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ABSTRACT 
 
Remote photoplethysmography (rPPG) is a non-contact method for extracting pulse 
signal from a region of interest (ROI) in a human facial video. This technique enables 
researchers to remotely measure both heart rate and pulse rate variability (PRV). 
However, when the forehead is used as the ROI for rPPG signal extraction, hair can 
obscure parts of the skin, and changes in ambient lighting may introduce spurious 
frequency spikes, which degrade the rPPG signal and PRV accuracy. This paper 
proposed a method to improve ultra-short-term PRV derived from the rPPG signal 
using the forehead ROI. The approach incorporated a hair detection algorithm to 
extract the rPPG signal from skin areas, excluding regions covered by hair. In 
addition, a majority voting mechanism was applied to subintervals to determine the 
optimal passband frequency for a bandpass filter, effectively eliminating spurious 
frequencies. The ultra-short-term PRV was then computed from the refined rPPG 
signal. Results show that the mean absolute error of the ultra-short-term PRV was 
improved for most subjects compared to the mean absolute error obtained via the 
conventional method. 
 
Keywords: remote photoplethysmography; hair detection; time domain ultra-short-term pulse rate 
variability 
 
 

1. INTRODUCTION                                    
 
Heart rate variability (HRV) is a measure of an individual’s 
health, reflecting changes in the time intervals between 
successive heartbeats. It serves as an important indicator 
of autonomic nervous system (ANS) activity (McCraty and 
Shaffer, 2015). Typically, HRV is measured using medical 
devices such as electrocardiograms (ECGs). However, the 
complexity and inconvenience of the ECG acquisition 
process can lead to potential errors (Bolanos et al., 2006). 
To overcome these challenges, the photoplethysmography 
(PPG) signal—captured using a pulse oximeter attached to 
a subject’s finger to measure the blood volume pulse 

(BVP)—has been proposed as an alternative (Peng et al., 
2015). HRV derived from the PPG signal is referred to          
as pulse rate variability (PRV). Several studies have 
demonstrated that PRV obtained from the PPG signal can 
effectively serve as a surrogate for HRV derived from ECG 
signal (Aimie-Salleh et al., 2020; Pinheiro et al., 2016; 
Vescio et al., 2018). PRV is calculated by analyzing the 
pulse-to-pulse interval (PPI) within the PPG signal. 
       Attaching a pulse oximeter to a subject’s finger can be 
inconvenient for acquiring PRV during activities involving 
hand movement, such as driving. To address this 
limitation, remote photoplethysmography (rPPG) has been 
introduced as a non-contact method for capturing the 
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blood volume pulse (BVP) component. Instead of relying 
on signals from contact-based medical devices, rPPG 
extract BVP from a region of interest (ROI) in a human 
facial video. For effective rPPG signal acquisition, careful 
selection of the ROI is crucial to ensure a strong BVP 
component. Kumar et al. (2015) demonstrated that the 
forehead and cheeks are optimal regions for detecting the 
BVP component. Over the years, various techniques have 
been developed to extract the rPPG signal from facial videos. 
These include blind source separation (BSS) methods 
(Lewandowska et al., 2011; Panigrahi and Sharma, 2022; Poh 
et al., 2010) and model-based approaches such as CHROM (de 
Haan and Jeanne, 2013), POS (Wang et al., 2017), and modified 
POS (Ryu et al., 2021). 
       Previous studies used rPPG signal to extract PRV from 
human facial videos as a non-contact alternative to 
traditional contact-based medical devices. The findings 
from these studies indicate that PRV derived from rPPG 
signal is comparable to that obtained from medical devices 
(Gudi et al., 2020; Yu et al., 2021). Recently, Finžgar and 
Podržaj (2020) explored the use of ultra-short-term PRV, 
defined as PRV obtained from signals lasting less than five 
minutes. Their experimental results, based on recording 
durations ranging from 10 to 60 s, showed that the 
agreement between the ultra-short-term PRV derived from 
rPPG and PPG signals improves with longer recording 
durations. 
       Sunkom et al. (2023) proposed a method to improve 
heart rate (HR) measurements derived from rPPG signal 
using a 10-s interval extracted from the forehead ROI with 
the modified POS method (Ryu et al., 2021). This method 
divides the forehead ROI into 24 small areas and applies a 
hair detection algorithm to exclude regions covered by 
hair. Additionally, a majority voting mechanism is 
employed in subintervals to identify the optimal passband 
frequency for filtering the rPPG signal. The results 
demonstrate that HR measurements are improved by 
excluding hair-covered areas and using the majority voting 
to eliminate spurious frequencies caused by changes in 
ambient lighting. 
       This study extends the work of Sunkom et al. (2023) by 
applying their algorithms to enhance ultra-short-term PRV 
derived from the rPPG signals. To achieve this, certain 
parameters and processes within the algorithm have been 
adjusted and simplified to reduce complexity. This paper 
provided an overview of the original algorithm proposed 
by Sunkom et al. (2023), describes the modifications made, 
and demonstrated how these adjustments improve the 
accuracy of ultra-short-term PRV. 
 
