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ABSTRACT 
 
A combination of high-dimensional sparse data and multicollinearity problems can 
lead to instabilities in a predictive model when applied to a new data set. The least 
absolute shrinkage and selection operator (Lasso) is widely employed in machine-
learning algorithm for variable selection and parameter estimations. Although this 
method is computationally feasible for high-dimensional data, it has some 
drawbacks. Thus, the adaptive Lasso was developed using the adaptive weight on 
penalty function. This adaptive weight is related to the power order of the estimators. 
Hence, we focus on the power of adaptive weight on two penalty functions: adaptive 
Lasso and adaptive elastic net. This study aimed to compare the performances of 
the power of the adaptive Lasso and adaptive elastic net methods under high-
dimensional sparse data with multicollinearity. Moreover, the performances of four 
penalized methods were compared: Lasso, elastic net, adaptive Lasso, and 
adaptive elastic net. They were compared using the mean of the predicted mean 
squared error for the simulation study and the classification accuracy for a real-data 
application. The results showed that the higher-order of the adaptive Lasso method 
performed best on very high-dimensional sparse data with multicollinearity when the 
initial weight was determined using a ridge estimator. However, in the case of high-
dimensional sparse data with multicollinearity, the square root of the adaptive Lasso 
together with the initial weight using Lasso was the best option. 
 
Keywords: high-dimensional data; machine learning; multicollinearity; penalized logistic regression; 
penalty function 
 
 
 

1. INTRODUCTION                                    
 
Advances in technology have resulted in computers being 
able to store vast amounts of data effectively. With such 
large volumes of data, tools are desired that can extract 
useful information. Particularly needed are predictive 
models that can provide accurate results to help decision-
making. Logistic regression models are widely employed 
in data analysis (Makalic & Schmidt, 2010; Sudjai & 
Duangsaphon, 2020) and machine learning communities 

(Sudjai et al., 2023a, 2023b). In the case of a binary 
outcome variable, the classical method used to determine 
coefficients in the logistic regression model is maximum 
likelihood estimation (MLE). However, the MLE is only 
appropriate when the data is large enough and has no 
multicollinearity (Hosmer et al., 2013; Kleinbaum & Klein, 
2010; Senaviratna & Cooray, 2021). One of the challenges 
in model building is high-dimensional data, which can lead 
to model overfitting (Brimacombe, 2014). Another 
challenge in model building is the presence of 
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multicollinearity (Belsley et al., 1980), which can inflate 
the variance of the MLEs in the logistic regression model 
(Hosmer et al., 2013; Kleinbaum & Klein, 2010). 
Consequently, the MLE used for coefficient estimation in 
logistic regression is unstable and inappropriate for 
building a classification model (Kastrin & Peterlin, 2010). 
       In order to remedy these two problems, the penalized 
method can be employed in the logistic regression model. 
This method can reduce variance in parameter estimation 
and help alleviate model overfitting (Hosseinnataj et al., 
2019; Pavlou et al., 2016). Presently, the popular methods 
for penalty function are ridge regression, Lasso, and elastic 
net (Hoerl & Kennard, 1970; Tibshirani, 1996; Zou & 
Hastie, 2005). However, the performance of each method 
is not the same for each data item. Thus, several previous 
studies focused on developing an adaptive weight for the 
penalty function (Zou, 2006; Zou & Zhang, 2009). 
       However, no studies have compared the performances 
of penalized methods in logistic regression, focusing on the 
power of adaptive weight on the penalty function under 
high-dimensional sparse data with multicollinearity. 
Therefore, this study focused on the power of adaptive 
weight on the adaptive Lasso and adaptive elastic net 
methods. The aim was to compare the performances of    
the power of the adaptive Lasso and adaptive elastic             
net methods under high-dimensional sparse data with 
multicollinearity. Additionally, the performances of four 
penalized methods (Lasso, elastic net, adaptive Lasso, and 
adaptive elastic net) were compared on simulation study 
and a real-data application. 
 
 
2. MATERIALS AND METHODS    
 
Binary logistic regression was employed to evaluate the 
logistic regression coefficient, where a dependent variable 
(𝑌𝑌𝑖𝑖) is a dichotomous variable, i.e. 1 = positive class or 0 = 
negative class. This dependent variable has a Bernoulli 
distribution (𝑌𝑌𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋𝑖𝑖)). Hence, 𝑦𝑦𝑖𝑖 ∈ {0,1}, is a 
𝑛𝑛 × 1 vector where 𝑛𝑛 is the sample size. 𝑋𝑋 is a 𝑛𝑛 × 𝑝𝑝 data 
matrix of 𝑝𝑝 independent variables and 𝑥̰𝑥𝑖𝑖  is a 1 × 𝑝𝑝 vector 
of the independent variables for the 𝑖𝑖𝑡𝑡ℎ row of 𝑋𝑋. 
Therefore, the binary logistic regression model is as in 
Equation 1. 
 
𝜋𝜋𝑖𝑖 =

𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0+∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 �

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽0+∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 �

, 𝑖𝑖 = 1,2,3, . . . ,𝑛𝑛 and 𝑗𝑗 = 1,2,3, . . . , 𝑝𝑝         (1)  

 
where 𝜋𝜋𝑖𝑖  represents a probability that an observation is in 
a specified category of the dichotomous variable. 𝜋𝜋𝑖𝑖 =
𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑥̰𝑥𝑖𝑖) is the conditional probability that 𝑦𝑦𝑖𝑖 = 1, 
given 𝑥̰𝑥𝑖𝑖 . For 𝑦𝑦𝑖𝑖 = 0, the conditional probability that 𝑦𝑦𝑖𝑖 = 0, 
given 𝑥̰𝑥𝑖𝑖 , can be presented as 1 − 𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0|𝑥̰𝑥𝑖𝑖). 
       Logistic regression is the logit transformation, which 
is given in Equation 2. 
 

𝑙𝑙𝑙𝑙 � 𝜋𝜋𝑖𝑖
1−𝜋𝜋𝑖𝑖

� = 𝛽𝛽0 +∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1                                                       (2) 

 
where  𝛽̰𝛽 = (𝛽𝛽0,𝛽𝛽1 ,𝛽𝛽2, . . . ,𝛽𝛽𝑝𝑝)𝑇𝑇 is a vector composed of 
logistic regression coefficients. 𝛽𝛽0 is the intercept. 𝛽𝛽𝑗𝑗 is a 
𝑝𝑝 × 1 unknown coefficient vector. The left term in Equation 2 
is the logit function.  

