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ABSTRACT 
 
The Poisson distribution is commonly used when events are assumed to be 
independent and occur at a consistent rate. This may not be generally applicable, 
and the Poisson distribution is not appropriate in situations where the underlying 
rate of occurrence displays variability. A mixed Poisson distribution such as the 
Poisson-Rani distribution permits the rate parameter to be random instead of 
constant. Bootstrap-based confidence intervals (CIs) were developed for the 
Poisson-Rani distribution parameter in this study. The percentile bootstrap (PB), 
basic bootstrap (BB), and bias-corrected and accelerated (BCa) bootstrap methods 
were compared for empirical coverage probabilities and expected lengths by the 
Monte Carlo simulation using the RStudio program with sample sizes of 10, 30, 50, 
100, 500, and 1,000. The parameter values (𝜃𝜃) were set at 0.1, 0.3, 0.5, 0.8, 1, 1.5, 
and 2 with 1,000 replications. The simulation results suggested that the bootstrap-
based CIs required improvement to attain the nominal confidence level for small 
sample sizes. No significant differences were detected in the performances of 
bootstrap-based CIs when evaluating large sample sizes, with the BCa bootstrap 
CI exhibiting superior performance compared to the others. The application of 
bootstrap-based CIs to meteorological data yielded comparable results to the 
simulation study. 
 
Keywords: count data; mixed Poisson distribution; rainy days; resampling method; statistical 
inference 
 
 

1. INTRODUCTION                                    
 
Analyzing meteorological data is essential to understanding 
and managing weather and climate-related phenomena, 
which have far-reaching impacts on various aspects of 
human life, the environment, and the economy (Clarke et 
al., 2022), and enable informed decision-making to adapt 
to the challenges posed by a changing climate. Numerous 
studies have analyzed meteorological data. Brammer 
(2020) assessed climate change in Bangladesh, while 
Zhang et al. (2023) analyzed the influencing factors of forest 
fires using different combustibles, meteorological and 

climatic factors, and spatial and temporal distribution 
characteristics. This study determined the number of rainy 
days in a week, which followed a Poisson distribution as a 
mathematical model that calculates the probability of a 
specific number of events happening during a given time or 
space interval. The input describes a distribution that 
assumes events occur at a constant average rate and are 
independent of time (Kissell & Poserina, 2017). However, in 
actual situations, this assumption may not always hold true, 
and if the rate parameter is not constant a Poisson 
distribution may be inappropriate. When the Poisson 
parameter is assumed to be a random variable, a mixed 
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Poisson distribution can be used (Tharshan & Wijekoon, 
2022). Several mixed Poisson distributions were reviewed 
in this paper including the Poisson-Lindley (Sankaran, 
1970), Poisson-Akash (Shanker, 2017a), Poisson-Ishita 
(Shukla & Shanker, 2019), and Poisson-Prakaamy (Shukla & 
Shanker, 2020) distributions. Ahmad et al. (2021) proposed 
the Poisson-Rani (PR) distribution and studied its statistical 
properties. The PR distribution is obtained using the Rani 
distribution as the underlying distribution for the Poisson 
parameter, representing the average number of events. 
When applied to two real data sets, the PR distribution 
worked better than either the Poisson or Poisson-Lindley 
(Sankaran, 1970) distributions. 
       The Rani distribution is a continuous lifetime distribution 
with a probability density function (pdf) defined in  
Equation 1: 
 

 𝑓𝑓(𝑥𝑥;𝜃𝜃) = 𝜃𝜃5

𝜃𝜃5+24
(𝜃𝜃 + 𝑥𝑥4)𝑒𝑒−𝜃𝜃𝜃𝜃, 𝑥𝑥 > 0,  𝜃𝜃 > 0.              (1) 

