli
distribution (Y; ~ Bernoulli(m;)). Hence,y; € {0,1}, is a
n X 1 vector where n is the sample size. X is an X p data
matrix of p independent variables and x; is a 1 X p vector
of the independent variables for the i‘"® row of X.
Therefore, the binary logistic regression model is as in
Equation 1.

_ exp{lfo+2?=1 Xijﬂj}

= 1+exp{ﬁ0+2§’:1xijﬂ,-}'l =123,...,nandj =1,2,3,...,p (D

T

where m; represents a probability that an observation is in
a specified category of the dichotomous variable. m; =
P(Y; = 1]|x;) is the conditional probability that y; =1,
given x;. For y; = 0, the conditional probability thaty; = 0,
given x;, can be presented as 1 — m; = P(Y; = 0|x;).

Logistic regression is the logit transformation, which
is given in Equation 2.

In (&) = Bo + Xy xisB; (2)

where f = (ﬁo,ﬁl,ﬁz,...,ﬂp)T is a vector composed of
logistic regression coefficients. 8, is the intercept. f; is a

p X 1 unknown coefficient vector. The left term in Equation 2
is the logit function.
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The classical method used for parameter estimation in
the model is the MLE, determined in Equation 3.

II?MLE = argmax Crilyiin(m) + A —y) In(1—m)D (3)

Effect of multicollinearity on the MLE

When the number of independent variables far exceeds the
sample size (referred to as high-dimensional data), the
common phenomenon of multicollinearity arises (Belsley
et al,, 1980; Brimacombe, 2014). This leads to inflation in
variances of the MLE. Consequently, the obtained
estimators are unstable and cannot reflect the actual
effects of the independent variables (Urgan & Tez, 2008).

Problem of model interpretation

In cases where p > n, the obtained predictive model
may be complex, making it more difficult to interpret.
A complex predictive model can be important for
understanding complex processes. However, as the model
becomes increasingly large and convoluted, serious
problems can arise. The model may be overfitting
(Brimacombe, 2014), and it may not be well identified in
classification.

Therefore, variable selection procedures are crucial to
alleviate the above problems. With the MLE, the stepwise
method is widely used for the automatic selection of
significant predictors. The Wald statistic is used for
hypothesis testing in logistic regression. However, this
testing cannot be used when high-dimensional data are
used because the development of the Wald statistic is
based on maximum likelihood estimators (Hosmer et al.,
2013; Kleinbaum & Klein, 2010). Consequently, penalized
logistic regression is used as an alternative method to the
MLE.

Penalized logistic regression analysis

The aim of penalized logistic regression is to determine
logistic regression coefficients when the data are highly
correlated and highly dimensional. The penalized logistic
regression coefficient is defined in Equation 4.

Brir = arg mﬁin (@il In(m) + (L= y) In(1 = m)]} +
PA(B)); 420 (4)

where P;(f) is a penalty function term, and 1 is the tuning
parameter. In the case where A equals zero, fip,z = BuLe-

Regrading selecting 4, cross-validation is commonly used
to evaluate the optimal value of this parameter.

2.1 Ridge regression

Ridge regression was originally designed to remedy the
multicollinearity problem in a linear regression model.
This penalty function method was proposed by Hoerl
and Kennard (1970). Schaefer et al. (1984) proposed
a modified ridge estimator, and it was subsequently
applied by Le Cessie and Van Houwelingen (1992). The
method of Le Cessie and Van Houwelingen significantly
reduces the variance of/?. The ridge regression penalty

(£2-norm penalty) is defined by Equation 5.

Pl (B) = AR, B? (5)
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Hence, the estimation of fusing the ridge regression
penalty is defined in Equation 6.

