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ABSTRACT

Remote photoplethysmography (rPPG) is a non-contact method for extracting pulse
signal from a region of interest (ROI) in a human facial video. This technique enables
researchers to remotely measure both heart rate and pulse rate variability (PRV).
However, when the forehead is used as the ROI for rPPG signal extraction, hair can
obscure parts of the skin, and changes in ambient lighting may introduce spurious
frequency spikes, which degrade the rPPG signal and PRV accuracy. This paper
proposed a method to improve ultra-short-term PRV derived from the rPPG signal
using the forehead ROI. The approach incorporated a hair detection algorithm to
extract the rPPG signal from skin areas, excluding regions covered by hair. In
addition, a majority voting mechanism was applied to subintervals to determine the
optimal passband frequency for a bandpass filter, effectively eliminating spurious
frequencies. The ultra-short-term PRV was then computed from the refined rPPG
signal. Results show that the mean absolute error of the ultra-short-term PRV was
improved for most subjects compared to the mean absolute error obtained via the
conventional method.

Keywords: remote photoplethysmography; hair detection; time domain ultra-short-term pulse rate
variability

(BVP)—has been proposed as an alternative (Peng et al,,
2015). HRV derived from the PPG signal is referred to

Heart rate variability (HRV) is a measure of an individual’s
health, reflecting changes in the time intervals between
successive heartbeats. It serves as an important indicator
of autonomic nervous system (ANS) activity (McCraty and
Shaffer, 2015). Typically, HRV is measured using medical
devices such as electrocardiograms (ECGs). However, the
complexity and inconvenience of the ECG acquisition
process can lead to potential errors (Bolanos et al., 2006).
To overcome these challenges, the photoplethysmography
(PPG) signal—captured using a pulse oximeter attached to
a subject’s finger to measure the blood volume pulse
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as pulse rate variability (PRV). Several studies have
demonstrated that PRV obtained from the PPG signal can
effectively serve as a surrogate for HRV derived from ECG
signal (Aimie-Salleh et al, 2020; Pinheiro et al, 2016;
Vescio et al, 2018). PRV is calculated by analyzing the
pulse-to-pulse interval (PPI) within the PPG signal.
Attaching a pulse oximeter to a subject’s finger can be
inconvenient for acquiring PRV during activities involving
hand movement, such as driving. To address this
limitation, remote photoplethysmography (rPPG) has been
introduced as a non-contact method for capturing the

https://doi.org/10.69598/sehs.18.24040012



https://doi.org/10.69598/sehs.18.24040012

Improved ultra-short-term pulse rate variability using hair detection and majority vote in subintervals

blood volume pulse (BVP) component. Instead of relying
on signals from contact-based medical devices, rPPG
extract BVP from a region of interest (ROI) in a human
facial video. For effective rPPG signal acquisition, careful
selection of the ROI is crucial to ensure a strong BVP
component. Kumar et al. (2015) demonstrated that the
forehead and cheeks are optimal regions for detecting the
BVP component. Over the years, various techniques have
been developed to extract the rPPG signal from facial videos.
These include blind source separation (BSS) methods
(Lewandowska et al,, 2011; Panigrahi and Sharma, 2022; Poh
etal, 2010) and model-based approaches such as CHROM (de
Haan and Jeanne, 2013), POS (Wangetal,, 2017), and modified
POS (Ryu etal,, 2021).

Previous studies used rPPG signal to extract PRV from
human facial videos as a non-contact alternative to
traditional contact-based medical devices. The findings
from these studies indicate that PRV derived from rPPG
signal is comparable to that obtained from medical devices
(Gudi et al.,, 2020; Yu et al, 2021). Recently, FinZgar and
Podrzaj (2020) explored the use of ultra-short-term PRV,
defined as PRV obtained from signals lasting less than five
minutes. Their experimental results, based on recording
durations ranging from 10 to 60 s, showed that the
agreement between the ultra-short-term PRV derived from
rPPG and PPG signals improves with longer recording
durations.