       The classical method used for parameter estimation in 
the model is the MLE, determined in Equation 3. 
 
𝛽̰̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
(∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1 − 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 )             (3) 

Effect of multicollinearity on the MLE 
When the number of independent variables far exceeds the 
sample size (referred to as high-dimensional data), the 
common phenomenon of multicollinearity arises (Belsley 
et al., 1980; Brimacombe, 2014). This leads to inflation in 
variances of the MLE. Consequently, the obtained 
estimators are unstable and cannot reflect the actual 
effects of the independent variables (Urgan & Tez, 2008). 
 
Problem of model interpretation 
In cases where 𝑝𝑝 ≫ 𝑛𝑛, the obtained predictive model         
may be complex, making it more difficult to interpret.              
A complex predictive model can be important for 
understanding complex processes. However, as the model 
becomes increasingly large and convoluted, serious 
problems can arise. The model may be overfitting 
(Brimacombe, 2014), and it may not be well identified in 
classification. 
       Therefore, variable selection procedures are crucial to 
alleviate the above problems. With the MLE, the stepwise 
method is widely used for the automatic selection of 
significant predictors. The Wald statistic is used for 
hypothesis testing in logistic regression. However, this 
testing cannot be used when high-dimensional data are 
used because the development of the Wald statistic is 
based on maximum likelihood estimators (Hosmer et al., 
2013; Kleinbaum & Klein, 2010). Consequently, penalized 
logistic regression is used as an alternative method to the 
MLE.  
 
Penalized logistic regression analysis 
The aim of penalized logistic regression is to determine 
logistic regression coefficients when the data are highly 
correlated and highly dimensional. The penalized logistic 
regression coefficient is defined in Equation 4. 
 
𝛽̰̂𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1 − 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 } +

               𝑃𝑃𝜆𝜆(𝛽̰𝛽)�; 𝜆𝜆 ≥ 0           (4)            
  
where 𝑃𝑃𝜆𝜆(𝛽̰𝛽) is a penalty function term, and 𝜆𝜆 is the tuning 
parameter. In the case where 𝜆𝜆 equals zero, 𝛽̰̂𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽̰̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀. 
Regrading selecting 𝜆𝜆, cross-validation is commonly used 
to evaluate the optimal value of this parameter.  
 
2.1 Ridge regression 
Ridge regression was originally designed to remedy the 
multicollinearity problem in a linear regression model. 
This penalty function method was proposed by Hoerl   
and Kennard (1970).  Schaefer et al.  (1984) proposed             
a modified ridge estimator, and it was subsequently 
applied by Le Cessie and Van Houwelingen ( 1 9 9 2).  The 
method of Le Cessie and Van Houwelingen significantly 
reduces the variance of 𝛽̰̂𝛽.  The ridge regression penalty 
(ℓ2-norm penalty) is defined by Equation 5. 
 

𝑃𝑃𝜆𝜆
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛽̰𝛽) = 𝜆𝜆∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝
𝑗𝑗=1                        (5) 

 

(4) 
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       Hence, the estimation of 𝛽̰𝛽using the ridge regression 
penalty is defined in Equation 6. 
 
𝛽̰̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1− 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 } +

                  𝑃𝑃𝜆𝜆
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛽̰𝛽)� ; 𝜆𝜆 ≥ 0            (4)      

       
       In the logistic regression model, the ridge regression 
penalty ( also called the shrinkage penalty)  penalizes the 
model by shrinking the coefficients toward zero.  In the 
case of 𝜆𝜆 = 0, there is no shrinkage.  With an increase in 
the value of 𝜆𝜆 (𝜆𝜆 → ∞), the magnitudes of the coefficients 
will tend to decrease but will not equal zero. This method 
has good performance when the data are high 
dimensional and the independent variables are collinear. 
However, an obvious disadvantage of this method is the 
lack of a variable selection property because it includes 
all independent variables in the final model.  Therefore, 
the obtained model may be difficult to interpret when there 
is a large number of independent variables (James et al., 2013). 
 
2.2 Lasso 
Lasso was proposed by Tibshirani in 1996. This method 
avoids the disadvantage of ridge regression (the inability 
to reduce the number of independent variables in the 
final model).  The concept of Lasso is similar to ridge 
regression in that the coefficient estimates are shrunk 
toward zero.  T h e  Lasso penalty ( ℓ1- norm penalty)  is 
determined in Equation 7. 
 

 𝑃𝑃𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽̰𝛽) = 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1                  (7) 

 
       Thus, the estimation of 𝛽̰𝛽  using the Lasso penalty is 
presented in Equation 8. 
 
𝛽̰̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1− 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 } +

                 𝑃𝑃𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽̰𝛽)�      ; 𝜆𝜆 > 0(4)            
 
       The tuning parameter λ controls the shrinkage of β�̰  by 
using cross-validation method (Efron et al., 2004; Hastie et 
al., 2009). When this tuning parameter is sufficiently large, 
the Lasso penalty has the effect of shrinking some 
coefficient estimates to exactly zero. This means that Lasso 
can perform variable selection. Consequently, the model 
obtained from Lasso is easier to interpret than that from 
ridge regression (James et al., 2013). Although Lasso is 
computationally feasible for high-dimensional data, it has 
some drawbacks. First, if 𝑝𝑝 ≫ 𝑛𝑛, Lasso selects at most n 
independent variables. Moreover, if there is a group of 
variables among which the pairwise correlations are very 
high, Lasso tends to select only one independent variable 
from the whole group and does not care which one is 
selected (Zou & Hastie, 2005). Finally, Lasso does not have 
oracle properties (Fan & Li, 2001; Zou, 2006). 
 
2.3 Elastic net 
Elastic net, proposed by Zou and Hastie in 2005, combines 
the properties of Lasso and ridge regression. The elastic 
net penalty includes the parts of the ℓ1-norm and ℓ2-norm 
penalties, which are defined in two steps. In the first step, 
the naive elastic net estimators are determined as in 
Equation 9. 
 