 
2. MATERIALS AND METHODS 
 
2.1 Materials 
This study utilized the UBFC-RPPG public dataset (Bobbia 
et al., 2019), which contains one-minute video recordings 
of human faces engaged in a mathematical game. The 
videos were captured with a Logitech C920 HD Pro 
webcam, at a frame rate of 30 frames per second (fps) and 
a resolution of 640 × 480 pixels, with subjects positioned 
approximately one meter from the webcam. The dataset 
also includes PPG signals recorded with a CMS50E pulse 
oximeter, which serve as the ground truth for comparison 
with the results of the proposed method. 

       For the experiments, seven videos were selected from 
the dataset, focusing on subjects whose hair partially 
covered their forehead areas. The selected videos 
correspond to subject IDs #5, #10, #14, #23, #30, #32, and 
#35. Figure 1 shows the facial images of these subjects 
along with their ID numbers. 
 
2.2 Methods 
An overview of the proposed method is shown in Figure 2. 
This method builds on the approach described by Sunkom 
et al. (2023), with modifications to certain parameters and 
processes to facilitate ultra-short-term PRV calculation 
while reducing overall complexity. The method consists     
of five main components. Detail descriptions of each 
component are provided below. 
 
2.2.1 Forehead ROI extraction 
To identify and extract the ROI on the subject's face, a face 
detection model was used to detect and track the face. In 
this study, the MediaPipe Face Mesh model (Kartynnik et 
al., 2019) was employed to locate and generate 3D facial 
landmark points. The ROI was then extracted by selecting 
specific facial landmark points. Based on experiments 
conducted by Sunkom et al. (2023), two types of forehead 
ROIs were utilized for ultra-short-term PRV calculation: 
the entire forehead ROI and smaller areas within the 
forehead ROI. The PRVs obtained from these two types 
were compared. 
       The entire forehead ROI, commonly used in various 
studies, is a conventional region for tPPG signal extraction 
(Lewandowska et al., 2011; Pourbemany et al., 2021; 
Sanyal and Nundy, 2018). In this study, the entire forehead 
ROI was defined by the facial landmark points 9, 10, 66, 67, 
103, 104, 105, 107, 109, 296, 297, 332, 333, 334, 336, and 
338, as displayed in Figure 3a. However, this ROI can be 
partially covered by hair, which may affect the quality of 
the rPPG signal, as depicted in Figure 3b. 
       To address this issue, the entire forehead ROI was 
divided into 24 smaller triangular areas, as detailed in 
Figure 4a. Figure 4b illustrates how these areas are 
positioned on the subject's face. The triangular areas were 
classified into hair and skin regions, with only the skin 
regions being used for rPPG signal extraction. 
 
2.2.2 Raw RGB color signal extraction and hair 
detection algorithm 
The raw RGB color signals for each area were extracted 
using the spatial average technique, which calculated the 
average values of red, green, and blue within each video 
frame, as illustrated in Equation 1: 
 

Ci,j
* (t) = 

∑ ci,k,j
* (t)K

k =1

K
 , i ∈ {R,G,B}                               (1) 

 
where Ci,j

* (t) is the raw RGB color signal of the jth area of the 
forehead ROI, ci,k,j

* (t) is the raw RGB color signal of the kth 
pixel in the jth area, and K is the number of pixels in the jth area. 
       For the entire forehead ROI, only a single raw RGB color 
signal was extracted, combining the color information 
from both hair and skin pixels. In contrast, the smaller 
areas within the forehead ROI consisted of 24 distinct 
regions, resulting in the extraction of 24 separate raw RGB 
color signals. 
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Figure 1. Facial images and ID numbers of the selected subjects for this study 
 