Sunkom et al. (2023) proposed a method to improve
heart rate (HR) measurements derived from rPPG signal
using a 10-s interval extracted from the forehead ROI with
the modified POS method (Ryu et al., 2021). This method
divides the forehead ROI into 24 small areas and applies a
hair detection algorithm to exclude regions covered by
hair. Additionally, a majority voting mechanism is
employed in subintervals to identify the optimal passband
frequency for filtering the rPPG signal. The results
demonstrate that HR measurements are improved by
excluding hair-covered areas and using the majority voting
to eliminate spurious frequencies caused by changes in
ambient lighting.

This study extends the work of Sunkom et al. (2023) by
applying their algorithms to enhance ultra-short-term PRV
derived from the rPPG signals. To achieve this, certain
parameters and processes within the algorithm have been
adjusted and simplified to reduce complexity. This paper
provided an overview of the original algorithm proposed
by Sunkom etal. (2023), describes the modifications made,
and demonstrated how these adjustments improve the
accuracy of ultra-short-term PRV.

2. MATERIALS AND METHODS

2.1 Materials

This study utilized the UBFC-RPPG public dataset (Bobbia
et al,, 2019), which contains one-minute video recordings
of human faces engaged in a mathematical game. The
videos were captured with a Logitech C920 HD Pro
webcam, at a frame rate of 30 frames per second (fps) and
a resolution of 640 x 480 pixels, with subjects positioned
approximately one meter from the webcam. The dataset
also includes PPG signals recorded with a CMS50E pulse
oximeter, which serve as the ground truth for comparison
with the results of the proposed method.
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For the experiments, seven videos were selected from
the dataset, focusing on subjects whose hair partially
covered their forehead areas. The selected videos
correspond to subject IDs #5, #10, #14, #23, #30, #32, and
#35. Figure 1 shows the facial images of these subjects
along with their ID numbers.

2.2 Methods

An overview of the proposed method is shown in Figure 2.
This method builds on the approach described by Sunkom
etal. (2023), with modifications to certain parameters and
processes to facilitate ultra-short-term PRV calculation
while reducing overall complexity. The method consists
of five main components. Detail descriptions of each
component are provided below.

2.2.1 Forehead ROI extraction

To identify and extract the ROI on the subject's face, a face
detection model was used to detect and track the face. In
this study, the MediaPipe Face Mesh model (Kartynnik et
al,, 2019) was employed to locate and generate 3D facial
landmark points. The ROI was then extracted by selecting
specific facial landmark points. Based on experiments
conducted by Sunkom et al. (2023), two types of forehead
ROIs were utilized for ultra-short-term PRV calculation:
the entire forehead ROI and smaller areas within the
forehead ROI. The PRVs obtained from these two types
were compared.

The entire forehead ROI, commonly used in various
studies, is a conventional region for tPPG signal extraction
(Lewandowska et al, 2011; Pourbemany et al, 2021;
Sanyal and Nundy, 2018). In this study, the entire forehead
ROI was defined by the facial landmark points 9, 10, 66, 67,
103, 104, 105, 107, 109, 296, 297, 332, 333, 334, 336, and
338, as displayed in Figure 3a. However, this ROI can be
partially covered by hair, which may affect the quality of
the rPPG signal, as depicted in Figure 3b.

To address this issue, the entire forehead ROI was
divided into 24 smaller triangular areas, as detailed in
Figure 4a. Figure 4b illustrates how these areas are
positioned on the subject's face. The triangular areas were
classified into hair and skin regions, with only the skin
regions being used for rPPG signal extraction.

2.2.2 Raw RGB color signal extraction and hair
detection algorithm

The raw RGB color signals for each area were extracted
using the spatial average technique, which calculated the
average values of red, green, and blue within each video
frame, as illustrated in Equation 1:

*
P Cixj(0)

C;(0= ,i € {R,G,B} (1)

where Czj(t) is the raw RGB color signal of the jth area of the
forehead RO, c;ik' ;(0) is the raw RGB color signal of the kt
pixelin the jtharea, and K is the number of pixels in the jth area.