 
       This distribution is a combination of an exponential 
distribution with a scale parameter 𝜃𝜃 and a gamma (5,𝜃𝜃) 
distribution with proportions 𝜃𝜃5/(𝜃𝜃5 + 24),  and 24/(𝜃𝜃5 +
24), respectively. Shanker (2017b) showed that the Rani 
distribution outperformed the Akash (Shanker, 2015a), 
Rama (Shanker, 2017c), Akshaya (Shanker, 2017d), Shanker 
(Shanker, 2015b), Amarendra (Shanker, 2016a), Aradhana 
(Shanker, 2016b), Sujatha (Shanker, 2016c), Devya (Shanker, 
2016d), Lindley (Lindley, 1958), and exponential 
distributions in terms of model fit. Figure 1 depicts plots of 
the Rani distribution pdf with specified parameter values. 
       A confidence interval (CI) is a statistical tool that 
establishes a range of values in which the true population 
parameter is expected to lie, based on the available sample 
data and a confidence level (Tan & Tan, 2010). A Cl value can 
communicate the uncertainty of statistical estimates and 
assist researchers and decision-makers in making informed 
determinations regarding the underlying population 
characteristics. Traditional interval estimation methods for 
the PR distribution such as Wald-type, likelihood-based, and 
Bayesian CIs each have distinct advantages and limitations. 
The Wald-type CI is straightforward to compute but often 
unreliable, especially with small sample sizes. Likelihood-
based CI offers greater accuracy and better coverage but 
can be computationally demanding, while Bayesian CI allows 
the incorporation of prior information but is sensitive to 
the choice of prior and may also require substantial 
computational resources. The bootstrap method presents 
several advantages over these traditional approaches due to 
its high flexibility because it does not rely on large sample 
approximations and can be effectively applied in situations 
where traditional methods may fail or prove less reliable. 
Despite these benefits, the bootstrap method also has 
drawbacks including significant computational demands and 
the need for a large number of resamples to achieve stable 
results. 
       No previous studies have used bootstrap methods to 
calculate CIs for the PR distribution parameter. The 
fundamental idea behind bootstrap CIs is to estimate the 
uncertainty or variability in a statistic, such as the mean, 
median, variance, or any other parameter of interest, 
by repeatedly resampling the observed data with 
replacement and then calculating the statistic of interest 
for each resampled dataset (Chernick & LaBudde, 2011). 
The purpose of this resampling technique is to estimate the 

sampling distribution of the statistic without relying on 
specific assumptions about the distribution of the 
population. 
 

 
 
Figure 1. Plots of the Rani distribution pdf for θ = 0.5, 1, 1.5, 
and 2 
 
       This study evaluated the accuracy of three bootstrap-
based CIs as percentile bootstrap (PB), basic bootstrap 
(BB), and bias-corrected and accelerated (BCa) bootstrap 
to estimate the PR distribution parameter.  
 
 
2. MATERIALS AND METHODS    
 
2.1 Point estimation for the Poisson-Rani 
distribution parameter 
The Poisson distribution probability mass function (pmf) 
for a random variable 𝑌𝑌 can be represented in Equation 2: 
 

𝑝𝑝(𝑦𝑦 ;𝜆𝜆) = 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦

𝑦𝑦!
,𝑦𝑦 = 0,1,2, . . . ,  𝜆𝜆 > 0.                 (2) 

 
       The expected value and variance of 𝑌𝑌 are both equal to 
the parameter 𝜆𝜆. Ong et al. (2021) and Tharshan and 
Wijekoon (2022) provided in-depth descriptions of the 
formation of mixed Poisson distributions. The Poisson-
Rani (PR) distribution is based on the assumption that the 
Poisson parameter, denoted by 𝜆𝜆, follows the Rani distribution. 
       If 𝑋𝑋 has a PR distribution (Ahmad et al., 2021), its pmf 
is given by 
 
     𝑝𝑝(𝑥𝑥 ; 𝜃𝜃) = 𝜃𝜃5�𝑥𝑥4+10𝑥𝑥3+35𝑥𝑥2+50𝑥𝑥+24+𝜃𝜃(𝜃𝜃+1)4�

(𝜃𝜃5+24)(𝜃𝜃+1)𝑥𝑥+5
,  𝑥𝑥 = 0,1,2, … ,  𝜃𝜃 > 0. 

 
       Figure 2 shows the plots of the PR distribution pmf 
with several parameter values 𝜃𝜃. The mean (or the 
first  central  moment) and variance (or the second central 
moment) of 𝑋𝑋 are given by: 
 
𝐸𝐸(𝑋𝑋) = 𝜇𝜇 = 𝜃𝜃5+120

𝜃𝜃(𝜃𝜃5+24)
 and 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋) = 𝜎𝜎2 

=
(𝜃𝜃11 + 𝜃𝜃10 + 144𝜃𝜃6 + 528𝜃𝜃5 + 2880𝜃𝜃 + 2880)

𝜃𝜃2(𝜃𝜃5 + 24)2 . 
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       The log-likelihood function 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 (𝑥𝑥𝑖𝑖 ;𝜃𝜃) is maximized 
to obtain the point estimator of 𝜃𝜃. Therefore, the maximum 

likelihood (ML) estimator for 𝜃𝜃 of the PR distribution can 
be derived by the following processes: 

 

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 (𝑥𝑥𝑖𝑖 ;𝜃𝜃) =
𝜕𝜕
𝜕𝜕𝜕𝜕

⎣
⎢
⎢
⎢
⎢
⎡5𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) − 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃5 + 24) + �𝑙𝑙𝑙𝑙𝑙𝑙[𝑥𝑥𝑖𝑖4 + 10𝑥𝑥𝑖𝑖3 + 35𝑥𝑥𝑖𝑖2 + 50𝑥𝑥𝑖𝑖 + 24 + 𝜃𝜃(𝜃𝜃 + 1)4]

𝑛𝑛

𝑖𝑖=1

−�(𝑥𝑥𝑖𝑖 + 5𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃 + 1)
⎦
⎥
⎥
⎥
⎥
⎤