𝛽̰̂𝛽Nelastic = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝛽̰𝛽

�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1 − 𝜋𝜋𝑖𝑖)]𝑛𝑛
𝑖𝑖=1 } +

                   𝜆𝜆1 ∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1 + 𝜆𝜆2 ∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝
𝑗𝑗=1 �             (4)            

 
where the penalty parameters (𝜆𝜆1, 𝜆𝜆2) are more than or 
equal to zero. 𝜆𝜆 = 𝜆𝜆1 + 𝜆𝜆2 and 𝛼𝛼 = 𝜆𝜆2

(𝜆𝜆1+𝜆𝜆2)
 when 𝛼𝛼 ∈ [0,1). 

       The estimation of 𝛽̰𝛽 using the elastic net penalty is 
given in Equation 10. 
 

𝛽̰̂𝛽elasticnet = (1 + 𝜆𝜆2)𝛽̰̂𝛽Nelastic                 (10) 
 
       For 𝜆𝜆1 and 𝜆𝜆2, these parameters are used to control the 
shrinkage of 𝛽̰̂𝛽 with cross-validation strategy (Hastie et al., 
2009). Although the elastic net has superior performance 
to Lasso, it also lacks oracle properties (Zou & Zhang, 
2009). 
 
2.4 Adaptive Lasso 
One important reason for Lasso may be instability due to 
the lack of oracle properties (Fan & Li, 2001). To 
overcome this disadvantage, Zou (2006) proposed the 
adaptive Lasso in 2006. The concept of the adaptive Lasso 
is a different weight for each parameter in the ℓ1-norm 
penalty. The adaptive Lasso penalty is defined in 
Equation 11. 
 

𝑃𝑃𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛽̰𝛽) = 𝜆𝜆∑ 𝑤𝑤𝑗𝑗�𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1                 (11) 

 
       Therefore, the estimation of 𝛽𝛽 ̰ using the adaptive Lasso 
penalty is given in Equation 12. 
 
𝛽̰̂𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1 − 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 } +

                   𝑃𝑃𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛽̰𝛽)�             (4)            
 
where 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑝𝑝)𝑇𝑇is a vector composed of weight 
vector. 𝑤𝑤𝑗𝑗 = �𝛽̂𝛽𝑗𝑗�

−𝛾𝛾; 𝛾𝛾 > 0 and 𝛾𝛾 is the power of the adaptive 
weight. It can be seen that 𝑤𝑤𝑗𝑗  depends on the root n-
consistent initial values of 𝛽̂𝛽𝑗𝑗 .  The initial weight can be 
determined by using the MLE, ridge regression, or Lasso 
method (Pavlou et al., 2016; Zou, 2006).  If 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�

−𝛾𝛾
,  

�𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗  is obtained from Equation 6. For 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�
−𝛾𝛾

 , 
�𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗  is obtained from Equation 8. This weighted method 
is used to reduce the selection bias by assigning a smaller 
weight to large coefficients and a higher weight to small 
coefficients. Consequently, the adaptive Lasso can truly enjoy 
oracle properties (Zou, 2006). For 𝜆𝜆 and 𝛾𝛾, these parameters 
are used as 2-dimensional cross-validation to tune the 
adaptive Lasso. 
 
2.5 Adaptive elastic net  
The adaptive elastic net method proposed by Zou and 
Zhang (2009) is a hybrid of adaptive Lasso and ridge 
regression. Consequently, it enjoys oracle properties and 
has superior performance to the elastic net method. The 
adaptive elastic net penalty is given in Equation 13. 
 

𝑃𝑃𝜆𝜆1,𝜆𝜆2
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛽̰𝛽) = 𝜆𝜆1 ∑ 𝑤𝑤�𝑗𝑗�𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1 + 𝜆𝜆2 ∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝
𝑗𝑗=1                                               (13) 

 

where 𝑤𝑤�𝑗𝑗 = ��𝛽̂𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑗𝑗�
−𝛾𝛾

; 𝛾𝛾 > 0. 

(6) 

(8) 

(9) 

(12) 
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       Thus, the estimation of 𝛽̰𝛽 using adaptive elastic net is 
presented in Equation 14. 
 
𝛽̰̂𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̰𝛽
�−{∑ [𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙( 1 − 𝜋𝜋𝑖𝑖)]𝑛𝑛

𝑖𝑖=1 } +

                      𝑃𝑃𝜆𝜆1,𝜆𝜆2
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛽̰𝛽)�(4)            

 
       The tuning parameter controls the shrinkage of 𝛽̰̂𝛽 by using 
the Bayesian information criterion cross-validation method.  
 
2.6 Monte Carlo simulation 
The important factors affecting the accuracy of a 
predictive/classification model are the number of predictors 
(𝑝𝑝), the sample size (𝑛𝑛), and high correlation among predictors. 
In this simulation study, two conditions were considered: 
       1) High-dimensional sparse data (Cherkassky & 
Mulier, 2007). For 𝑝𝑝 > 𝑛𝑛 and under the sparsity 
assumption on the true coefficients (𝛽̰𝛽), that the number 
of significant predictors defined is equal to 𝑞𝑞, and given 
𝑞𝑞 < 𝑝𝑝. 𝑥̰𝑥𝑖𝑖 = �𝑥̰𝑥𝑖𝑖𝐴𝐴 , 𝑥̰𝑥𝑖𝑖𝐵𝐵� with 𝑥̰𝑥𝑖𝑖𝐴𝐴 = �𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, . . . , 𝑥𝑥𝑖𝑖𝑖𝑖�

𝑇𝑇 ∈

ℝ𝑞𝑞 . Along with 𝑥̰𝑥𝑖𝑖𝐵𝐵 = �𝑥𝑥𝑖𝑖(𝑞𝑞+1), 𝑥𝑥𝑖𝑖(𝑞𝑞+2), 𝑥𝑥𝑖𝑖(𝑞𝑞+3), . . . , 𝑥𝑥𝑖𝑖𝑖𝑖�
𝑇𝑇 ∈

ℝ𝑝𝑝−𝑞𝑞 . Thus, 𝑋̰𝑋 = (𝑥̰𝑥𝐴𝐴, 𝑥̰𝑥𝐵𝐵)𝑇𝑇 ∈ ℝ𝑛𝑛×𝑝𝑝 is the matrix of all 
independent variables where 𝑥̰𝑥𝐴𝐴 = (𝑥̰𝑥𝑖𝑖𝑖𝑖, . . . , 𝑥̰𝑥𝑛𝑛𝑛𝑛)𝑇𝑇 ∈ ℝ𝑛𝑛×𝑞𝑞 
and 𝑥̰𝑥𝐵𝐵 = (𝑥̰𝑥𝑖𝑖𝑖𝑖 , . . . , 𝑥̰𝑥𝑛𝑛𝑛𝑛)𝑇𝑇 ∈ ℝ𝑛𝑛×(𝑝𝑝−𝑞𝑞). 
       2) All independent variables are correlated by using 
the Toeplitz correlation structure, given in Equation 15 
(Hardin et al., 2013). 

