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ABSTRACT

The Poisson distribution is commonly used when events are assumed to be
independent and occur at a consistent rate. This may not be generally applicable,
and the Poisson distribution is not appropriate in situations where the underlying
rate of occurrence displays variability. A mixed Poisson distribution such as the
Poisson-Rani distribution permits the rate parameter to be random instead of
constant. Bootstrap-based confidence intervals (Cls) were developed for the
Poisson-Rani distribution parameter in this study. The percentile bootstrap (PB),
basic bootstrap (BB), and bias-corrected and accelerated (BCa) bootstrap methods
were compared for empirical coverage probabilities and expected lengths by the
Monte Carlo simulation using the RStudio program with sample sizes of 10, 30, 50,
100, 500, and 1,000. The parameter values (0) were setat 0.1, 0.3, 0.5, 0.8, 1, 1.5,
and 2 with 1,000 replications. The simulation results suggested that the bootstrap-
based Cls required improvement to attain the nominal confidence level for small
sample sizes. No significant differences were detected in the performances of
bootstrap-based Cls when evaluating large sample sizes, with the BCa bootstrap
Cl exhibiting superior performance compared to the others. The application of
bootstrap-based Cls to meteorological data yielded comparable results to the
simulation study.

Keywords: count data; mixed Poisson distribution; rainy days; resampling method; statistical
inference

climatic factors, and spatial and temporal distribution
characteristics. This study determined the number of rainy

Analyzing meteorological data is essential to understanding
and managing weather and climate-related phenomena,
which have far-reaching impacts on various aspects of
human life, the environment, and the economy (Clarke et
al,, 2022), and enable informed decision-making to adapt
to the challenges posed by a changing climate. Numerous
studies have analyzed meteorological data. Brammer
(2020) assessed climate change in Bangladesh, while
Zhang et al. (2023) analyzed the influencing factors of forest
fires using different combustibles, meteorological and
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days in a week, which followed a Poisson distribution as a
mathematical model that calculates the probability of a
specific number of events happening during a given time or
space interval. The input describes a distribution that
assumes events occur at a constant average rate and are
independent of time (Kissell & Poserina, 2017). However, in
actual situations, this assumption may not always hold true,
and if the rate parameter is not constant a Poisson
distribution may be inappropriate. When the Poisson
parameter is assumed to be a random variable, a mixed
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Poisson distribution can be used (Tharshan & Wijekoon,
2022). Several mixed Poisson distributions were reviewed
in this paper including the Poisson-Lindley (Sankaran,
1970), Poisson-Akash (Shanker, 2017a), Poisson-Ishita
(Shukla & Shanker, 2019), and Poisson-Prakaamy (Shukla &
Shanker, 2020) distributions. Ahmad et al. (2021) proposed
the Poisson-Rani (PR) distribution and studied its statistical
properties. The PR distribution is obtained using the Rani
distribution as the underlying distribution for the Poisson
parameter, representing the average number of events.
When applied to two real data sets, the PR distribution
worked better than either the Poisson or Poisson-Lindley
(Sankaran, 1970) distributions.

The Rani distribution is a continuous lifetime distribution
with a probability density function (pdf) defined in
Equation 1:

f@:0) =2 (@ +2De x>0, 60>0. (1)
This distribution is a combination of an exponential
distribution with a scale parameter 6 and a gamma (5, 8)
distribution with proportions 8%/(6° + 24), and 24/(8° +
24), respectively. Shanker (2017b) showed that the Rani
distribution outperformed the Akash (Shanker, 2015a),
Rama (Shanker, 2017c), Akshaya (Shanker, 2017d), Shanker
(Shanker, 2015b), Amarendra (Shanker, 2016a), Aradhana
(Shanker, 2016b), Sujatha (Shanker, 2016c), Devya (Shanker,
2016d), Lindley (Lindley, 1958), and exponential
distributions in terms of model fit. Figure 1 depicts plots of
the Rani distribution pdf with specified parameter values.