For the entire forehead ROI, only a single raw RGB color
signal was extracted, combining the color information
from both hair and skin pixels. In contrast, the smaller
areas within the forehead ROI consisted of 24 distinct
regions, resulting in the extraction of 24 separate raw RGB
color signals.
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Figure 1. Facial images and ID numbers of the selected subjects for this study
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Figure 2. Overview of the proposed method used to improve ultra-short-term PRV
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In the study by Sunkom et al. (2023), 10-s intervals
(300 samples) of the raw RGB color signals were used for
HR calculation. However, to improve the alignment
between the ultra-short-term PRV derived from the rPPG
signal and the ground truth PRV obtained from the PPG
signal (FinZgar and Podrzaj, 2020), this study uses a longer
signal duration. Specifically, a 20-s interval (600 samples)
was selected. This interval is updated every sec by
removing the initial 1-s segment (30 samples) and
appending a new 1-s segment (30 samples) at the end, as
illustrated in Figure 5. The process continues until the
video ends.

For the smaller areas within the forehead ROI, the hair
detection algorithm described by Sunkom et al. (2023) was
applied to the 20-s signal of the 24 areas. The algorithm
begins by calculating the average green color signal for
each area, and identifying the area with the highest average
green value. It then normalizes the green color values for
each area and classifies them as either containing hair or
not based on these normalized values. Areas marked as
'No' are identified as skin region, and used to rPPG signal
extraction in subsequent processing. Conversely, areas
marked as 'Yes' (indicating the presence of hair) are
excluded from further analysis. Additional details of the
hair detection algorithm can be found in the original study
by Sunkom et al. (2023).

2.2.3 rPPG signal extraction

The modified POS, as outlined by Ryu et al. (2021), was
used to extract rPPG signals. This method involves
projecting the RGB signals onto the ‘plane-orthogonal-to-
skin’ (POS) using Equation 2:

S(@) = P - Crgpn(t) 2

Interval #1

Remove (1s)
~ -

Raw RGB color signal

Color amplitude

i
h

Raw RGB color signal

where S(¢) is the projected signal matrix with dimensions
2 x N (Nfrepresents the length of the defined interval), P
is the 2 x 3 projection matrix given by Ryu et al. (2021), and
Crean(®) = [Crn(t) Cen(t) Cpn(t)]" denotes the temporally
normalized RGB color matrix with dimensions 3 x Nrfrom
the nth skin area. C; ,(t) are computed as follows:

Cin(®)
()

k(ci®

in

Cin(®= ,ie {RG,B} ®3)

where Cz,,(t) is the raw color signals, p(e) denotes the
operator used to compute the average value, and the
subscript n indicates the specific skin area.

The rPPG signal from each skin area, denoted as pa(t),
is calculated using:

_o(51(1)

Pa(®) = BPLS, (0 + @ S,(0]™ witha = Lo

C))

where Si(t) is the ith row of S(¢), and o(e) represents the
standard deviation operator. The operator BP[-]?high is a
1

signal filtering process using a third-order bandpass filter
with a passband frequency of fiow to fhigh. In this study, fiow
was set to 0.5 Hz and fhigh to 4Hz, corresponding to an HR
range of 30 to 240 beats per min (BPM). This filtering step
captures the dominant frequency components of the BVP
while effectively reducing noise.

Finally, the mean rPPG signal, pavy(t), is computed by
averaging the rPPG signals from all skin areas:

YA C)
N

where N is the number of skin areas.
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Figure 5. The details of the divided interval and the update process; (a) initial interval with a duration of 20 s, (b) second
interval generated through the update process, and (c) third interval produced by continuing the update process
Note: This iterative update continues until all data from the facial video has been processed.

2.2.4 Identification of the optimal rPPG frequency
band using the majority vote in subintervals

The majority vote in subintervals method used in this
study has been modified from the original approach
proposed by Sunkom et al. (2023) to reduce computational
complexity.

The algorithm identifies the optimal frequency band for
the bandpass filter by determining the representative heart
rate (rHR) of the majority group, derived from the majority
vote in subintervals. To determine the majority group, the
mean rPPG signal, pavg(t), obtained from Section C, was
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divided into subintervals. The short-time Fourier transform
(STFT) was applied to each subinterval to identify the
frequency component with the highest amplitude. The HR
for each subinterval was set to 60-fmax, where fmax is the
frequency component with the highest amplitude.