 

∑ =

⎝

⎜
⎜
⎜
⎛

1 𝜌𝜌 𝜌𝜌2 𝜌𝜌3 ⋯ 𝜌𝜌𝑘𝑘−1

𝜌𝜌 1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌𝑘𝑘−2

𝜌𝜌2 𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌𝑘𝑘−3

𝜌𝜌3 𝜌𝜌2 𝜌𝜌 1 ⋯ 𝜌𝜌𝑘𝑘−4
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑘𝑘−1 𝜌𝜌𝑘𝑘−2 𝜌𝜌𝑘𝑘−3 𝜌𝜌𝑘𝑘−4 ⋯ 1 ⎠

⎟
⎟
⎟
⎞

𝑘𝑘×𝑘𝑘

𝑘𝑘                         (15) 

 
where 𝑘𝑘 denote the number of independent variables, 
which is a positive integer and 0 ≤ 𝜌𝜌 ≤ 1. 
       The Monte Carlo simulations were done using 50 and 
1000 independent variables (𝑝𝑝). The sample size (𝑛𝑛) 
equaled 30 and 40. The dependent variables were 
generated from the Bernoulli distribution with parameter 
𝜋𝜋𝑖𝑖 . The independent variables were generated from the 
multivariate normal distribution with a mean of zero and 
covariance ∑ (𝑋̰𝑋 ∼ 𝑁𝑁(0,∑)). The degree of correlation (𝜌𝜌) 
was set to 0.1, 0.3, 0.5, 0.75, 0.85, and 0.95. Interpretation 
of 𝜌𝜌 is as follows: negligible correlation (0.00 < 𝜌𝜌 < 0.30); 
low positive correlation (0.30 ≤ 𝜌𝜌 < 0.50 ); moderate 
positive correlation (0.50 ≤ 𝜌𝜌 < 0.70); high positive 
correlation (0.70 ≤ 𝜌𝜌 < 0.90); and very high positive 
correlation (0.90 ≤ 𝜌𝜌 < 1.00) (Mukaka, 2012). The number 
of significant predictors (𝑞𝑞) equaled 15. The logistic 
regression coefficients were set the constant values as 𝛽̰𝛽. 
After that, the data was split into two subsets (the learning 
data set, 80% and the testing data set, 20%). The 
simulation study compared the performances of the four 
penalized methods (Lasso, elastic net, adaptive Lasso, and 
adaptive elastic net) using the predicted mean square 
errors (PMSE). The estimated PMSE was evaluated as per 
Equation 16. 

 PMSE = ∑ (yi−y�i)2

n
n
i=1                                 (16) 

where 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖  were the 𝑖𝑖𝑡𝑡ℎ actual and predicted values 
of the dependent variables, respectively. The optimal 
value of the tuning parameter (𝜆𝜆) was found using a 10-
fold cross-validation strategy (Hastie et al., 2009; Pavlou 
et al., 2016; Zou & Hastie, 2005). The experiment was 
repeated 1000 times to obtain a stationary result. Thus, 
the MPMSE was evaluated from the average of 1,000 
estimates of PMSEj using Equation 17. 
 

MPMSE = 1
1000

∑ PMSEj1000
j=1 .              (17) 

       The penalized methods providing the lowest MPMSE 
were considered the best option. The flowchart of the 
simulation procedure is shown in Figure 1. 
       For the real-data application, the workflow diagram of 
the machine-learning procedure with the four penalized 
methods is shown in Figure 2. The classification accuracy 
of each method was determined as per Equation 18. 
 

Accuracy (%) = TP + TN
TP + FP + FN + TN

× 100.             (18) 

where the true positive (TP) / true negative (TN) 
presents that the prediction is correct. False positive (FP) 
represents that the prediction is wrong (also called a type 
I error). A false negative (FN) shows that the prediction 
is wrong (also called a type II error). 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Simulation study 
Table 1 lists the MPMSE values for the four methods for 
different 𝜌𝜌 when 𝑝𝑝 = 50 and 1000, and 𝑛𝑛 = 30 and 40. The 
MPMSE values of the all methods increased when 𝜌𝜌 was 
increased while holding 𝑝𝑝 and 𝑛𝑛 fixed. For an increase in 
𝑛𝑛, the MPMSE values of all methods decreased. The 
MPMSE values of the adaptive Lasso method were less 
than those of the Lasso, elastic net, and adaptive elastic 
net methods. 
       With high-dimensional sparse data (𝑝𝑝 = 50, 𝑛𝑛 = 30, and 
𝑛𝑛 = 40, and for different 𝜌𝜌), the performance of the adaptive 
Lasso method depended on the power of the adaptive 
weight (𝛾𝛾) and the initial weight used. In the case of 𝜌𝜌 = 0.1,  
0.3, and 0.5, the MPMSE values of the adaptive Lasso 
method with 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�

−1
 were less than those for the 

other methods. For 𝜌𝜌 = 0.75, 0.85, and 0.95, the inflation of 
the MPMSE values for 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�

−0.5
was the smallest 

compared with the other methods. 
       In the case of very high-dimensional sparse data (𝑝𝑝 = 
1000, 𝑛𝑛 = 30, 𝑛𝑛 = 40, and for different 𝜌𝜌), the smallest 
MPMSE values were obtained from the adaptive Lasso 
method using 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�

−1
 for 𝜌𝜌 = 0.1, 0.3, and 0.5. For       

𝜌𝜌 = 0.75, 0.85, and 0.95, the MPMSE values for the higher-
order of the adaptive Lasso method together with the 
initial weight using the ridge estimator were less than 
those for the other methods. 
 