=
5𝑛𝑛
𝜃𝜃
−

5𝑛𝑛𝜃𝜃4

𝜃𝜃5 + 24
+�

(5𝜃𝜃 + 1)(𝜃𝜃 + 1)3

[𝑥𝑥𝑖𝑖4 + 10𝑥𝑥𝑖𝑖3 + 35𝑥𝑥𝑖𝑖2 + 50𝑥𝑥𝑖𝑖 + 24 + 𝜃𝜃(𝜃𝜃 + 1)4]

𝑛𝑛

𝑖𝑖=1

−�
(𝑥𝑥𝑖𝑖 + 5𝑛𝑛)
𝜃𝜃 + 1

𝑛𝑛

𝑖𝑖=1

. 

 
       The subsequent nonlinear equation can be obtained 
by solving the equation 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 (𝑥𝑥𝑖𝑖 ; 𝜃𝜃) =set 0 for 𝜃𝜃, 

 
5𝑛𝑛
𝜃𝜃
−

5𝑛𝑛𝜃𝜃4

𝜃𝜃5 + 24
+�

(5𝜃𝜃 + 1)(𝜃𝜃 + 1)3

[𝑥𝑥𝑖𝑖4 + 10𝑥𝑥𝑖𝑖3 + 35𝑥𝑥𝑖𝑖2 + 50𝑥𝑥𝑖𝑖 + 24 + 𝜃𝜃(𝜃𝜃 + 1)4]

𝑛𝑛

𝑖𝑖=1

 

               −�
(𝑥𝑥𝑖𝑖 + 5𝑛𝑛)
𝜃𝜃 + 1

𝑛𝑛

𝑖𝑖=1

=set 0. 

       There is no exact mathematical solution for the ML 
estimator of the parameter 𝜃𝜃, and numerical iteration 
methods are used to solve the corresponding non-          
linear equation (Nwry et al., 2021). This study used the 
maxLik package (Henningsen & Toomet, 2011) to 
perform ML estimation using the Newton-Raphson 
technique in the RStudio program (RStudio Team, 
2021). 

 

 
 
Figure 2. Plots of the PR distribution pmf for θ = 0.5, 1, 1.5, and 2 
 
2.2 Bootstrap-based confidence intervals 
CIs are commonly utilized in statistics and research to 
make inferences about populations when data collection 
from the entire population is not feasible. The CI 
calculation implies that the parameter distribution of the 
estimator is approximately normal (Ukoumunne et al., 
2003). However, in some instances, the assumption of 
normality is violated, and estimating the standard error is 
difficult. One potential approach is to employ techniques 
rooted in the bootstrap method (van den Boogaard & Hall, 
2004). This paper used bootstrap methods to construct 
approximate CIs that did not depend on assumptions 
regarding the underlying distribution (Meeker et al., 
2017). The boot package (Canty & Ripley, 2022) was used 
to estimate the bootstrap CIs within the RStudio program. 
 
2.2.1 PB confidence interval 
The PB CI is a non-parametric method that estimates 
the uncertainty surrounding a population parameter by 

resampling the original sample. This is particularly useful 
when the underlying distribution of the data is unknown 
or complicated (Efron, 1982). The procedure for obtaining 
a PB CI for 𝜃𝜃 is as follows: 
       1) Collect the sample data. Begin with the initial 
sample data, which represents a subset of the population. 
Consider that the sample contains 𝑛𝑛 observations. 
       2) Resampling with replacement. The bootstrap 
method involves resampling from the original sample 
with replacement. The observations are selected from the 
original sample, allowing for the possibility that the same 
observation can be selected multiple times. 
       3) Calculate the statistic. For each bootstrap sample, 
the statistic of interest (e.g., parameter, mean, median) is 
calculated. A distribution of the statistic under repeated 
resampling is obtained. 
       4) Generate the confidence interval. To construct a CI, 
the bootstrap statistics must be arranged in ascending 
order and the relevant percentiles selected. To obtain a 
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95% CI, the 2.5th percentile is selected as the lower 
bound and the 97.5th percentile as the upper bound. The 
(1 − 𝛼𝛼)100% two-sided PB CI for 𝜃𝜃 is created as in 
Equation 3, 
 

𝐶𝐶𝐼𝐼𝑃𝑃𝑃𝑃 = �𝜃𝜃�(𝑟𝑟)
∗ ,𝜃𝜃�(𝑠𝑠)

∗ �,                                 (3) 
 
where 𝜃𝜃�(𝛼𝛼)

∗  denotes the 𝛼𝛼th percentile of the distribution of 
the parameter estimate 𝜃𝜃�∗ and 0 ≤ 𝑟𝑟 < 𝑠𝑠 ≤ 100. Hence, 𝑟𝑟 = 
[(𝛼𝛼/2)𝐵𝐵], 𝑠𝑠 = [(1 − (𝛼𝛼/2))𝐵𝐵], where [𝑥𝑥] stands for the 
ceiling function of 𝑥𝑥, and 1 − 𝛼𝛼 is the confidence level. A 95% 
PB two-sided CI is the interval between the 2.5 percentile 
value and the 97.5 percentile value of the 2,000 bootstrap 
parameter estimates. The two quantiles related to the lower 
and upper limits of the PB two-sided CI are 𝜃𝜃�(𝑟𝑟)

∗ = 𝜃𝜃�(50)
∗  (the 

50th quantile) and 𝜃𝜃�(𝑠𝑠)
∗ = 𝜃𝜃�(1950)

∗  (the 1950th quantile). 
 