!?ridge =arg m}n (—{Z?ﬂ[yl' () + A -y)In(1-m)]} +
P;idge-(g)) ’.l >0 (6)

In the logistic regression model, the ridge regression
penalty (also called the shrinkage penalty) penalizes the
model by shrinking the coefficients toward zero. In the
case of A = 0, there is no shrinkage. With an increase in
the value of A (4 = o0), the magnitudes of the coefficients
will tend to decrease but will not equal zero. This method
has good performance when the data are high
dimensional and the independent variables are collinear.
However, an obvious disadvantage of this method is the
lack of a variable selection property because it includes
all independent variables in the final model. Therefore,
the obtained model may be difficult to interpret when there
is alarge number of independentvariables (James etal,, 2013).

2.2 Lasso

Lasso was proposed by Tibshirani in 1996. This method
avoids the disadvantage of ridge regression (the inability
to reduce the number of independent variables in the
final model). The concept of Lasso is similar to ridge
regression in that the coefficient estimates are shrunk
toward zero. The Lasso penalty (#;-norm penalty) is
determined in Equation 7.

Pi*0(B) = A X]_,|B)] (7

Thus, the estimation of § using the Lasso penalty is
presented in Equation 8.

Elasso =arg mﬁin (—{E?q[}ﬁ' In(m)+ A —-y)In(1-m)]} +
P/{assotg)) sA1>0 (8)

The tuning parameter A controls the shrinkage of[:i by

using cross-validation method (Efron et al., 2004; Hastie et
al,, 2009). When this tuning parameter is sufficiently large,
the Lasso penalty has the effect of shrinking some
coefficient estimates to exactly zero. This means that Lasso
can perform variable selection. Consequently, the model
obtained from Lasso is easier to interpret than that from
ridge regression (James et al, 2013). Although Lasso is
computationally feasible for high-dimensional data, it has
some drawbacks. First, if p > n, Lasso selects at most n
independent variables. Moreover, if there is a group of
variables among which the pairwise correlations are very
high, Lasso tends to select only one independent variable
from the whole group and does not care which one is
selected (Zou & Hastie, 2005). Finally, Lasso does not have
oracle properties (Fan & Li, 2001; Zou, 2006).

2.3 Elastic net

Elastic net, proposed by Zou and Hastie in 2005, combines
the properties of Lasso and ridge regression. The elastic
net penalty includes the parts of the #;-norm and #,-norm
penalties, which are defined in two steps. In the first step,
the naive elastic net estimators are determined as in
Equation 9.
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?Nelastic =arg mﬁin (=Lilyi tn(m) + (1= y) In(1 =)} +
WXL B + 22 5 BF) (9)

where the penalty parameters (44,4,) are more than or

Az
At when a € [0,1).

The estimation of § using the elastic net penalty is
given in Equation 10.

equal to zero.A =1, + A, and a =

Eelasticnet = (1 + /12 )?Nelastic (1 0)

For 4; and 4,, these parameters are used to control the
shrinkage of f# with cross-validation strategy (Hastie et al,,
2009). Although the elastic net has superior performance

to Lasso, it also lacks oracle properties (Zou & Zhang,
2009).

2.4 Adaptive Lasso

One important reason for Lasso may be instability due to
the lack of oracle properties (Fan & Li, 2001). To
overcome this disadvantage, Zou (2006) proposed the
adaptive Lasso in 2006. The concept of the adaptive Lasso
is a different weight for each parameter in the ¢;-norm
penalty. The adaptive Lasso penalty is defined in
Equation 11.

PAAlaSSO(é) = AZ?ﬂleﬁjl (11)

Therefore, the estimation of § using the adaptive Lasso
penalty is given in Equation 12.

,I?Alasso =arg m[}n (_{Z;Ll[yi In(m)+ (1 —-y)in(1- T[i)]} +
P/{llass}z (@)) (12)

wherew = (wq,w,,..., wp)Tis a vector composed of weight
vector. w; = |[§j|_y; y > 0 and y is the power of the adaptive
weight. It can be seen that w; depends on the root n-
consistent initial values of ﬁj. The initial weight can be
determined by using the MLE, ridge regression, or Lasso
method (Pavlou et al, 2016; Zou, 2006). If w; = |(ﬁmge)j s

(ﬁ”,idge)j is obtained from Equation 6. For w; = |(Elam)j

Y
)

(/?,assa)j is obtained from Equation 8. This weighted method

is used to reduce the selection bias by assigning a smaller
weight to large coefficients and a higher weight to small
coefficients. Consequently, the adaptive Lasso can truly enjoy
oracle properties (Zou, 2006). For A and y, these parameters
are used as 2-dimensional cross-validation to tune the
adaptive Lasso.