A confidence interval (CI) is a statistical tool that
establishes a range of values in which the true population
parameter is expected to lie, based on the available sample
data and a confidence level (Tan & Tan, 2010). A Cl value can
communicate the uncertainty of statistical estimates and
assist researchers and decision-makers in making informed
determinations regarding the underlying population
characteristics. Traditional interval estimation methods for
the PR distribution such as Wald-type, likelihood-based, and
Bayesian Cls each have distinct advantages and limitations.
The Wald-type CI is straightforward to compute but often
unreliable, especially with small sample sizes. Likelihood-
based CI offers greater accuracy and better coverage but
can be computationally demanding, while Bayesian CI allows
the incorporation of prior information but is sensitive to
the choice of prior and may also require substantial
computational resources. The bootstrap method presents
several advantages over these traditional approaches due to
its high flexibility because it does not rely on large sample
approximations and can be effectively applied in situations
where traditional methods may fail or prove less reliable.
Despite these benefits, the bootstrap method also has
drawbacks including significant computational demands and
the need for a large number of resamples to achieve stable
results.

No previous studies have used bootstrap methods to
calculate CIs for the PR distribution parameter. The
fundamental idea behind bootstrap Cls is to estimate the
uncertainty or variability in a statistic, such as the mean,
median, variance, or any other parameter of interest,
by repeatedly resampling the observed data with
replacement and then calculating the statistic of interest
for each resampled dataset (Chernick & LaBudde, 2011).
The purpose of this resampling technique is to estimate the
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sampling distribution of the statistic without relying on
specific assumptions about the distribution of the
population.
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Figure 1. Plots of the Rani distribution pdf for 6 = 0.5, 1, 1.5,
and 2

This study evaluated the accuracy of three bootstrap-
based Cls as percentile bootstrap (PB), basic bootstrap
(BB), and bias-corrected and accelerated (BCa) bootstrap
to estimate the PR distribution parameter.

2. MATERIALS AND METHODS

2.1 Point estimation for the Poisson-Rani
distribution parameter

The Poisson distribution probability mass function (pmf)
for a random variable Y can be represented in Equation 2:

e—h

2y =012,..., 1> 0. 2)

;) =—

The expected value and variance of Y are both equal to
the parameter 4. Ong et al. (2021) and Tharshan and
Wijekoon (2022) provided in-depth descriptions of the
formation of mixed Poisson distributions. The Poisson-
Rani (PR) distribution is based on the assumption that the
Poisson parameter, denoted by 4, follows the Rani distribution.

If X has a PR distribution (Ahmad et al,, 2021), its pmf
is given by

65[x*+10x3+35x2+50x+24+0(0+1)*]
(65+24)(6+1)¥+5

p(x;0) = ,x=012,.., 6>0.

Figure 2 shows the plots of the PR distribution pmf
with several parameter values 6. The mean (or the
first central moment) and variance (or the second central
moment) of X are given by:

65+120
EX)=u= 9(9224) and var(X) = o?
_ (61 + 61 + 14466 + 5286° + 28808 + 2880)

02(6°5 + 24)2
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The log-likelihood function log L (x; ; 8) is maximized
to obtain the point estimator of 8. Therefore, the maximum

likelihood (ML) estimator for 6 of the PR distribution can
be derived by the following processes:

n
[Sn log(0) —nlog(6° +24) + Z log[x} + 10x? + 35x? + 50x; + 24 + 6(6 + 1)4]]

ilogL(x-'B) == =1
a6 v a0
—Z(xi+5n) log(6 + 1) J
_ 51 5ng* GO+ 1)(O+1)3 z (x; + 5n)
=9 ot24 C T + 10x7 + 3507 + 50%, + 24+ (6 + 1)7] o+1

The subsequent nonlinear equation can be obtained
by solving the equation % logL (x;;0) =0 for 6,

5n  5no*
0 65+ 24

(560 + 1)(0 + 1)
[x + 10x? + 35x2 + 50x; + 24 + 6(6 + 1)4]