2.2.2 BB confidence interval 
The BB CI is a straightforward method that does not 
require complex adjustments or modifications to the 
bootstrap procedure. The BB CI focuses on the variability 
of the statistic itself rather than explicitly considering the 
tails of the distribution. Assume that the parameter 𝜃𝜃 and 
the estimator of 𝜃𝜃 is 𝜃𝜃�. When 𝜃𝜃�∗ is the bootstrap estimate of 
𝜃𝜃 based on the bootstrap sample, the BB CI implies that the 
distributions of 𝜃𝜃� − 𝜃𝜃 and 𝜃𝜃�∗ − 𝜃𝜃� are roughly equivalent 
(Meeker et al., 2017). The (1 − 𝛼𝛼)100% two-sided BB CI 
for 𝜃𝜃 is 
 

𝐶𝐶𝐼𝐼𝐵𝐵𝐵𝐵 = �2𝜃𝜃� − 𝜃𝜃�(𝑠𝑠)
∗ ,  2𝜃𝜃� − 𝜃𝜃�(𝑟𝑟)

∗ � 
 
where 𝜃𝜃�(𝑟𝑟)

∗  and  𝜃𝜃�(𝑠𝑠)
∗  are, in ascending order, the 𝑟𝑟th and 𝑠𝑠th 

quantiles of a collection of parameter estimates 𝜃𝜃�∗ that are 
utilized in Equation 3 to calculate the PB CI. 
 
2.2.3 BCa bootstrap confidence interval 
The BCa bootstrap CI is an advanced technique used to 
improve the accuracy of PB and BB CI estimations when 
dealing with small sample sizes or when the data 
distribution is skewed. The BCa bootstrap CI corrects for 
both bias and skewness in the distribution of the bootstrap 
statistics (Efron, 1982). This reduces several problems 
with the PB and BB CIs such as bias in the estimate of the 
population parameter, inaccurate coverage, and narrow or 
unreliable confidence intervals. The calculation of the BCa 
bootstrap CI commonly involves using statistics derived 
from jackknife simulations. 
       Davison and Hinkley (1997) and Chernick and 
LaBudde (2011) provided mathematical details for the BCa 
adjustment. They denoted the bias correction factor 𝑧̂𝑧0 as 
 

𝑧̂𝑧0 = 𝛷𝛷−1 �
1
𝐵𝐵
�𝐼𝐼�𝜃𝜃�𝑖𝑖

∗ < 𝜃𝜃��
𝐵𝐵

𝑖𝑖=1

� 

 
where 𝛷𝛷−1(⋅) is the inverse of the cumulative standard 
normal probability function and 𝐼𝐼(⋅) is the indicator function 
defined as 𝐼𝐼�𝜃𝜃�𝑖𝑖

∗ < 𝜃𝜃�� = 1, if 𝜃𝜃�𝑖𝑖
∗ < 𝜃𝜃� and 𝐼𝐼�𝜃𝜃�𝑖𝑖

∗ < 𝜃𝜃�� = 0, if 
𝜃𝜃�𝑖𝑖
∗ ≥ 𝜃𝜃�. The skewness or acceleration adjustment is 

calculated via jackknife resampling, which entails generating 
𝑛𝑛 replicates of the initial set of data, where 𝑛𝑛 is the sample 
size. From jackknife replicates, we obtain the value of 
𝜃𝜃�(−𝑖𝑖), 𝑖𝑖 = 1,2, . . . ,𝑛𝑛. The acceleration factor 𝑎𝑎� is given by: 

𝑎𝑎� =
∑ �𝜃𝜃�(⋅) − 𝜃𝜃�(−𝑖𝑖)�

3𝑛𝑛
𝑖𝑖=1

6 �∑ �𝜃𝜃�(⋅) − 𝜃𝜃�(−𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1 �
3/2 

 
where 𝜃𝜃�(⋅) = 𝑛𝑛−1 ∑ 𝜃𝜃�(−𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 . The values of 𝛼𝛼1 and 𝛼𝛼2 are 

calculated with the values of 𝑧̂𝑧0 and 𝑎𝑎�,  
 

             𝛼𝛼1 = 𝛷𝛷 �𝑧̂𝑧0 + 𝑧̂𝑧0+𝑧𝑧𝛼𝛼/2

1−𝑎𝑎��𝑧̂𝑧0+𝑧𝑧𝛼𝛼/2�
�  and  𝛼𝛼2 = 𝛷𝛷 �𝑧̂𝑧0 + 𝑧̂𝑧0+𝑧𝑧1−𝛼𝛼/2

1−𝑎𝑎��𝑧̂𝑧0+𝑧𝑧1−𝛼𝛼/2�
� 

 
where 𝑧𝑧𝛼𝛼/2 is the 𝛼𝛼/2 quantile of the standard normal 
distribution. Then, the (1 − 𝛼𝛼)100% two-sided BCa 
bootstrap CI for 𝜃𝜃 can be computed as 
 