 
 
Figure 2. Overview of the proposed method used to improve ultra-short-term PRV 
 

 
 
Figure 3. Entire forehead ROI; (a) facial landmark points used to define the ROI, (b) visualization of the ROI on the subject’s 
face 
 

 
Figure 4. Small areas within the forehead ROI; (a) facial landmark points used to define the ROI, (b) visualization of the 
ROI on the subject’s face 
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       In the study by Sunkom et al. (2023), 10-s intervals 
(300 samples) of the raw RGB color signals were used for 
HR calculation. However, to improve the alignment 
between the ultra-short-term PRV derived from the rPPG 
signal and the ground truth PRV obtained from the PPG 
signal (Finžgar and Podržaj, 2020), this study uses a longer 
signal duration. Specifically, a 20-s interval (600 samples) 
was selected. This interval is updated every sec by 
removing the initial 1-s segment (30 samples) and 
appending a new 1-s segment (30 samples) at the end, as 
illustrated in Figure 5. The process continues until the 
video ends. 
       For the smaller areas within the forehead ROI, the hair 
detection algorithm described by Sunkom et al. (2023) was 
applied to the 20-s signal of the 24 areas. The algorithm 
begins by calculating the average green color signal for 
each area, and identifying the area with the highest average 
green value. It then normalizes the green color values for 
each area and classifies them as either containing hair or 
not based on these normalized values. Areas marked as 
'No' are identified as skin region, and used to rPPG signal 
extraction in subsequent processing. Conversely, areas 
marked as 'Yes' (indicating the presence of hair) are 
excluded from further analysis. Additional details of the 
hair detection algorithm can be found in the original study 
by Sunkom et al. (2023). 
 
2.2.3 rPPG signal extraction 
The modified POS, as outlined by Ryu et al. (2021), was 
used to extract rPPG signals. This method involves 
projecting the RGB signals onto the ‘plane-orthogonal-to-
skin’ (POS) using Equation 2: 
 
𝑆𝑆(𝑡𝑡)  =  𝑃𝑃 ∙  𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅,𝑛𝑛(𝑡𝑡)                                                                (2) 
 

where S(t) is the projected signal matrix with dimensions 
2 × Nf  (Nf represents the length of the defined interval), P 
is the 2 × 3 projection matrix given by Ryu et al. (2021), and 
CRGB,n(t) = [CR,n(t) CG,n(t) CB,n(t)]𝑇𝑇 denotes the temporally 
normalized RGB color matrix with dimensions 3 × Nf from 
the nth skin area. Ci,n(t) are computed as follows: 

Ci,n(t)=
Ci,n

* (t)

μ �Ci,n
* (t)�

, i ∈ {R,G,B}                                                 (3) 

where Ci,n
* (t) is the raw color signals, µ(•) denotes the 

operator used to compute the average value, and the 
subscript n indicates the specific skin area. 
       The rPPG signal from each skin area, denoted as pn(t), 
is calculated using: 

pn(t) = BP[ S1(t) + α ∙ S2(t)]flow

fhigh  with α = 
σ(S1(t))
σ(S2(t))        (4) 

 
where Si(t) is the ith row of S(t), and σ(•) represents the 
standard deviation operator. The operator BP[•]flow

fhigh is a 
signal filtering process using a third-order bandpass filter 
with a passband frequency of flow to fhigh. In this study, flow 
was set to 0.5 Hz and fhigh to 4Hz, corresponding to an HR 
range of 30 to 240 beats per min (BPM). This filtering step 
captures the dominant frequency components of the BVP 
while effectively reducing noise. 
       Finally, the mean rPPG signal, pavg(t), is computed by 
averaging the rPPG signals from all skin areas: 
 

pavg(t) = 
∑ pn

N
n =1 (t)

N                                                                  (5) 
 

where N is the number of skin areas. 

 

 
 
Figure 5. The details of the divided interval and the update process; (a) initial interval with a duration of 20 s, (b) second 
interval generated through the update process, and (c) third interval produced by continuing the update process  
Note: This iterative update continues until all data from the facial video has been processed. 
 