2.5 Adaptive elastic net

The adaptive elastic net method proposed by Zou and
Zhang (2009) is a hybrid of adaptive Lasso and ridge
regression. Consequently, it enjoys oracle properties and
has superior performance to the elastic net method. The
adaptive elastic net penalty is given in Equation 13.

PGS (B) = A1 X5y Wy || + A2 X, B (13)

A Y
where w; = |(,Belasticnet)j| ;v >0.
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Thus, the estimation of f using adaptive elastic net is
presented in Equation 14.

@Aelastic =arg mﬁin (—{2&1[% In(m)+ A -y)In(1-m)]} +
Pﬂﬁg;tk(ﬁ)) (14’)

The tuning parameter controls the shrinkage of 8 by using
the Bayesian information criterion cross-validation method.

2.6 Monte Carlo simulation
The important factors affecting the accuracy of a
predictive/classification model are the number of predictors
(), the sample size (n), and high correlation among predictors.
In this simulation study, two conditions were considered:
1) High-dimensional sparse data (Cherkassky &
Mulier, 2007). For p>n and under the sparsity
assumption on the true coefficients (8), that the number

of significant predictors defined is equal to g, and given
. T

q<p. x = (xi, %) with x;, = (X1, %12, Xi3,..., Xiq) €
. T

R?. Along with x;, = (xi(qﬂ),xi(q+2),xi(q+3),...,xip) €

RP~4, Thus, X = (x4, x5)T € R™? is the matrix of all

independent variables where x4 = (x;4,...,%n4)" € R™4

and xp = (Xip, ..., ¥np)" € RP*@~D),
2) All independent variables are correlated by using

the Toeplitz correlation structure, given in Equation 15
(Hardin et al., 2013).

(15)

where k denote the number of independent variables,
which is a positive integerand 0 < p < 1.

The Monte Carlo simulations were done using 50 and
1000 independent variables (p). The sample size (n)
equaled 30 and 40. The dependent variables were
generated from the Bernoulli distribution with parameter
m;. The independent variables were generated from the
multivariate normal distribution with a mean of zero and
covariance Y. (X ~ N(0,Y)). The degree of correlation (p)
was set to 0.1, 0.3, 0.5, 0.75, 0.85, and 0.95. Interpretation
of p is as follows: negligible correlation (0.00 < p < 0.30);
low positive correlation (0.30 < p < 0.50 ); moderate
positive correlation (0.50 < p < 0.70); high positive
correlation (0.70 < p < 0.90); and very high positive
correlation (0.90 < p < 1.00) (Mukaka, 2012). The number
of significant predictors (q) equaled 15. The logistic
regression coefficients were set the constant values as .
After that, the data was split into two subsets (the learning
data set, 80% and the testing data set, 20%). The
simulation study compared the performances of the four
penalized methods (Lasso, elastic net, adaptive Lasso, and
adaptive elastic net) using the predicted mean square
errors (PMSE). The estimated PMSE was evaluated as per
Equation 16.

S:H science, engineering
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PMSE = zin:l!z:nﬁﬁ (16)

where y; and ; were the i*" actual and predicted values
of the dependent variables, respectively. The optimal
value of the tuning parameter (1) was found using a 10-
fold cross-validation strategy (Hastie et al., 2009; Pavlou
et al,, 2016; Zou & Hastie, 2005). The experiment was
repeated 1000 times to obtain a stationary result. Thus,
the MPMSE was evaluated from the average of 1,000
estimates of PMSE; using Equation 17.