 

(14) 
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Figure 1.  Flowchart of the simulation procedure 
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Figure 2.  Workflow diagram of the machine-learning procedure 
 
       From the simulated results in Table 1, Figure 4a, and 
Figure 4c, it can be seen that the important factors 
influencing the MPMSE values were the correlated 
independent variables (i.e., 𝜌𝜌), the power of adaptive 
weight on penalty function, the initial weight, and the 
sample size. An increase in the correlation coefficient level 
leads to an increase in the MPMSE values for all methods 
when 𝑝𝑝 and 𝑛𝑛 are held constant. The worst case was 
obtained when the correlation coefficient level was very 
high (𝜌𝜌 = 0.95). In the case of the power of the adaptive 
weight on the ℓ1-norm penalty, choosing the higher-order 
of the adaptive Lasso method using the initial weight with 
the ridge estimator produced the smallest MPMSE value 
for very high-dimensional sparse data with 
multicollinearity. However, for high-dimensional sparse 
data with multicollinearity, 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�

−0.5
 is preferred. 

We can see that an increase in the sample size (𝑛𝑛) 
decreases the MPMSE values for all methods, while holding 
𝜌𝜌 and 𝑝𝑝 fixed. 
 
3.2 Real-data applications 
In this section, the performances of 4 penalized methods 
were compared on two real-data sets with high-
dimensional sparse data with multicollinearity. 
       First, a soft-tissue tumor data set was obtained from        
40 patients (20 intramuscular lipomas and 20 well-
differentiated liposarcomas). Between 2010 and 2020, the 
patients were diagnosed using their final pathological 
findings, and underwent preoperative magnetic resonance 
imaging (MRI) scans and total excision surgery. For our 
case study, the binary outcome of interest was an 
intramuscular lipoma or a well-differentiated liposarcoma. 
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The predictors of interest were 50 texture features as 
quantitative data that were extracted from preoperative 
T1-weighted MRI (Supplementary: Table S1). These 
features explain the spatial arrangement of gray-level 
pixels in a neighborhood on the MRI images such as 
fineness, coarseness, homogeneity, and heterogeneity. 
Regarding the detail of definition and formula for these 
texture features, they can be described according to 
PyRadiomics’ documentation (Supplementary: Table S2).    
       Another data set (i.e., leukemia data set) from Golub et 
al. (1999) with gene expression monitoring data (via DNA 
microarray) was used to classify patients with acute 

myeloid leukemia (AML) and acute lymphoblastic 
leukemia (ALL). This leukemia data set was obtained from 
72 patients. The data set contains measurements 
corresponding to ALL and AML specimens from bone 
marrow and peripheral blood, and it involves 7129 
leukemia genes. For our case study, 40 patient samples 
were randomly selected from the data set. The outcome of 
interest was AML/ALL as a dichotomous variable. The 
predictors of interest comprised 1000 leukemia genes as 
continuous variables, which represented a subset of the 
7129 genes. 

 
Table 1. MPMSE values for different penalized methods 
 
𝑝𝑝 𝑛𝑛 𝜌𝜌 Lasso Elastic net Adaptive Lasso Adaptive elastic net 

     𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑗𝑗�
−𝛾𝛾

 

     𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 
 

50 
 

30 
 

0.10 
 

0.1767 
 

0.1797 
 

0.1656 
 

0.1618* 
 

0.1627 
 

0.1665 
 

0.1691 
 

0.1740 
 

0.1682 
 

0.1706 
 

0.1746 

  0.30 0.1772 0.1812 0.1679 0.1657* 0.1658 0.1679 0.1706 0.1742 0.1710 0.1735 0.1773 

  0.50 0.1833 0.1878 0.1728 0.1708* 0.1721 0.1738 0.1767 0.1816 0.1754 0.1777 0.1822 

  0.75 0.1888 0.1918 0.1851 0.1842 0.1852 0.1828* 0.1841 0.1870 0.1859 0.1875 0.1910 

  0.85 0.1924 0.1980 0.1909 0.1907 0.1913 0.1880* 0.1894 0.1927 0.1909 0.1930 0.1961 

  0.95 0.1957 0.1984 0.1951 0.1951 0.1978 0.1918* 0.1933 0.1960 0.1946 0.1959 0.1977 

 
 

40 
 

0.10 
 

0.1665 
 

0.1710 
 

0.1589 
 

0.1565* 
 

0.1573 
 

0.1572 
 

0.1606 
 

0.1646 
 

0.1579 
 

0.1609 
 

0.1663 

  0.30 0.1741 0.1743 0.1636 0.1623* 0.1639 0.1648 0.1668 0.1715 0.1636 0.1672 0.1718 

  0.50 0.1747 0.1759 0.1667 0.1666* 0.1675 0.1675 0.1702 0.1742 0.1671 0.1698 0.1743 

  0.75 0.1845 0.1883 0.1821 0.1824 0.1830 0.1778* 0.1795 0.1841 0.1802 0.1825 0.1857 

  0.85 0.1870 0.1908 0.1887 0.1893 0.1917 0.1825* 0.1857 0.1892 0.1855 0.1882 0.1925 

  0.95 0.1943 0.1953 0.1973 0.1985 0.2030 0.1896* 0.1917 0.1948 0.1930 0.1938 0.1969 
 
1000 

 
30 

 

0.10 
 

0.1807 
 

0.1837 
 

0.1555 
 

0.1522* 
 

0.1546 
 

0.1689 
 

0.1708 
 

0.1742 
 

0.1744 
 

0.1761 
 

0.1776 

  0.30 0.1845 0.1871 0.1595 0.1574* 0.1579 0.1734 0.1752 0.1775 0.1764 0.1774 0.1794 

  0.50 0.1851 0.1899 0.1636 0.1594* 0.1601 0.1760 0.1767 0.1787 0.1793 0.1809 0.1833 

  0.75 0.1890 0.1902 0.1680 0.1625 0.1620* 0.1779 0.1799 0.1817 0.1811 0.1831 0.1848 

  0.85 0.1898 0.1937 0.1685 0.1660 0.1656* 0.1793 0.1811 0.1839 0.1840 0.1858 0.1877 

  0.95 0.1929 0.1956 0.1798 0.1753 0.1749* 0.1835 0.1861 0.1876 0.1861 0.1879 0.1902 

 
 