2.2.4 Identification of the optimal rPPG frequency 
band using the majority vote in subintervals 
The majority vote in subintervals method used in this 
study has been modified from the original approach 
proposed by Sunkom et al. (2023) to reduce computational 
complexity. 
       The algorithm identifies the optimal frequency band for 
the bandpass filter by determining the representative heart 
rate (rHR) of the majority group, derived from the majority 
vote in subintervals. To determine the majority group, the 
mean rPPG signal, pavg(t), obtained from Section C, was 

divided into subintervals. The short-time Fourier transform 
(STFT) was applied to each subinterval to identify the 
frequency component with the highest amplitude. The HR 
for each subinterval was set to 60⋅fmax, where fmax is the 
frequency component with the highest amplitude. 
       The HRs from each subinterval were grouped into multiple 
intervals of equal size, starting with a range of 5 BPM, e.g., 80 
to 85 BPM (80 ≤ HR < 85) and 85 to 90 BPM (85 ≤ HR < 90). 
The number of HRs within each group was counted, and the 
group with the highest count was identified as the majority 
group. The rHR was then calculated as the midpoint of this 

   

(a) (b) (c) 
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majority group. For additional details on the majority vote 
algorithm, refer to Sunkom et al. (2023). 
       In this study, the STFT parameters were set as follows: 
nperseg = 180 (6 s), noverlap = 165, and nfft = 1800. These 
settings extend the subinterval length from 3 to 6 s 
compared to Sunkom et al. (2023) and update each 
subinterval by shifting 0.5 s. This adjustment provides a 
improved frequency resolution for HR calculation in 
subintervals. With these STFT settings, the 20-s interval of 
pavg(t) is divided into 29 subintervals. Figure 6 illustrates the 
STFT settings used in this study. 
 

 
 
Figure 6. The details of the STFT setting used in this study 
 
       Next, the optimal frequency band for the bandpass filter is 
determined based on the rHR using the following formulas: 
flow = 0.7 × rHR

60
,  fhigh= 1.3 × rHR

60
. The computational complexity 

for obtaining the optimal average rPPG signal, denoted as 
p*avg(t), is reduced compared to the method used in described 
Sunkom et al. (2023). This is achieved by directly applying a 
bandpass filter with flow and fhigh, to pavg(t). 
 
2.2.5 Ultra-short-term PRV calculation 
In this study, the Python package Neurokit2 (Makowski et 
al., 2021) was used to compute time domain PRV features 
directly from the rPPG signal. The features included: the 
average of PPI (meanPP), the root mean square of 
successive differences between adjacent PPIs (RMSSD), the 
standard deviation of PPI (SDPP), and the standard 
deviation of successive differences between adjacent PPIs 
(SDSD). 
       These PRV features were then calculated from two 
sources: the rPPG signal obtained from the entire forehead 
ROI, representing the results of the conventional method, 
and the rPPG signal derived from the small areas within the 
forehead ROI, incorporating hair detection and the 
majority vote in subintervals, representing the results of 
the proposed method. Both sets of results were compared 
with the PRV derived from the ground truth PPG. 
 
 
3. RESULTS AND DISCUSSION 
 
In this study, the mean absolute error (MAE) was used to 
evaluate the differences between the PRV results obtained 
from the experiments and the ground truth PPG, as shown 
in Equation 6. Lower MAE values indicate a closer 
alignment with the ground truth. 
 

MAE  = 
∑ �Datagt,k - Datare,k�K

k=1

K
                                               (6) 

 
where K is the number of data points, Datagt,k is the kth ground 
truth data point, and Datare,k is the kth experiment data point. 
       The MAE is calculated for each 10-s interval of the PRV 
features and updated every second throughout the entire 
video. The mean and standard deviation of the MAE for both 
the conventional and proposed methods were then 
computed, and the data are presented in Tables 1–4. 
 
Table 1. MeanPP results 
 

Subject ID MAE±SD (ms) 
Conventional method Proposed method 

#5 74.50±26.78 2.18±0.63 
#10 43.32±12.68 8.16±4.97 
#14 10.07±7.71 3.63±0.81 
#23 28.51±18.52 4.12±0.82 
#30 63.56±43.11 16.63±5.31 
#32 50.14±53.53 63.97±141.56 
#35 1.48±0.51 1.51±0.41 

 
Table 2. SDPP results 
 

Subject MAE±SD (ms) 
Conventional method Proposed method 

#5 181.77±51.21 6.95±2.03 
#10 98.39±20.15 20.59±10.87 
#14 31.70±21.68 19.68±5.48 
#23 50.88±25.65 38.13±4.24 
#30 148.32±69.17 37.94±16.81 
#32 113.80±83.53 24.83±44.95 
#35 6.16±2.94 5.63±2.70 