__1 y1000
MPMSE = —— 31000 PMSE- (17)

The penalized methods providing the lowest MPMSE
were considered the best option. The flowchart of the
simulation procedure is shown in Figure 1.

For the real-data application, the workflow diagram of
the machine-learning procedure with the four penalized
methods is shown in Figure 2. The classification accuracy
of each method was determined as per Equation 18.

TP + TN
TP+ FP+FN+ TN

Accuracy (%) = x 100. (18)

where the true positive (TP) / true negative (TN)
presents that the prediction is correct. False positive (FP)
represents that the prediction is wrong (also called a type
I error). A false negative (FN) shows that the prediction
is wrong (also called a type Il error).

3. RESULTS AND DISCUSSION

3.1 Simulation study
Table 1 lists the MPMSE values for the four methods for
different p when p =50 and 1000, and n = 30 and 40. The
MPMSE values of the all methods increased when p was
increased while holding p and n fixed. For an increase in
n, the MPMSE values of all methods decreased. The
MPMSE values of the adaptive Lasso method were less
than those of the Lasso, elastic net, and adaptive elastic
net methods.

With high-dimensional sparse data (p = 50, n = 30, and
n =40, and for different p), the performance of the adaptive
Lasso method depended on the power of the adaptive
weight (y) and the initial weight used. In the case of p = 0.1,
0.3, and 0.5, the MPMSE values of the adaptive Lasso
method with w; = |(,l?ridge)j "~ were less than those for the
other methods. For p = 0.75, 0.85, and 0.95, the inflation of
the MPMSE values for w; = |(ﬁlam)j
compared with the other methods.

In the case of very high-dimensional sparse data (p =
1000, n = 30, n = 40, and for different p), the smallest
MPMSE values were obtained from the adaptive Lasso
method using w; = |(ﬁridge)j ~ for p =0.1, 0.3, and 0.5. For
p =0.75, 0.85, and 0.95, the MPMSE values for the higher-
order of the adaptive Lasso method together with the

initial weight using the ridge estimator were less than
those for the other methods.

“was the smallest
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&
Generate independent and
dependendent variables
under various situations

'

Split the data set into
two subsets (80 : 20)

v v
Learning data set Testing data set
(80%) (20%)

:I 10-fold cross-validation

! '

Training set Validation set

¥

Variable selection

using Lasso, elastic net, adaptive Lasso, and
adaptive elastic net

v

Build model
using penalized logistic regression
based on selected variables

Check
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(Validate)

A\ 4

Yes The best model
of each method

|

Compute the PMSE value
of each method

\4

Check No

replications = 1000

Yes

Compute the average PMSE value
of each method

Figure 1. Flowchart of the simulation procedure
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The data set

A\ 4

Split the data set into

two subsets
(80 : 20)

v

Learning data set
(80%)

v

Testing data set
(20%)

i 10-fold cross-validation

v

Training set

Validation set

'

Variable selection
using
Lasso, elastic net, adaptive Lasso, and
adaptive elastic net

'

Build model
using
penalized logistic regression based on
selected variables

!

Validate <

The best model of each method

Evaluation

(Accuracy)

Results

Figure 2. Workflow diagram of the machine-learning procedure

From the simulated results in Table 1, Figure 4a, and
Figure 4c, it can be seen that the important factors
influencing the MPMSE values were the correlated
independent variables (i.e, p), the power of adaptive
weight on penalty function, the initial weight, and the
sample size. An increase in the correlation coefficient level
leads to an increase in the MPMSE values for all methods
when p and n are held constant. The worst case was
obtained when the correlation coefficient level was very
high (p = 0.95). In the case of the power of the adaptive
weight on the #;-norm penalty, choosing the higher-order
of the adaptive Lasso method using the initial weight with
the ridge estimator produced the smallest MPMSE value
for very high-dimensional sparse data with
multicollinearity. However, for high-dimensional sparse

data with multicollinearity, w; = |(ﬁmsso) ~* is preferred.