𝐶𝐶𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵 = �𝜃𝜃�(𝑗𝑗)
∗ , 𝜃𝜃�(𝑘𝑘)

∗ � 
 
where 𝑗𝑗 = [𝛼𝛼1𝐵𝐵] and  𝑘𝑘 = [𝛼𝛼2𝐵𝐵]. 
 
 
3. RESULTS 
 
Using the RStudio program (RStudio Team, 2021), three 
bootstrap-based CIs for the PR distribution parameter 
were considered in this study based on a Monte Carlo 
simulation. Small, medium, and large sample sizes were 
determined as 𝑛𝑛 = 10, 30, 50, 100, 500, and 1,000 to reflect 
different data scenarios encountered in the simulation 
study. The parameter (𝜃𝜃) was set at 0.1, 0.3, 0.5, 0.8, 1, 1.5, 
and 2 to ensure a comprehensive simulation study across 
different potential values. The value for 𝐵𝐵, representing the 
bootstrap number of replications, was set at 2,000. A series 
of bootstrap samples, each consisting of 𝑛𝑛 observations, 
was constructed from the initial sample following a 
PR distribution using 1,000 replications. The nominal 
confidence level, denoted as 1 − 𝛼𝛼, was set to 0.95. The 
empirical coverage probability is the proportion of 
replicates for which the bootstrap-based CI contained the 
known parameter. The performances of the bootstrap-
based CIs were evaluated by investigating their empirical 
coverage probabilities and expected lengths. Using the 
one-proportion z-test to test 𝐻𝐻0 :𝐶𝐶 𝑃𝑃 ≥ 0.95 versus 
𝐻𝐻𝑎𝑎 :𝐶𝐶 𝑃𝑃 < 0.95 at a significance level of 0.05, where 𝐶𝐶𝐶𝐶 
denotes the coverage probability of the CI, we concluded 
that the empirical coverage probability was greater than 
or equal to 0.95 if it was greater than or equal to 0.939. 
The bootstrap-based CI with the shortest expected length 
was used to obtain a more precise parameter estimation. 
       The simulation results are reported in Table 1 and 
Figures 3 and 4. For 𝑛𝑛 = 10, 30, 50, and 100 all bootstrap-
based CIs provided empirical coverage probabilities of 
less than 0.95. For these cases, the empirical coverage 
probabilities of all bootstrap-based CIs were significantly 
different from 0.95 using a one-sample t-test to test 
𝐻𝐻0 :𝜇𝜇𝐶𝐶𝐶𝐶 = 0.95 versus 𝐻𝐻𝑎𝑎 : 𝜇𝜇𝐶𝐶𝐶𝐶 ≠0.95, where 𝜇𝜇𝐶𝐶𝐶𝐶 denotes 
the population mean of the coverage probability. This 
analysis was conducted using IBM SPSS Statistics, yielding 
a sample mean of the empirical coverage probability of 
0.9304, a standard deviation of 0.0219, a t statistic of   
8.196, and a p-value approximately equal to 0.000. Under 
these circumstances, the BCa bootstrap CI demonstrated 
superior performance compared to the other methods in 
terms of expected length. 
       The bootstrap-based CIs for 𝑛𝑛 = 500 and 𝑛𝑛 = 1,000 
achieved empirical coverage probabilities close to the nominal 
confidence level and were not significantly different from 
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0.95, as determined by a one-sample t-test using IBM SPSS 
Statistics (sample mean of empirical coverage probability 
= 0.9482, SD = 0.0076, t statistic = 0.9310, p-value = 
0.3650). The BCa bootstrap CI had an empirical coverage 
probability closer to 0.95, and as the sample size increased, 
coverage probabilities further approached 0.95. 
       The expected length of bootstrap-based CIs increased 
with an increase in the parameter value. As the sample size  
increased, the expected lengths of all three CIs decreased, 
with the BCa bootstrap CI providing the shortest expected 