 
Table 3. RMSSD results 
 

Subject MAE±Std (ms) 
Conventional method Proposed method 

#5 284.39±68.20 15.59±2.87 
#10 161.42±47.60 30.61±12.92 
#14 69.70±37.41 49.43±10.21 
#23 54.51±19.69 85.13±9.66 
#30 245.77±118.48 51.76±25.14 
#32 154.51±109.06 39.28±57.65 
#35 16.38±10.96 12.80±7.43 

 
Table 4. SDSD results 
 

Subject MAE±SD (ms) 
Conventional method Proposed method 

#5 238.92±69.70 15.87±2.94 
#10 164.17±48.67 31.06±13.08 
#14 71.32±38.36 50.41±10.42 
#23 55.73±20.15 87.43±10.02 
#30 250.72±121.14 52.63±25.51 
#32 157.49±111.65 40.72±60.45 
#35 16.67±11.21 12.98±7.54 
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       For the meanPP, the MAEs for five of the seven 
subjects—specifically, subjects #5, #10, #14, #23, and 
#30—showed improvement, as detailed in Table 1. This 
improvement is primarily due to the use of the majority 
vote in subintervals to determine the optimal passband 
frequency for the bandpass filter. Figure 7 compares the 
ground truth PPG with the rPPG signals obtained from both 
the conventional and proposed methods. As illustrated in 
Figure 7a, the rPPG signal derived using the conventional 

method is excessively noisy, leading to inaccurate 
detection of positive peak indices even after applying a 0.5 
to 4 Hz bandpass filter. This noise leads to errors in the 
calculation of PPIs. In contrast, Figure 7b demonstrates the 
significant enhanced quality of the rPPG signal obtained 
using the proposed method. This enhancement enables the 
peak detection algorithm to accurately identify the indices 
of positive peaks, resulting in more reliable measurements 
of PPIs. 

 
 

  
                  (a) (b) 

 
Figure 7. Comparison of the rPPG signal acquired using each method with the ground truth PPG from the same 
interval; (a) the rPPG signal acquired using the conventional method versus ground truth PPG, and (b) the rPPG 
signal acquired using the proposed method versus the ground truth PPG 
 
       However, the results for subject #32 did not show 
improvement because the proposed method was unable to 
enhance the quality of the rPPG signal at the beginning of 
the video, as illustrated in Figure 8. This issue was caused 
by significant changes in ambient light conditions as noted 
by Sunkom et al. (2023). While the majority vote in 
subintervals method in improved HR values by extracting 
frequency components from reliable intervals, it did not 
yield similar improvements for PRV. This is likely because 
HR values can be accurately estimated from the good 
portions of the rPPG signal, whereas accurate PRV 
calculation requires the entire rPPG signal to be reliable. 

       For subject #35, the MAE results in Table 1 show that 
the values from both the conventional and proposed 
methods are notably similar. This suggests that the rPPG 
signal obtained using the conventional method was 
already of high quality. 
       Regarding SDPP, the MAE improved for all subjects, as 
shown in Table 2. Furthermore, the MAEs of RMSSD and 
SDSD improved for six of the seven subjects—specifically, 
subjects #5, #10, #14, #30, #32, and #35—as shown in 
Table 3 and Table 4. 

 
 

 
 
Figure 8. Failure of the proposed method to improve the rPPG signal of the subject #32 during the first interval of the video 
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4. CONCLUSION 
 
This paper extended the prior research by applying the 
hair detection algorithm and the majority vote technique 
within subintervals—originally designed to improve HR—
to the calculation of ultra-short-term PRV. The study 
utilized the rPPG signal extracted from the forehead ROI, 
incorporating modifications to the acquisition process        
to better accommodate PRV calculation and reduce 
complexity compared to previous methods. Evaluation of 
the MAE for various time-domain PRV features using the 
proposed method demonstrated noticeable improvements 
for most subjects compared to the conventional method. 
However, the proposed method was unable to enhance 
meanPP in cases where the video experienced significant 
fluctuations in ambient lighting. 
       Future research will focus on developing solutions to 
address the challenges identified in this study and further 
improving the accuracy of time-domain PRV. Additionally, 
potential improvement in the frequency domain using the 
proposed method will be explored. 
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