J

science, engineering
and health studies

i=H

We can see that an increase in the sample size (n)
decreases the MPMSE values for all methods, while holding
p and p fixed.

3.2 Real-data applications
In this section, the performances of 4 penalized methods
were compared on two real-data sets with high-
dimensional sparse data with multicollinearity.

First, a soft-tissue tumor data set was obtained from
40 patients (20 intramuscular lipomas and 20 well-
differentiated liposarcomas). Between 2010 and 2020, the
patients were diagnosed using their final pathological
findings, and underwent preoperative magnetic resonance
imaging (MRI) scans and total excision surgery. For our
case study, the binary outcome of interest was an
intramuscular lipoma or a well-differentiated liposarcoma.
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The predictors of interest were 50 texture features as
quantitative data that were extracted from preoperative
T1-weighted MRI (Supplementary: Table S1). These
features explain the spatial arrangement of gray-level
pixels in a neighborhood on the MRI images such as
fineness, coarseness, homogeneity, and heterogeneity.
Regarding the detail of definition and formula for these
texture features, they can be described according to
PyRadiomics’ documentation (Supplementary: Table S2).

Another data set (i.e.,, leukemia data set) from Golub et
al. (1999) with gene expression monitoring data (via DNA
microarray) was used to classify patients with acute

myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL). This leukemia data set was obtained from
72 patients. The data set contains measurements
corresponding to ALL and AML specimens from bone
marrow and peripheral blood, and it involves 7129
leukemia genes. For our case study, 40 patient samples
were randomly selected from the data set. The outcome of
interest was AML/ALL as a dichotomous variable. The
predictors of interest comprised 1000 leukemia genes as
continuous variables, which represented a subset of the
7129 genes.

Table 1. MPMSE values for different penalized methods

p n p Lasso Elastic net Adaptive Lasso Adaptive elastic net
w; = |(ﬁridge)j|7y w; = |(ﬁlasso)j|7y w; = |(ﬁelasticnet)j|7y
y=05 y=1 y=2 y=05 y=1 y=2 y=05 y=1 y =2
50 30 0.10 01767 01797  0.1656 0.1618* 01627 0.1665 01691 01740 01682 0.1706 0.1746
0.30 01772 0.1812 0.1679 0.1657* 0.1658 0.1679 01706 0.1742 01710 01735 0.1773
0.50 01833 01878  0.1728 0.1708* 01721 0.1738 01767 0.1816 01754 01777 0.1822
0.75 01888 01918  0.1851 0.1842 01852 0.1828* 0.1841 0.1870 0.1859 0.1875 0.1910
0.85 0.1924  0.1980 0.1909 01907 0.1913 0.1880* 0.1894  0.1927 01909 0.1930 0.1961
0.95 01957 01984  0.1951 0.1951 01978 0.1918* 0.1933 0.1960 0.1946 0.1959 0.1977
40 0.10 01665  0.1710 0.1589 0.1565* 0.1573 01572 01606 0.1646 01579 0.1609 0.1663
0.30 01741  0.1743 01636 0.1623* 0.1639 0.1648 01668 0.1715 01636 01672 0.1718
0.50 0.1747  0.1759 0.1667 0.1666* 0.1675 01675 01702 0.1742 01671 01698 0.1743
0.75 0.1845  0.1883 0.1821 01824 0.1830 0.1778* 01795 0.1841 01802 0.1825 0.1857
0.85 01870 01908  0.1887 0.1893 0.1917 0.1825*% 0.1857 0.1892 01855 0.1882 0.1925
0.95 0.1943  0.1953 0.1973 01985 02030 0.1896* 0.1917 0.1948 0.1930 0.1938 0.1969
1000 30 0.10 0.1807 01837  0.1555 0.1522* 01546 0.1689 01708 0.1742 01744 0.1761 0.1776
0.30 0.1845  0.1871 01595 0.1574* 0.1579 01734 01752 0.1775 01764 01774 0.1794
0.50 0.1851  0.1899 0.1636 0.1594* 0.1601 01760 01767 0.1787 01793 01809 0.1833
0.75 0.1890  0.1902 0.1680 01625 0.1620* 0.1779 01799 0.1817 01811 0.1831 0.1848
0.85 01898 01937 0.1685 0.1660 0.1656* 0.1793 0.1811 0.1839 0.1840 0.1858 0.1877
0.95 01929 01956  0.1798 0.1753 0.1749* 0.1835 01861 0.1876 0.1861 0.1879 0.1902
40 0.10 01679 01718  0.1447 0.1399* 01421 0.1548 01566 0.1594 0.1561 0.1583 0.1617
0.30 01780 01837  0.1556 0.1519* 0.1524 0.1645 01664 0.1699 01665 01697 0.1723
0.50 01815 01858  0.1598 0.1545* 0.1586 0.1722 01735 0.1766 01727 0.1743 0.1805
0.75 0.1851  0.1885 0.1649 01596 0.1590* 0.1752 01765 0.1793 01759 0.1777 0.1809
0.85 01893  0.1921 0.1678 01642 0.1637* 01770 01790 0.1824 01786 0.1810 0.1844
0.95 01913  0.1930 01762 01737 01733* 01813 01834 0.1868 0.1820 0.1851 0.1879