40 
 

0.10 
 

0.1679 
 

0.1718 
 

0.1447 
 

0.1399* 
 

0.1421 
 

0.1548 
 

0.1566 
 

0.1594 
 

0.1561 
 

0.1583 
 

0.1617 

  0.30 0.1780 0.1837 0.1556 0.1519* 0.1524 0.1645 0.1664 0.1699 0.1665 0.1697 0.1723 

  0.50 0.1815 0.1858 0.1598 0.1545* 0.1586 0.1722 0.1735 0.1766 0.1727 0.1743 0.1805 

  0.75 0.1851 0.1885 0.1649 0.1596 0.1590* 0.1752 0.1765 0.1793 0.1759 0.1777 0.1809 

  0.85 0.1893 0.1921 0.1678 0.1642 0.1637* 0.1770 0.1790 0.1824 0.1786 0.1810 0.1844 

  0.95 0.1913 0.1930 0.1762 0.1737 0.1733* 0.1813 0.1834 0.1868 0.1820 0.1851 0.1879 

Note: * The penalized methods providing the lowest MPMSE 
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Figure 3. Correlation matrix of 50 texture features in 40 patients 
 
       Regarding Figure 3, the correlation matrix presents 
different Pearson correlation coefficient values and 
shades. The light shades denote that the predictors have a 
low correlation, whereas the dark shades present a high 
correlation among predictors. It is apparent that the 
multicollinearity problem occurred in this sample data set. 
       Table 2, shows the classification performances of the 
four penalized methods in distinguishing between intramuscular 

lipomas and well-differentiated liposarcomas. The highest 
accuracy values were obtained from the adaptive Lasso 
method with 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜�𝑗𝑗�

−0.5
, while the lowest accuracy 

values were obtained from the elastic net method. For 
Table 3, the higher-order of the adaptive Lasso method 
together with the initial weight using the ridge estimator 
showed the best performance for differentiating between 
AML and ALL. 

 
Table 2. Accuracy of machine-learning algorithms for distinguishing between intramuscular lipomas and well-
differentiated liposarcomas for 50 texture features in 40 patients 
 

 Lasso Elastic net Adaptive Lasso Adaptive elastic net 

   𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑗𝑗�
−𝛾𝛾

 

   𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 

Accuracy (%) 66.7 58.3 66.7 62.7 40.5 87.5* 71.0 58.3 70.8 70.7 54.2 
Note: * The penalized methods providing the highest accuracy 
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Table 3. Accuracy of machine-learning algorithms for differentiating between acute myeloid leukemia and acute 
lymphoblastic leukemia for 1000 leukemia genes in 40 patients 
 

 Lasso Elastic net Adaptive Lasso Adaptive elastic net 

   𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑗𝑗�
−𝛾𝛾

 𝑤𝑤𝑗𝑗 = ��𝛽̂𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑗𝑗�
−𝛾𝛾

 

   𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 2 

Accuracy (%) 85.0 82.5 87.0 88.0 90.0* 85.0 77.5 73.0 85.0 83.0 80.0 
Note: * The penalized methods providing the highest accuracy 
 

 
 
Figure 4. The mean of the predicted mean square errors (mpmse) values and accuracies of the four penalized methods 
 
       From the results of the real-data applications in Tables 
2 and 3 as well as Figure 4b and Figure 4d, it is obvious that 
the adaptive Lasso method showed a better performance 
than the other methods for classification on the high-
dimensional sparse data with multicollinearity. This 
finding corresponds to the results of the simulation 
study. 
 
 
4. CONCLUSION 
 
We propose the use of the adaptive Lasso method for 
classification in binary outcome on high-dimensional 
sparse data with multicollinearity as follows: 
       1) In the case of high-dimensional sparse data, it should 
be considered using the first power of the method and 
ridge estimator as the initial weight when there is a low or 
moderate correlation between the independent variables.  
On the other hand, if the independent variables are highly 
correlated, the initial weight should be evaluated using the 
Lasso estimator and 𝛾𝛾 = 0.5. 

       2) For very high-dimensional sparse data with 
multicollinearity, the higher-order of the adaptive Lasso 
method should be employed, using ridge estimator as the 
initial weight. 
       From the simulation study and the real-data applications, 
it is clear that the predictive performance of the penalized 
logistic regression model depends on the penalty function. 
In practice, if the penalty function method is appropriate, 
it constructs models that have good performance. Table 4 
compares the appropriateness and limitations of each 
penalized method in the penalized logistic regression model.  
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Table 4. Comparison the appropriateness and limitations of each penalized method 
 
Method  Appropriateness of application  Limitation 
Ridge - All independent variables relate to 

the dependent variable. 
- Multicollinearity exists. 

- Lacks selection of variables 

Lasso  - The independent variables show a 
low to moderate level of collinearity. 

- When 𝑛𝑛 is greater than 𝑝𝑝 and the independent variables exhibit 
high collinearity, Lasso is dominated by ridge regression. 
- If the number of variables 𝑝𝑝 is much greater than 𝑛𝑛 (𝑝𝑝 ≫ 𝑛𝑛), Lasso 
will only select up to 𝑛𝑛 variables before reaching saturation. 
- When independent variables in the data set have a high pairwise 
correlation, Lasso chooses only one or a few variables from a group 
of correlated ones, without considering which one is chosen. 
- Lacks oracle properties  

Elastic net - Multicollinearity is present. - Lacks oracle properties 

Adaptive Lasso - The independent variables exhibit a 
high level of correlation.  

 

Adaptive elastic net - The independent variables are highly 
correlated. 

 

 
 
REFERENCES 
 
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression 

diagnostics: Identifying influential data and sources of 
collinearity. John Wiley & Sons. 

Brimacombe, M. (2014). High-dimensional data and linear 
models: A review. Open Access Medical Statistics, 4,    
17–27. https://doi.org/10.2147/OAMS.S56499 

Cherkassky, V., & Mulier, F. (2007). Learning from data: 
Concepts, theory, and methods (2nd ed.). John Wiley & Sons. 