length for all investigated situations. However, the 
expected lengths of the three bootstrap-based CIs were 
not greatly different using one-way ANOVA to test 
𝐻𝐻0 :𝜇𝜇𝐶𝐶𝐶𝐶(𝑃𝑃𝑃𝑃) =𝜇𝜇𝐶𝐶𝐶𝐶(𝐵𝐵𝐵𝐵) = 𝜇𝜇𝐶𝐶𝐶𝐶(𝐵𝐵𝐵𝐵𝐵𝐵), where 𝜇𝜇𝐶𝐶𝐶𝐶(𝑃𝑃𝑃𝑃), 𝜇𝜇𝐶𝐶𝐶𝐶(𝐵𝐵𝐵𝐵), 
and 𝜇𝜇𝐶𝐶𝐶𝐶(𝐵𝐵𝐵𝐵𝐵𝐵) denote the population mean of the coverage 
probability of 𝐶𝐶𝐼𝐼𝑃𝑃𝑃𝑃, 𝐶𝐶𝐼𝐼𝐵𝐵𝐵𝐵, and 𝐶𝐶𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵, respectively via IBM 
SPSS Statistics (F statistic = 0.0049, p-value = 0.9951). The 
BCa bootstrap CI provided good empirical coverage 
probability and the shortest expected length for almost 
all situations. 

 
Table 1. Empirical coverage probability and expected length of the 95% two-sided bootstrap-based CIs for the PR 
distribution parameter 
 
𝒏𝒏 𝜽𝜽 Empirical coverage probability Expected length 

PB BB BCa PB BB BCa 
10 0.1 0.904 0.891 0.909 0.0563 0.0564 0.0557 

 0.3 0.892 0.891 0.896 0.1911 0.1910 0.1885 
 0.5 0.886 0.897 0.896 0.3363 0.3352 0.3319 
 0.8 0.913 0.863 0.904 0.5247 0.5242 0.5268 
 1.0 0.887 0.859 0.883 0.6168 0.6161 0.6211 
 1.5 0.911 0.921 0.912 0.8821 0.8866 0.8764 
 2.0 0.934 0.942* 0.944* 2.1249 2.1296 1.9161 

30 0.1 0.945* 0.935 0.945* 0.0333 0.0332 0.0329 
 0.3 0.922 0.914 0.925 0.1098 0.1099 0.1085 
 0.5 0.936 0.925 0.942* 0.1967 0.1966 0.1945 
 0.8 0.932 0.916 0.928 0.3262 0.3263 0.3238 
 1.0 0.944* 0.922 0.942* 0.3864 0.3862 0.3859 
 1.5 0.943* 0.955* 0.948 0.4905 0.4903 0.4898 
 2.0 0.937 0.956* 0.946* 0.7363 0.7374 0.7058 
50 0.1 0.931 0.934 0.936 0.0258 0.0259 0.0257 
 0.3 0.939* 0.936 0.939* 0.0848 0.0850 0.0842 
 0.5 0.947* 0.953* 0.945* 0.1526 0.1525 0.1510 
 0.8 0.941* 0.937* 0.944* 0.2531 0.2529 0.2517 
 1.0 0.934 0.913 0.932 0.3025 0.3024 0.3015 
 1.5 0.938 0.949* 0.940* 0.3783 0.3780 0.3780 
 2.0 0.939* 0.968* 0.953* 0.5362 0.5352 0.5254 
100 0.1 0.938 0.935 0.932 0.0183 0.0183 0.0183 
 0.3 0.951* 0.945* 0.951* 0.0596 0.0597 0.0595 
 0.5 0.945* 0.949* 0.953* 0.1078 0.1078 0.1072 
 0.8 0.948* 0.940* 0.943* 0.1794 0.1794 0.1788 
 1.0 0.941* 0.934 0.938 0.2198 0.2196 0.2196 
 1.5 0.943* 0.952* 0.943* 0.2678 0.2681 0.2682 
 2.0 0.934 0.958* 0.942* 0.3622 0.3628 0.3598 
500 0.1 0.940* 0.938 0.936 0.0082 0.0082 0.0082 
 0.3 0.942* 0.946* 0.939* 0.0268 0.0268 0.0267 
 0.5 0.957* 0.954* 0.955* 0.0480 0.0480 0.0479 
 0.8 0.938 0.939* 0.930 0.0811 0.0812 0.0810 
 1.0 0.949* 0.948* 0.951* 0.0996 0.0997 0.0997 
 1.5 0.944* 0.941* 0.941* 0.1201 0.1201 0.1200 
 2.0 0.958* 0.958* 0.958* 0.1580 0.1582 0.1580 
1,000 0.1 0.941* 0.949* 0.944* 0.0058 0.0058 0.0058 
 0.3 0.948* 0.952* 0.951* 0.0190 0.0190 0.0190 
 0.5 0.948* 0.952* 0.952* 0.0338 0.0339 0.0339 
 0.8 0.950* 0.956* 0.953* 0.0577 0.0576 0.0576 
 1.0 0.942* 0.941* 0.944* 0.0705 0.0704 0.0704 
 1.5 0.955* 0.959* 0.953* 0.0846 0.0846 0.0846 
 2.0 0.956* 0.959* 0.959* 0.1115 0.1115 0.1113 

Note: The asterisk (*) indicates that the empirical coverage probability was greater than or equal to 0.939 
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Figure 3. Plots of the empirical coverage probabilities of the CIs for θ of the PR Distribution 
 

 
 
Figure 4. Plots of the expected lengths of the CIs for θ of the PR distribution 
 
4. DISCUSSION 
 
The Thai Meteorological Department collects data on the 
number of rainy days in a week at meteorological stations 
located in the central region of Thailand. The data, 
comprising 49 observations, recorded from July 1–7, 
2019 are listed as follows in ascending order: 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6. Some 
descriptive statistics of the data set are reported in      
Table 2. 
 