Z(XL + 5n) set
6+1
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There is no exact mathematical solution for the ML
estimator of the parameter 6, and numerical iteration
methods are used to solve the corresponding non-
linear equation (Nwry et al,, 2021). This study used the
maxLik package (Henningsen & Toomet, 2011) to
perform ML estimation using the Newton-Raphson
technique in the RStudio program (RStudio Team,
2021).
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Figure 2. Plots of the PR distribution pmf for 8 = 0.5, 1, 1.5, and 2

2.2 Bootstrap-based confidence intervals

Cls are commonly utilized in statistics and research to
make inferences about populations when data collection
from the entire population is not feasible. The CI
calculation implies that the parameter distribution of the
estimator is approximately normal (Ukoumunne et al,
2003). However, in some instances, the assumption of
normality is violated, and estimating the standard error is
difficult. One potential approach is to employ techniques
rooted in the bootstrap method (van den Boogaard & Hall,
2004). This paper used bootstrap methods to construct
approximate Cls that did not depend on assumptions
regarding the underlying distribution (Meeker et al,
2017). The boot package (Canty & Ripley, 2022) was used
to estimate the bootstrap Cls within the RStudio program.

2.2.1 PB confidence interval

The PB CI is a non-parametric method that estimates
the uncertainty surrounding a population parameter by
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resampling the original sample. This is particularly useful
when the underlying distribution of the data is unknown
or complicated (Efron, 1982). The procedure for obtaining
a PB CI for 6 is as follows:

1) Collect the sample data. Begin with the initial
sample data, which represents a subset of the population.
Consider that the sample contains n observations.

2) Resampling with replacement. The bootstrap
method involves resampling from the original sample
with replacement. The observations are selected from the
original sample, allowing for the possibility that the same
observation can be selected multiple times.

3) Calculate the statistic. For each bootstrap sample,
the statistic of interest (e.g., parameter, mean, median) is
calculated. A distribution of the statistic under repeated
resampling is obtained.

4) Generate the confidence interval. To constructa CI,
the bootstrap statistics must be arranged in ascending
order and the relevant percentiles selected. To obtain a
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95% CI, the 2.5th percentile is selected as the lower
bound and the 97.5t% percentile as the upper bound. The
(1 -a)100% two-sided PB CI for 6 is created as in
Equation 3,

CIPB = [é(*r)lé\(*s)]l (3)

where é(*a) denotes the a' percentile of the distribution of

the parameter estimate 8* and 0 < r < s < 100. Hence, r =
[(a/2)B], s = [(1 = (a/2))B], where [x] stands for the
ceiling function of x, and 1 — «a is the confidence level. A95%
PB two-sided CI is the interval between the 2.5 percentile
value and the 97.5 percentile value of the 2,000 bootstrap
parameter estimates. The two quantiles related to the lower
and upper limits of the PB two-sided CI are é(*r) = 9(*50) (the

50th quantile) and é(*s) = 9(*1950) (the 1950t quantile).

2.2.2 BB confidence interval

The BB CI is a straightforward method that does not
require complex adjustments or modifications to the
bootstrap procedure. The BB CI focuses on the variability
of the statistic itself rather than explicitly considering the
tails of the distribution. Assume that the parameter 8 and
the estimator of 8 is §. When §* is the bootstrap estimate of
0 based on the bootstrap sample, the BB CI implies that the
distributions of & — 6 and 8* — 8 are roughly equivalent
(Meeker et al., 2017). The (1 — @)100% two-sided BB CI
for 6 is

Clgs = [26 — 85,y 20 — 8]

where 9(*,) and 9(*5) are, in ascending order, the rth and sth

quantiles of a collection of parameter estimates 8* that are
utilized in Equation 3 to calculate the PB CIL

2.2.3 BCa bootstrap confidence interval
The BCa bootstrap CI is an advanced technique used to
improve the accuracy of PB and BB CI estimations when
dealing with small sample sizes or when the data
distribution is skewed. The BCa bootstrap CI corrects for
both bias and skewness in the distribution of the bootstrap
statistics (Efron, 1982). This reduces several problems
with the PB and BB Cls such as bias in the estimate of the
population parameter, inaccurate coverage, and narrow or
unreliable confidence intervals. The calculation of the BCa
bootstrap ClI commonly involves using statistics derived
from jackknife simulations.