The HRs from each subinterval were grouped into multiple
intervals of equal size, starting with a range of 5 BPM, e.g., 80
to 85 BPM (80 < HR < 85) and 85 to 90 BPM (85 < HR < 90).
The number of HRs within each group was counted, and the
group with the highest count was identified as the majority
group. The rHR was then calculated as the midpoint of this
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majority group. For additional details on the majority vote
algorithm, refer to Sunkom et al. (2023).

In this study, the STFT parameters were set as follows:
nperseg = 180 (6 s), noverlap = 165, and nfft = 1800. These
settings extend the subinterval length from 3 to 6 s
compared to Sunkom et al. (2023) and update each
subinterval by shifting 0.5 s. This adjustment provides a
improved frequency resolution for HR calculation in
subintervals. With these STFT settings, the 20-s interval of
Davg(t) is divided into 29 subintervals. Figure 6 illustrates the
STFT settings used in this study.

Sub interval #2, HR#2

The average of the rPPG signal from each skin area

0.00

-0.01

rPPG Amplitude

-0.02

-0.03

-0.04

2 4 6 8 10 12 14
Time (s)

16 "-LB‘ 20
Sub interval #29, HR#29

Figure 6. The details of the STFT setting used in this study

Next, the optimal frequency band for the bandpass filter is
determined based on the rHR using the following formulas:
0.7 x THR 1.3 xrHR
flow = T’ fhigh= T
for obtaining the optimal average rPPG signal, denoted as
Pavg(t), is reduced compared to the method used in described
Sunkom et al. (2023). This is achieved by directly applying a
bandpass filter with fiow and fhigh, to pavg(t).

. The computational complexity

2.2.5 Ultra-short-term PRV calculation

In this study, the Python package Neurokit2 (Makowski et
al,, 2021) was used to compute time domain PRV features
directly from the rPPG signal. The features included: the
average of PPl (meanPP), the root mean square of
successive differences between adjacent PPIs (RMSSD), the
standard deviation of PPI (SDPP), and the standard
deviation of successive differences between adjacent PPIs
(SDSD).

These PRV features were then calculated from two
sources: the rPPG signal obtained from the entire forehead
RO], representing the results of the conventional method,
and the rPPG signal derived from the small areas within the
forehead ROI, incorporating hair detection and the
majority vote in subintervals, representing the results of
the proposed method. Both sets of results were compared
with the PRV derived from the ground truth PPG.

3. RESULTS AND DISCUSSION

In this study, the mean absolute error (MAE) was used to
evaluate the differences between the PRV results obtained
from the experiments and the ground truth PPG, as shown
in Equation 6. Lower MAE values indicate a closer
alignment with the ground truth.
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where K is the number of data points, Datage is the kth ground
truth data point, and Datarek is the kth experiment data point.
The MAE is calculated for each 10-s interval of the PRV
features and updated every second throughout the entire
video. The mean and standard deviation of the MAE for both
the conventional and proposed methods were then
computed, and the data are presented in Tables 1-4.

Table 1. MeanPP results

SubjectID MAE*SD (ms)
Conventional method Proposed method
#5 74.50+26.78 2.18+0.63
#10 43.32+12.68 8.16+4.97
#14 10.07£7.71 3.63+0.81
#23 28.51+18.52 4.12+0.82
#30 63.56+43.11 16.63+£5.31
#32 50.14+53.53 63.97+141.56
#35 1.48+0.51 1.51+0.41

Table 2. SDPP results

Subject = MAEzSD (ms)
Conventional method Proposed method
#5 181.77+51.21 6.95+2.03
#10 98.39+20.15 20.59+10.87
#14 31.70+21.68 19.68+5.48
#23 50.88+25.65 38.13+4.24
#30 148.32+69.17 37.94+16.81
#32 113.80+83.53 24.83+44.95
#35 6.16+2.94 5.63+2.70