Table 2. Descriptive statistics of the data sets 
 
Min Mean Median SD Q1 Q3 Max 

0 2.653 3 2.037 0 4 6 

 
       The performance adequacy of the PR distribution was 
compared to the following alternative distributions: 

       - The Poisson-Shanker (PS) distribution (Shanker 
et al., 2017). Its pmf was 
 

𝑝𝑝(𝑥𝑥 ;𝜃𝜃) =
𝜃𝜃2

𝜃𝜃2 + 1
𝑥𝑥 + (𝜃𝜃2 + 𝜃𝜃 + 1)

(𝜃𝜃 + 1)𝑥𝑥+2
,   𝑥𝑥 = 0,1,2, . . . ,  𝜃𝜃 > 0. 

 
       - The Poisson-Lindley (PL) distribution (Sankaran, 
1970). Its pmf was 
 

𝑝𝑝(𝑥𝑥 ; 𝜃𝜃) =
𝜃𝜃2(𝜃𝜃 + 2 + 𝑥𝑥)

(𝜃𝜃 + 1)𝑥𝑥+3
,  𝑥𝑥 = 0,1,2, . . . ,  𝜃𝜃 > 0. 

 
       - The Poisson-Sujatha (PSj) distribution (Shanker, 
2016e). Its pmf was 
 

𝑝𝑝(𝑥𝑥 ;𝜃𝜃) =
𝜃𝜃3

𝜃𝜃2 + 𝜃𝜃 + 2
�𝑥𝑥2 + (𝜃𝜃 + 4)𝑥𝑥 + (𝜃𝜃2 + 3𝜃𝜃 + 4)�

(𝜃𝜃 + 1)𝑥𝑥+3
,  

                𝑥𝑥 = 0,1,2, . . . ,  𝜃𝜃 > 0. 
 
       - The Poisson-Akash (PA) distribution (Shanker, 
2017a). Its pmf was 
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𝑝𝑝(𝑥𝑥 ;𝜃𝜃) =
𝜃𝜃3

𝜃𝜃2 + 2
𝑥𝑥2 + 3𝑥𝑥 + (𝜃𝜃2 + 2𝜃𝜃 + 3)

(𝜃𝜃 + 1)𝑥𝑥+3
,   𝑥𝑥 = 0,1,2, . . . ,  𝜃𝜃 > 0. 

 
       All the distribution parameters were estimated using 
the ML technique. We considered the log-likelihood (log L), 
Akaike’s information criterion (AIC) (Wasinrat & 
Choopradit, 2023; Akaike, 1974), and the Bayesian 
information criterion (BIC) or Schwarz information 

criterion (Wasinrat & Choopradit, 2023; Schwarz, 1978) 
for model comparison. The AIC and BIC statistics were 
defined as AIC = 2𝑘𝑘 − 2 log𝐿𝐿�  and BIC = 2𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) − 2𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿� , 
where 𝑘𝑘  is the number of estimated parameters in the 
model and 𝐿𝐿�  is the maximized value of the likelihood 
function for the model.  Estimates of the parameter, their 
standard errors (SE), and measures of goodness of fit for 
this data set are shown in Table 3. 

 
Table 3. ML estimates, SE, AIC, and BIC for the number of rainy days in a week for the central region, Thailand 
 
Distribution Estimate (SE) Log L AIC BIC 
PR 1.5069 (0.0956) -99.7069 201.4138 203.3056 

PS 0.6376 (0.0740) -102.7967 207.5934 209.4852 

PL 0.6081 (0.0788) -103.0545 208.1090 210.0008 

PSj 0.8764 (0.0939) -101.8970 205.7940 207.6858 

PA 0.9041 (0.0922) -101.5895 205.1790 207.0708 
Note: The underline represents the minimum AIC and BIC 
 
       By employing the Kolmogorov-Smirnov (K-S) test 
(Wilcox, 2021; Sukkasem, 2010) for fitting the PR 
distribution, we obtained the expected frequencies shown 
in Table 4, a K-S statistic of 0.7937, and a corresponding p-
value of 0.7980. Consequently, a PR distribution with 𝜃𝜃� = 
1.5069 was selected as appropriate for this data set. Table 5 
presents the 95% two-sided bootstrap-based CIs for the PR 
distribution parameter and their lengths. This application 
was consistent with the simulated results, as the expected 
lengths of all bootstrap-based CIs were similar. 
 