Davison and Hinkley (1997) and Chernick and
LaBudde (2011) provided mathematical details for the BCa
adjustment. They denoted the bias correction factor Z, as

B
IR I
8y = &1 (EZ 108, < 9))
i=1

where @~1(:) is the inverse of the cumulative standard
normal probability function and I(+) is the indicator function
defined as 1(§i* < 9) =1, if @i* <6 and 1(§i* < 9) =0, if
@i* > 0. The skewness or acceleration adjustment is
calculated via jackknife resampling, which entails generating
n replicates of the initial set of data, where n is the sample
size. From jackknife replicates, we obtain the value of
9(—1‘): i =1,2,...,n. The acceleration factor @ is given by:
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(0 - 9(—1'))3
6 {Z?:1(9(-) - 9(—i))2}

a= 3/2

where 9(.) =n"tyr, §(_l~). The values of a; and a, are
calculated with the values of Z; and @,

20+Za/2

176(2o+za/2)

a1:¢{20+ }and az:¢{20+

20+Z1-q/2 }
17&(20+z1_a/2)

where zq ), is the a/2 quantile of the standard normal
distribution. Then, the (1 —a)100% two-sided BCa
bootstrap CI for 6 can be computed as

Clpca = [0, O]

where j = [a;B] and k = [a,B].

3. RESULTS

Using the RStudio program (RStudio Team, 2021), three
bootstrap-based Cls for the PR distribution parameter
were considered in this study based on a Monte Carlo
simulation. Small, medium, and large sample sizes were
determined asn =10, 30,50, 100, 500, and 1,000 to reflect
different data scenarios encountered in the simulation
study. The parameter (6) was setat 0.1, 0.3,0.5,0.8, 1, 1.5,
and 2 to ensure a comprehensive simulation study across
different potential values. The value for B, representing the
bootstrap number of replications, was set at 2,000. A series
of bootstrap samples, each consisting of n observations,
was constructed from the initial sample following a
PR distribution using 1,000 replications. The nominal
confidence level, denoted as 1 — a, was set to 0.95. The
empirical coverage probability is the proportion of
replicates for which the bootstrap-based CI contained the
known parameter. The performances of the bootstrap-
based CIs were evaluated by investigating their empirical
coverage probabilities and expected lengths. Using the
one-proportion z-test to test Hy:CP = 0.95 versus
H,:CP < 0.95 at a significance level of 0.05, where CP
denotes the coverage probability of the CI, we concluded
that the empirical coverage probability was greater than
or equal to 0.95 if it was greater than or equal to 0.939.
The bootstrap-based CI with the shortest expected length
was used to obtain a more precise parameter estimation.

The simulation results are reported in Table 1 and
Figures 3 and 4. For n = 10, 30, 50, and 100 all bootstrap-
based Cls provided empirical coverage probabilities of
less than 0.95. For these cases, the empirical coverage
probabilities of all bootstrap-based Cls were significantly
different from 0.95 using a one-sample t-test to test
Hy:ucp =0.95 versus Hy : picp # 0.95, where picp denotes
the population mean of the coverage probability. This
analysis was conducted using IBM SPSS Statistics, yielding
a sample mean of the empirical coverage probability of
0.9304, a standard deviation of 0.0219, a t statistic of
8.196, and a p-value approximately equal to 0.000. Under
these circumstances, the BCa bootstrap CI demonstrated
superior performance compared to the other methods in
terms of expected length.

The bootstrap-based Cls for n = 500 and n = 1,000
achieved empirical coverage probabilities close to the nominal
confidence level and were not significantly different from
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0.95, as determined by a one-sample t-test using IBM SPSS
Statistics (sample mean of empirical coverage probability
= 0.9482, SD = 0.0076, t statistic = 0.9310, p-value =
0.3650). The BCa bootstrap CI had an empirical coverage
probability closer to 0.95, and as the sample size increased,
coverage probabilities further approached 0.95.