Note: * The penalized methods providing the lowest MPMSE

Silpakorn University
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Figure 3. Correlation matrix of 50 texture features in 40 patients

Regarding Figure 3, the correlation matrix presents
different Pearson correlation coefficient values and
shades. The light shades denote that the predictors have a
low correlation, whereas the dark shades present a high
correlation among predictors. It is apparent that the
multicollinearity problem occurred in this sample data set.

Table 2, shows the classification performances of the
four penalized methods in distinguishing between intramuscular

lipomas and well-differentiated liposarcomas. The highest
accuracy values were obtained from the adaptive Lasso

method with w, = |({?lasso)j|70'5, while the lowest accuracy

values were obtained from the elastic net method. For
Table 3, the higher-order of the adaptive Lasso method
together with the initial weight using the ridge estimator
showed the best performance for differentiating between
AML and ALL.

Table 2. Accuracy of machine-learning algorithms for distinguishing between intramuscular lipomas and well-
differentiated liposarcomas for 50 texture features in 40 patients

Lasso Elastic net Adaptive Lasso Adaptive elastic net
wj = |(Bridge) j|—y wj = |(£lasso) j|—y wj = |(Belasticnet) j|—y
y=05 y=1 y=2 y=05 y=1 y=2 y=05 y=1 y=2
Accuracy (%)  66.7 58.3 66.7 62.7 40.5 87.5% 71.0 58.3 70.8 70.7 54.2
Note: * The penalized methods providing the highest accuracy
8
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Table 3. Accuracy of machine-learning algorithms for differentiating between acute myeloid leukemia and acute

lymphoblastic leukemia for 1000 leukemia genes in 40 patients

Lasso Elastic net Adaptive Lasso Adaptive elastic net
Wy = |(Briage),| Wy = | (Buasso),| W) = | Betastener),|
y =05 y=1 y=2 y =05 y=1 y=2 y=05 y=1 y=2
Accuracy (%) 85.0 82.5 87.0 88.0 90.0* 85.0 77.5 73.0 85.0 83.0 80.0

Note: * The penalized methods providing the highest accuracy

Elastic net | 5550 Adaptive

a b
The simulated data set, p = 50 and n = 40 The soft-tissue tumor data set, p = 50 and n = 40
0.20
100
0.19 —_
T 80
0.18 =~
u = Elastic net :? 60
= 017 Lasso 5 40
% Adaptive elastic net 8
0.16 = Adaptive Lasso < 20
0.15 0
Elastic net
0.00 Lasso A gaptive .
1 030 050 075 0.85 0.95 elastic net Adaptive
The degree of correlation (o) Lasso
c d
The simulated data set, p = 1000 and n = 40 The leukemia data set, p = 1000 and n = 40
0.20 100
0.19 g 80
u 0.18 = Elastic net 2 60
= 0417 = Lasso £
A = Adaptive elastic net 3 40
=0 = Adaptive Lasso & 20
0.15
0.14 0
0.00