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). 
Least angle regression. The Annals of Statistics, 32(2), 
407–499. https://doi.org/10.1214/009053604000000067 

Fan, J., & Li, R. (2001). Variable selection via nonconcave 
penalized likelihood and its oracle properties. Journal 
of the American Statistical Association, 96(456), 1348–
1360. https://doi.org/10.1198/016214501753382273 

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., 
Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., 
Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & 
Lander, E. S. (1999). Molecular classification of cancer: 
Class discovery and class prediction by gene expression 
monitoring. Science, 286(5439), 531–537. https://doi.org/ 
10.1126/science.286.5439.531 

Hardin, J., Garcia, S. R., & Golan, D. (2013). A method for 
generating realistic correlation matrices. The Annals of 
Applied Statistics, 7(3), 1733–1762. https://doi.org/ 
10.1214/13-AOAS638 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The 
elements of statistical learning: Data mining, inference, 
and prediction (2nd ed.). Springer. 

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: 
Biased estimation for nonorthogonal problems. 
Technometrics, 12(1), 55–67. 

Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). 
Applied logistic regression (3rd ed.). John Wiley & Sons. 

Hosseinnataj, A., Bahrampour, A., Baneshi, M., Zolala, F., 
Nikbakht, R., Torabi, M., & Mazidi Sharaf Abadi, F. 
(2019). Penalized Lasso methods in health data: 
Application to trauma and influenza data of Kerman. 
Journal of Kerman University of Medical Sciences, 26(6), 
440–449. https://doi.org/10.22062/jkmu.2019.89573 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An 
introduction to statistical learning with applications in 
R. Springer. 

Kastrin, A., & Peterlin, B. (2010). Rasch-based high-
dimensionality data reduction and class prediction 
with applications to microarray gene expression data. 
Expert Systems with Applications, 37(7), 5178–5185. 
https://doi.org/10.1016/j.eswa.2009.12.074 

Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: A 
self-learning text (3rd ed.). Springer. 

Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge 
estimators in logistic regression. Journal of the Royal 
Statistical Society: Series C (Applied Statistics), 41(1), 
191–201. https://doi.org/10.2307/2347628 

Makalic, E., & Schmidt, D. F. (2010). Review of modern 
logistic regression methods with application to small 
and medium sample size problems. In J. Li (Ed.), AI 
2010: Advances in artificial intelligence (pp. 213–222). 
Springer. https://doi.org/10.1007/978-3-642-17432-
2_22 

Mukaka, M. M. (2012). Statistics corner: A guide to 
appropriate use of correlation coefficient in medical 
research. Malawi Medical Journal, 24(3), 69–71. 
https://pubmed.ncbi.nlm.nih.gov/23638278/ 

Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., & Omar,        
R. Z. (2016). Review and evaluation of penalised 
regression methods for risk prediction in low-
dimensional data with few events. Statistics in Medicine, 
35(7), 1159–1177. https://doi.org/10.1002/sim.6782 

Schaefer, R. L., Roi, L. D., & Wolfe, R. A. (1984). A ridge 
logistic estimator. Communications in Statistics - Theory 
and Methods, 13(1), 99–113. https://doi.org/10.1080/ 
03610928408828664 

Senaviratna, N. A. M. R., & Cooray, T. M. J. A. (2021). 
Multicollinearity in binary logistic regression model. 
Theory and Practice of Mathematics and Computer 
Science, 8, 11–19. 

Sudjai, N., & Duangsaphon, M. (2020). Liu-type logistic 
regression coefficient estimation with multicollinearity 
using the bootstrapping method. Science, Engineering and 
Health Studies, 14(3), 203–214. https://doi.org/10.14456/ 
sehs.2020.19 



Sudjai, N., et al. 

   
11 

Sudjai, N., Siriwanarangsun, P., Lektrakul, N., Saiviroonporn, 
P., Maungsomboon, S., Phimolsarnti, R., Asavamongkolkul, 
A., & Chandhanayingyong, C. (2023a). Robustness of 
radiomic features: Two-dimensional versus three-
dimensional MRI-based feature reproducibility in 
lipomatous soft-tissue tumors. Diagnostics, 13(2), Article 
258. https://doi.org/10.3390/diagnostics13020258 

Sudjai, N., Siriwanarangsun, P., Lektrakul, N., Saiviroonporn, P., 
Maungsomboon, S., Phimolsarnti, R., Asavamongkolkul, A., 
& Chandhanayingyong, C. (2023b). Tumor-to-bone distance 
and radiomic features on MRI distinguish intramuscular 
lipomas from well-differentiated liposarcomas. Journal 
of Orthopaedic Surgery and Research, 18(1), Article 255. 
https://doi.org/10.1186/s13018-023-03718-4 

Tibshirani, R. (1996). Regression shrinkage and selection 
via the Lasso. Journal of the Royal Statistical Society: 
Series B (Methodological), 58(1), 267–288. 

Urgan, N. N., & Tez, M. (2008). Liu estimator in logistic 
regression when the data are collinear. In International 
Conference on Continuous Optimization and Knowledge-
Based Technologies, Lithuania, Selected Papers (pp. 
323–327). Vilnius. 

Zou, H. (2006). The adaptive Lasso and its oracle 
properties. Journal of the American Statistical 
Association, 101(476), 1418–1429. https://doi.org/ 
10.1198/016214506000000735 

Zou, H., & Hastie, T. (2005). Regularization and variable 
selection via the elastic net. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 
67(2), 301–320. 

Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net 
with a diverging number of parameters. Annals of 
Statistics, 37(4), 1733–1751. https://doi.org/10.1214/ 
08-AOS625    

 
 



Adaptive Lasso sparse logistic regression on high-dimensional data with multicollinearity 

 
12 

SUPPLEMENTARY 
 
Table S1.  List of 50 texture features 
 
Gray-level  
co-occurrence matrix 
(GLCM) 

Gray level 
dependence 
matrix (GLDM) 

Gray-level run length 
matrix (GLRLM) 

Gray-level size zone 
matrix (GLSZM) 

Neighbouring 
gray tone 
difference 
matrix 
(NGTDM) 

glcm_Autocorrelation (f1) gldm_GrayLevelNon 
Uniformity (f23) 

glrlm_GrayLevelVariance 
(f24) 

glszm_GrayLevelNon 
Uniformity (f37) 

ngtdm_Contrast 
(f50) 

glcm_ClusterProminence 
(f2)  

glrlm_HighGrayLevelRun 
Emphasis (f25) 

glszm_GrayLevelVariance 
(f38) 

 

glcm_ClusterTendency (f3) 
 

glrlm_LongRunEmphasis 
(f26) 

glszm_HighGrayLevelZone 
Emphasis (f39) 