The expected length of bootstrap-based Cls increased
with an increase in the parameter value. As the sample size
increased, the expected lengths of all three Cls decreased,
with the BCa bootstrap CI providing the shortest expected

length for all investigated situations. However, the
expected lengths of the three bootstrap-based CIs were
not greatly different using one-way ANOVA to test
Hy:Ucp(ppy = lcpBB) = Hep(Bca) Where Ucppg), Hcp(BB),
and pUcp(pcq) denote the population mean of the coverage
probability of Clpg, Clgg, and Clg¢,, respectively via IBM
SPSS Statistics (F statistic = 0.0049, p-value = 0.9951). The
BCa bootstrap CI provided good empirical coverage
probability and the shortest expected length for almost
all situations.

Table 1. Empirical coverage probability and expected length of the 95% two-sided bootstrap-based Cls for the PR

distribution parameter

n 0 Empirical coverage probability Expected length
PB BB BCa PB BB BCa
10 0.1 0.904 0.891 0.909 0.0563 0.0564 0.0557
0.3 0.892 0.891 0.896 0.1911 0.1910 0.1885
0.5 0.886 0.897 0.896 0.3363 0.3352 0.3319
0.8 0.913 0.863 0.904 0.5247 0.5242 0.5268
1.0 0.887 0.859 0.883 0.6168 0.6161 0.6211
1.5 0.911 0.921 0.912 0.8821 0.8866 0.8764
2.0 0.934 0.942* 0.944* 2.1249 2.1296 19161
30 0.1 0.945* 0.935 0.945* 0.0333 0.0332 0.0329
0.3 0.922 0.914 0.925 0.1098 0.1099 0.1085
0.5 0.936 0.925 0.942* 0.1967 0.1966 0.1945
0.8 0.932 0.916 0.928 0.3262 0.3263 0.3238
1.0 0.944* 0.922 0.942* 0.3864 0.3862 0.3859
1.5 0.943* 0.955* 0.948 0.4905 0.4903 0.4898
2.0 0.937 0.956* 0.946* 0.7363 0.7374 0.7058
50 0.1 0.931 0.934 0.936 0.0258 0.0259 0.0257
0.3 0.939* 0.936 0.939* 0.0848 0.0850 0.0842
0.5 0.947* 0.953* 0.945* 0.1526 0.1525 0.1510
0.8 0.941* 0.937* 0.944* 0.2531 0.2529 0.2517
1.0 0.934 0.913 0.932 0.3025 0.3024 0.3015
1.5 0.938 0.949* 0.940* 0.3783 0.3780 0.3780
2.0 0.939* 0.968* 0.953* 0.5362 0.5352 0.5254
100 0.1 0.938 0.935 0.932 0.0183 0.0183 0.0183
0.3 0.951* 0.945* 0.951* 0.0596 0.0597 0.0595
0.5 0.945* 0.949* 0.953* 0.1078 0.1078 0.1072
0.8 0.948* 0.940* 0.943* 0.1794 0.1794 0.1788
1.0 0.941* 0.934 0.938 0.2198 0.2196 0.2196
1.5 0.943* 0.952* 0.943* 0.2678 0.2681 0.2682
2.0 0.934 0.958* 0.942* 0.3622 0.3628 0.3598
500 0.1 0.940* 0.938 0.936 0.0082 0.0082 0.0082
0.3 0.942* 0.946* 0.939* 0.0268 0.0268 0.0267
0.5 0.957* 0.954* 0.955* 0.0480 0.0480 0.0479
0.8 0.938 0.939* 0.930 0.0811 0.0812 0.0810
1.0 0.949* 0.948* 0.951* 0.0996 0.0997 0.0997
1.5 0.944* 0.941* 0.941* 0.1201 0.1201 0.1200
2.0 0.958* 0.958* 0.958* 0.1580 0.1582 0.1580
1,000 0.1 0.941* 0.949* 0.944* 0.0058 0.0058 0.0058
0.3 0.948* 0.952* 0.951* 0.0190 0.0190 0.0190
0.5 0.948* 0.952* 0.952* 0.0338 0.0339 0.0339
0.8 0.950* 0.956* 0.953* 0.0577 0.0576 0.0576
1.0 0.942* 0.941* 0.944* 0.0705 0.0704 0.0704
1.5 0.955* 0.959* 0.953* 0.0846 0.0846 0.0846
2.0 0.956* 0.959* 0.959* 0.1115 0.1115 0.1113