030 050 0.75 0.85 0.95
The degree of correlation (o)

Adaptive

elastic net
Lasso

Figure 4. The mean of the predicted mean square errors (mpmse) values and accuracies of the four penalized methods

From the results of the real-data applications in Tables
2 and 3 as well as Figure 4b and Figure 4d, it is obvious that
the adaptive Lasso method showed a better performance
than the other methods for classification on the high-
dimensional sparse data with multicollinearity. This
finding corresponds to the results of the simulation
study.

4. CONCLUSION

We propose the use of the adaptive Lasso method for
classification in binary outcome on high-dimensional
sparse data with multicollinearity as follows:

1) In the case of high-dimensional sparse data, it should
be considered using the first power of the method and
ridge estimator as the initial weight when there is a low or
moderate correlation between the independent variables.
On the other hand, if the independent variables are highly
correlated, the initial weight should be evaluated using the
Lasso estimator and y = 0.5.

Silpakorn University

2) For very high-dimensional sparse data with
multicollinearity, the higher-order of the adaptive Lasso
method should be employed, using ridge estimator as the
initial weight.

From the simulation study and the real-data applications,
it is clear that the predictive performance of the penalized
logistic regression model depends on the penalty function.
In practice, if the penalty function method is appropriate,
it constructs models that have good performance. Table 4
compares the appropriateness and limitations of each
penalized method in the penalized logistic regression model.
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Table 4. Comparison the appropriateness and limitations of each penalized method

Method Appropriateness of application Limitation
Ridge - All independent variables relate to - Lacks selection of variables
the dependent variable.
- Multicollinearity exists.
Lasso - The independent variables show a - When n is greater than p and the independent variables exhibit
low to moderate level of collinearity. high collinearity, Lasso is dominated by ridge regression.
- If the number of variables p is much greater thann (p > n), Lasso
will only select up to n variables before reaching saturation.
- When independent variables in the data set have a high pairwise
correlation, Lasso chooses only one or a few variables from a group
of correlated ones, without considering which one is chosen.
- Lacks oracle properties
Elastic net - Multicollinearity is present. - Lacks oracle properties
Adaptive Lasso - The independent variables exhibit a

high level of correlation.

Adaptive elastic net - The independent variables are highly

correlated.
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SUPPLEMENTARY

Table S1. List of 50 texture features

Gray-level
co-occurrence matrix

Gray level
dependence
(GLCM) matrix (GLDM)

Gray-level run length
matrix (GLRLM)

Gray-level size zone
matrix (GLSZM)

Neighbouring
gray tone
difference
matrix
(NGTDM)

glecm_Autocorrelation (f1)
glem_ClusterProminence
(f2)

glcm_ClusterTendency (f3)
glcm_Contrast (f4)
glem_Correlation (f5)
glcm_DifferenceAverage
(f6)
glem_DifferenceEntropy
(f7)
glcm_DifferenceVariance (f8)
glem_Id (f9)

glem_Idm (f10)

glem_Idmn (f11)

glem_Idn (f12)

glem_Imc1 (f13)
glem_Imc2 (f14)
glem_InverseVariance (f15)
glcm_JointAverage (f16)
glem_JointEnergy (f17)
glcm_JointEntropy (f18)
glem_MaximumProbability
(f19)

glem_SumAverage (f20)

glem_SumEntropy (f21)

glem_SumSquares (f22)

gldm_GrayLevelNon
Uniformity (f23)

glrlm_GrayLevelVariance
(f24)

glrlm_HighGrayLevelRun
Emphasis (f25)

glrlm_LongRunEmphasis
(f26)

glrlm_LongRunHighGray
LevelEmphasis (f27)