Table 3. RMSSD results

Subject = MAE+Std (ms)
Conventional method Proposed method

#5 284.39+68.20 15.59+2.87

#10 161.42+47.60 30.61+12.92

#14 69.70+37.41 49.43+10.21

#23 54.51+19.69 85.13+9.66

#30 245.77+118.48 51.76+25.14

#32 154.51+109.06 39.28+57.65

#35 16.38+£10.96 12.80+£7.43

Table 4. SDSD results

Subject = MAE*SD (ms)
Conventional method Proposed method

#5 238.92+69.70 15.87+2.94

#10 164.17+48.67 31.06+£13.08

#14 71.32+38.36 50.41+10.42

#23 55.73+£20.15 87.43+£10.02

#30 250.72+121.14 52.63+25.51

#32 157.49+111.65 40.72+60.45

#35 16.67+11.21 12.98+7.54
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For the meanPP, the MAEs for five of the seven
subjects—specifically, subjects #5, #10, #14, #23, and
#30—showed improvement, as detailed in Table 1. This
improvement is primarily due to the use of the majority
vote in subintervals to determine the optimal passband
frequency for the bandpass filter. Figure 7 compares the
ground truth PPG with the rPPG signals obtained from both
the conventional and proposed methods. As illustrated in
Figure 7a, the rPPG signal derived using the conventional

31 —— Ground truth
—— Conventional method

Amplitude

10.0 125 15.0 17.5 20.0

Time (s)

(@)

0.0 25 5.0 7.5

Amplitude

method is excessively noisy, leading to inaccurate
detection of positive peak indices even after applying a 0.5
to 4 Hz bandpass filter. This noise leads to errors in the
calculation of PPIs. In contrast, Figure 7b demonstrates the
significant enhanced quality of the rPPG signal obtained
using the proposed method. This enhancement enables the
peak detection algorithm to accurately identify the indices
of positive peaks, resulting in more reliable measurements
of PPIs.

31 —— Ground truth
—— Proposed method

10.0 125 15.0 17.5 20.0

Time (s)

(b)

5.0 7.5

Figure 7. Comparison of the rPPG signal acquired using each method with the ground truth PPG from the same
interval; (a) the rPPG signal acquired using the conventional method versus ground truth PPG, and (b) the rPPG
signal acquired using the proposed method versus the ground truth PPG

However, the results for subject #32 did not show
improvement because the proposed method was unable to
enhance the quality of the rPPG signal at the beginning of
the video, as illustrated in Figure 8. This issue was caused
by significant changes in ambient light conditions as noted
by Sunkom et al. (2023). While the majority vote in
subintervals method in improved HR values by extracting
frequency components from reliable intervals, it did not
yield similar improvements for PRV. This is likely because
HR values can be accurately estimated from the good
portions of the rPPG signal, whereas accurate PRV
calculation requires the entire rPPG signal to be reliable.

For subject #35, the MAE results in Table 1 show that
the values from both the conventional and proposed
methods are notably similar. This suggests that the rPPG
signal obtained using the conventional method was
already of high quality.

Regarding SDPP, the MAE improved for all subjects, as
shown in Table 2. Furthermore, the MAEs of RMSSD and
SDSD improved for six of the seven subjects—specifically,
subjects #5, #10, #14, #30, #32, and #35—as shown in
Table 3 and Table 4.

Amplitude
=] =
——

-1

=2

—— Ground truth
—— Proposed method

10.0

125 150 175 200

Time (s}

Figure 8. Failure of the proposed method to improve the rPPG signal of the subject #32 during the first interval of the video
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4. CONCLUSION

This paper extended the prior research by applying the
hair detection algorithm and the majority vote technique
within subintervals—originally designed to improve HR—
to the calculation of ultra-short-term PRV. The study
utilized the rPPG signal extracted from the forehead RO],
incorporating modifications to the acquisition process
to better accommodate PRV calculation and reduce
complexity compared to previous methods. Evaluation of
the MAE for various time-domain PRV features using the
proposed method demonstrated noticeable improvements
for most subjects compared to the conventional method.
However, the proposed method was unable to enhance
meanPP in cases where the video experienced significant
fluctuations in ambient lighting.

Future research will focus on developing solutions to
address the challenges identified in this study and further
improving the accuracy of time-domain PRV. Additionally,
potential improvement in the frequency domain using the
proposed method will be explored.
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