Table 4. The number of rainy days in a week for the central 
region of Thailand 
 
Number of 
rainy days 

Observed 
frequencies 

Expected frequencies 

0–1 14 18.7758 
2–3 18 14.9901 
4–5 12 9.1002 
6–7 5 6.1338 
 
Table 5. The 95% two-sided bootstrap-based CIs and 
lengths of the number of rainy days in a week 
 
Method Confidence interval Length 
PB (1.3371, 1.6898) 0.3527 
BB (1.3292, 1.6732) 0.3440 
BCa (1.3373, 1.6893) 0.3520 
 
 
5. CONCLUSION 
 
No previous research has studied bootstrap-based CIs for 
the PR distribution parameter. This study evaluated the 
performance of PB, BB, and BCa bootstrap approaches for 
the parameter of the PR distribution. The advantages of 
bootstrap-based CIs are their robustness, flexibility, and 
ability to make inferences without assuming a specific data 
distribution. They work well with non-Gaussian data, and 
situations where traditional parametric methods are 
inappropriate, providing a model-free approach to estimate 
the sampling distribution of statistics and they are also 
relatively simple to implement. The performances of these 

three approaches were evaluated by comparing their 
empirical coverage probability and expected length using 
simulated data. Results showed that the bootstrap-based 
CIs were significantly influenced by the sample size (𝑛𝑛). 
When the sample sizes were 10, 30, 50, and 100 the 
empirical coverage probabilities for all three bootstrap-
based CIs differed from 0.95. For large sample sizes (𝑛𝑛 = 
500 and 1,000), the empirical coverage probabilities of all 
bootstrap-based CIs showed no substantial deviations 
from the 95% confidence level, and the expected lengths of 
all bootstrap-based CIs remained relatively consistent. The 
simulation results showed that the BCa bootstrap CI 
outperformed the others in almost all cases, both in the 
simulated research and when using a real data set. 
Furthermore, when we applied these proposed methods to 
the meteorological data, specifically to the number of rainy 
days in a week in the central region of Thailand, the results 
were consistent with our simulation findings. The BCa 
bootstrap CI provided a narrower interval, particularly 
evident in the small sample size of 49 observations. The 
expected lengths of the CIs were slightly longer in the real 
data application compared to the simulation, likely due to 
the real-world variability present in the data. However, the 
overall consistency between the simulation results and the 
real data application underscored the reliability of the 
BCa bootstrap CI for practical use, even when dealing with 
real-world data that may exhibit more complexity and 
variability than simulated data. Table 6 displays the 
estimated probability and 95% CIs for the number of rainy 
days in a week in July for the central region of Thailand.  
 
Table 6. Estimated probability and 95% CIs of the number of 
rainy days in a week in July for the central region of Thailand 
 
 Number of rainy days Estimated probability (95% CI) 
 0 0.2063 (0.1386, 0.2910) 
 1 0.1769 (0.1484, 0.2007) 
 2 0.1649 (0.1587, 0.1606) 
 3 0.1410 (0.1236, 0.1494) 
 4 0.1088 (0.0876, 0.1250) 
 5 0.0769 (0.0573, 0.0952) 
 6 0.0507 (0.0351, 0.0676) 
 7 0.0317 (0.0204, 0.0453) 
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       One drawback of this study was that none of the CIs 
based on bootstrapping yielded exact results; however, 
they demonstrated consistency because the empirical 
coverage probability approached the nominal confidence 
level as sample sizes increased. Our methodology showed 
potential to assist environmental scientists and 
government agencies in managing agriculture and water 
resources. Monitoring weekly rainfall patterns helps to 
identify areas at risk and take measures to prevent 
disasters, while monitoring is essential for assessing and 
managing water quality. Our findings provide valuable 
insights into estimating parameters including the 
population mean of the number of rainy days, which can 
inform decision-making, support ecosystem health, and 
contribute to the safety and well-being of communities. 
       This study had limitations because the three bootstrap-
based CIs were computationally difficult and time-
consuming. RStudio program provides numerous utilities 
for computing bootstrap-based CIs such as the boot 
package (Canty & Ripley, 2022), the bootstrap package 
(Kostyshak, 2022), the semEff package (Murphy, 2022), 
and the BootES package (Kirby & Gerlanc, 2013).  
       Future studies should focus on how alternative CI 
estimations compare to the bootstrap-based CIs presented 
in this research. The construction of CIs for functions of 
parameters such as the population mean and dispersion 
index is of interest. There is also a lack of statistical 
theoretical research regarding hypothesis testing for the 
PR distribution parameter. The bootstrap-based CIs 
studied in this paper can be applied to other distributions. 
These topics may be the subjects for further investigation 
in subsequent studies. Moreover, other meteorological 
data should study using bootstrap-based CIs for PR 
distribution parameter. 
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