glrlm_LongRunLowGray
LevelEmphasis (f28)

glrlm_LowGrayLevelRun
Emphasis (f29)

glrlm_RunEntropy (f30)

glrlm_RunLengthNon
Uniformity (f31)

glrlm_RunLengthNon
UniformityNormalized (f32)

glrlm_RunPercentage (f33)

glrlm_ShortRunEmphasis
(f34)

glrlm_ShortRunHighGray
LevelEmphasis (f35)

glrlm_ShortRunLowGray
LevelEmphasis (f36)

glszm_GrayLevelNon
Uniformity (f37)

glszm_GrayLevelVariance
(f38)

glszm_HighGrayLevelZone
Emphasis (f39)

glszm_LargeAreaEmphasis
(f40)

glszm_LargeAreaHighGray
LevelEmphasis (f41)

glszm_LargeAreaLowGray
LevelEmphasis (f42)

glszm_LowGrayLevelZone
Emphasis (f43)

glszm_SizeZoneNon
Uniformity (f44)

glszm_SmallAreaEmphasis
(f45)

glszm_SmallAreaHighGray
LevelEmphasis (f46)

glszm_SmallAreaLowGray
LevelEmphasis (f47)

glszm_ZoneEntropy (f48)

glszm_ZonePercentage
(f49)

ngtdm_Contrast
(f50)

S:H science, engineering
- and health studies

12



Sudjai, N, et al.

Table S2. Example of the formula and definition of the texture features

Feature class name

Feature name

Formula

Definition

Gray level co-occurrence matrix (GLCM):

Where is the normalized co-occurrence
. .o PG DN

matrix [p(z,]) = ZP(i,j)]' P(i,j) is the co-

occurrence matrix for an arbitrary § and

0. N, is the number of discrete intensity

levels in the image. € is an arbitrarily

small positive number (=~ 2.2 x 10716),

Gray-level run-length matrix (GLRLM):

Where N, is the number of discreet
intensity values in the image. N; is the
number discreet run lengths in the image.
P(i, j) is the run-length matrix for an
arbitrary direction 6, when i =
1,2,3,...,Nyandj = 1,2,3,...,N,.

Gray level size zone matrix (GLSZM):

Where N, is the number of discreet
intensity values in the image. Ny is the
number of discreet zone sizes in the
image. N,, is the number of voxels in the
image. N, is the number of zones in the
ROI, which is equal to Zlivfl 2721 P(i,j)
and1 < N, < N,,. P(i, ) is the size zone
matrix, wheni = 1,2,3,..., Ng andj =
1,2,3,...,N,.

glem_JointEnergy

glem_jointEntropy

glrlm_RunLengthNo
nUniformity (RLN)

glrlm_LowGrayLeve
IRunEmphasis
(LGLRE)

glszm_SmallAreaE
mphasis (SAE)

glszm_LargeAreaE
mphasis (LAE)

Joint energy =
Ng Ng

> eany

i=1 j=1

Joint entropy =
Ng Ng

=3 P 10gawC) + )

i=1 j=1

i (S0, PG

RIN =" ®

Ny <, P(i,j|0
sy, yie, 2E110)

LGLRE =
N.(6)

ZN_.Q ZNS P(l'])

j=1"jz
SAE = N,
N, PR
LAp = S D5 P

N,

Measures homogeneous patterns
in the image. Greater energy
values indicate that there are more
instances of intensity value pairs
in the image that neighbour each
other at higher frequencies.

Measures the
randomness/variability in
neighbourhood intensity values.

Measures the similarity of run
lengths throughout the image.
Lower values indicate that there
are more homogeneity among run
lengths in the image.

Measures the distribution of low
gray-level values. Higher values
indicate that there are a greater
concentration of low gray-level
values in the image.

Measures the distribution of small
size zones. Greater values indicate
that there are more smaller size
zones and more fine textures.

Measures the distribution of large
area size zones. Greater values
indicate that there are more larger
size zones and more coarse
textures.
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