 

glcm_Contrast (f4) 
 

glrlm_LongRunHighGray 
LevelEmphasis (f27) 

glszm_LargeAreaEmphasis 
(f40) 

 

glcm_Correlation (f5) 
 

glrlm_LongRunLowGray 
LevelEmphasis (f28) 

glszm_LargeAreaHighGray 
LevelEmphasis (f41) 

 

glcm_DifferenceAverage 
(f6)  

glrlm_LowGrayLevelRun 
Emphasis (f29) 

glszm_LargeAreaLowGray 
LevelEmphasis (f42) 

 

glcm_DifferenceEntropy 
(f7)  

glrlm_RunEntropy (f30) glszm_LowGrayLevelZone 
Emphasis (f43) 

 

glcm_DifferenceVariance (f8) 
 

glrlm_RunLengthNon 
Uniformity (f31) 

glszm_SizeZoneNon 
Uniformity (f44) 

 

glcm_Id (f9) 
 

glrlm_RunLengthNon 
UniformityNormalized (f32) 

glszm_SmallAreaEmphasis 
(f45) 

 

glcm_Idm (f10) 
 

glrlm_RunPercentage (f33) glszm_SmallAreaHighGray 
LevelEmphasis (f46) 

 

glcm_Idmn (f11) 
 

glrlm_ShortRunEmphasis 
(f34) 

glszm_SmallAreaLowGray 
LevelEmphasis (f47) 

 

glcm_Idn (f12) 
 

glrlm_ShortRunHighGray 
LevelEmphasis (f35) 

glszm_ZoneEntropy (f48)  

glcm_Imc1 (f13) 
 

glrlm_ShortRunLowGray 
LevelEmphasis (f36) 

glszm_ZonePercentage 
(f49) 

 

glcm_Imc2 (f14) 
    

glcm_InverseVariance (f15) 
    

glcm_JointAverage (f16) 
    

glcm_JointEnergy (f17) 
    

glcm_JointEntropy (f18) 
    

glcm_MaximumProbability 
(f19)     

glcm_SumAverage (f20) 
    

glcm_SumEntropy (f21) 
    

glcm_SumSquares (f22)     
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Table S2. Example of the formula and definition of the texture features 
 
Feature class name Feature name Formula Definition 
Gray level co-occurrence matrix (GLCM):  
 
Where is the normalized co-occurrence 
matrix �𝑝𝑝(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖,𝑗𝑗)

∑𝑃𝑃(𝑖𝑖,𝑗𝑗)
�.  𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the co-

occurrence matrix for an arbitrary 𝛿𝛿 and 
𝜃𝜃. 𝑁𝑁𝑔𝑔 is the number of discrete intensity 
levels in the image. 𝜀𝜀 is an arbitrarily 
small positive number (≈ 2.2 × 10−16).   

glcm_JointEnergy Joint energy = 

���𝑝𝑝(𝑖𝑖, 𝑗𝑗)�
2

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 

Measures homogeneous patterns 
in the image. Greater energy 
values indicate that there are more 
instances of intensity value pairs 
in the image that neighbour each 
other at higher frequencies.  
 

glcm_JointEntropy Joint entropy = 

−��𝑝𝑝(𝑖𝑖, 𝑗𝑗) 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝(𝑖𝑖, 𝑗𝑗) + 𝜀𝜀)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 

Measures the 
randomness/variability in 
neighbourhood intensity values. 

Gray-level run-length matrix (GLRLM):  
 
Where 𝑁𝑁𝑔𝑔 is the number of discreet 
intensity values in the image. Nr is the 
number discreet run lengths in the image. 
𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the run-length matrix for an 
arbitrary direction 𝜃𝜃, when 𝑖𝑖 =
1,2,3, . . . ,𝑁𝑁𝑔𝑔 and 𝑗𝑗 = 1,2,3, . . . ,𝑁𝑁𝑟𝑟 .  

glrlm_RunLengthNo
nUniformity (RLN) 𝑅𝑅𝑅𝑅𝑅𝑅 =

∑ �∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗|𝜃𝜃)𝑁𝑁𝑔𝑔
𝑖𝑖=1 �𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑟𝑟(𝜃𝜃)

2

 
Measures the similarity of run 
lengths throughout the image. 
Lower values indicate that there 
are more homogeneity among run 
lengths in the image. 
 

glrlm_LowGrayLeve
lRunEmphasis 
(LGLRE) 

LGLRE =
∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗|𝜃𝜃)

𝑖𝑖2
𝑁𝑁𝑟𝑟
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1

𝑁𝑁𝑟𝑟(𝜃𝜃)  
Measures the distribution of low 
gray-level values. Higher values 
indicate that there are a greater 
concentration of low gray-level 
values in the image. 

Gray level size zone matrix (GLSZM): 
 
Where 𝑁𝑁𝑔𝑔 is the number of discreet 
intensity values in the image. 𝑁𝑁𝑠𝑠 is the 
number of discreet zone sizes in the 
image. 𝑁𝑁𝑝𝑝 is the number of voxels in the 
image. 𝑁𝑁𝑧𝑧 is the number of zones in the 
ROI, which is equal to ∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑁𝑁𝑠𝑠

𝑗𝑗=1
𝑁𝑁𝑔𝑔
𝑖𝑖=1  

and 1 ≤ 𝑁𝑁𝑧𝑧 ≤ 𝑁𝑁𝑝𝑝 . 𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the size zone 
matrix, when 𝑖𝑖 = 1,2,3, . . . ,𝑁𝑁𝑔𝑔 and 𝑗𝑗 =
1,2,3, . . . ,𝑁𝑁𝑠𝑠. 

glszm_SmallAreaE
mphasis (SAE) SAE =

∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)
𝑗𝑗2

𝑁𝑁𝑠𝑠
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1

𝑁𝑁𝑧𝑧
 

Measures the distribution of small 
size zones. Greater values indicate 
that there are more smaller size 
zones and more fine textures. 
 

glszm_LargeAreaE
mphasis (LAE) LAE =

∑ ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑗𝑗2𝑁𝑁𝑠𝑠
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1

𝑁𝑁𝑧𝑧
 

Measures the distribution of large 
area size zones. Greater values 
indicate that there are more larger 
size zones and more coarse 
textures. 
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