Note: The asterisk (*) indicates that the empirical coverage probability was greater than or equal to 0.939
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Figure 4. Plots of the expected lengths of the Cls for 6 of the PR distribution

4. DISCUSSION

The Thai Meteorological Department collects data on the
number of rainy days in a week at meteorological stations
located in the central region of Thailand. The data,
comprising 49 observations, recorded from July 1-7,
2019 are listed as follows in ascending order: 0, 0, 0, 0, 0,
0,00000001,22,2,2,2,2,2,2,2,3,3,3,3,3,3,3,
3,3,4,4,4,4,4,4,5/5,5,5,/5,5,6,6, 6, 6, 6. Some
descriptive statistics of the data set are reported in
Table 2.

Table 2. Descriptive statistics of the data sets

Min Mean Median SD Q1 Q3 Max

0 2.653 3 2.037 0 4 6

The performance adequacy of the PR distribution was
compared to the following alternative distributions:

‘:H science, engineering
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- The Poisson-Shanker (PS) distribution (Shanker
etal, 2017). Its pmf was

6% x+(0*+60+1)
02+1  (6+1)*2 '

p(x;0) = x=012,..., 8 >0.
- The Poisson-Lindley (PL) distribution (Sankaran,
1970). Its pmf was

020 +2+x)

W, X=O,1,2,..., 6>0.

p(x;0) =

- The Poisson-Sujatha (PSj) distribution (Shanker,
2016e). Its pmf was

(x:6) = 0 (2+(O@+Dx+(02+30+4)
P =g+ 2 0 +1) ’
x=012,..., 6>0.

- The Poisson-Akash (PA) distribution (Shanker,
2017a). Its pmf was
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0% x*+3x+(6%2+20+3)
62 +2 (6 +1)*+3 '

p(x;0) = x=012,..., 06>0.

All the distribution parameters were estimated using
the ML technique. We considered the log-likelihood (log L),
Akaike’s information criterion (AIC) (Wasinrat &
Choopradit, 2023; Akaike, 1974), and the Bayesian
information criterion (BIC) or Schwarz information

criterion (Wasinrat & Choopradit, 2023; Schwarz, 1978)
for model comparison. The AIC and BIC statistics were
defined as AIC = 2k — 2log L and BIC = 2k log(n) — 2log L,
where k is the number of estimated parameters in the
model and L is the maximized value of the likelihood
function for the model. Estimates of the parameter, their
standard errors (SE), and measures of goodness of fit for
this data set are shown in Table 3.

Table 3. ML estimates, SE, AIC, and BIC for the number of rainy days in a week for the central region, Thailand

Distribution Estimate (SE) LogL AIC BIC

PR 1.5069 (0.0956) -99.7069 201.4138 203.3056
PS 0.6376 (0.0740) -102.7967 207.5934 209.4852
PL 0.6081 (0.0788) -103.0545 208.1090 210.0008
PSj 0.8764 (0.0939) -101.8970 205.7940 207.6858
PA 0.9041 (0.0922) -101.5895 205.1790 207.0708

Note: The underline represents the minimum AIC and BIC

By employing the Kolmogorov-Smirnov (K-S) test
(Wilcox, 2021; Sukkasem, 2010) for fitting the PR
distribution, we obtained the expected frequencies shown
in Table 4, a K-S statistic of 0.7937, and a corresponding p-
value of 0.7980. Consequently, a PR distribution with 8 =
1.5069 was selected as appropriate for this data set. Table 5
presents the 95% two-sided bootstrap-based Cls for the PR
distribution parameter and their lengths. This application
was consistent with the simulated results, as the expected
lengths of all bootstrap-based Cls were similar.

Table 4. The number of rainy days in a week for the central
region of Thailand

Number of Observed Expected frequencies
rainy days frequencies

0-1 14 18.7758

2-3 18 14.9901

4-5 12 9.1002

6-7 5 6.1338

Table 5. The 95% two-sided bootstrap-based CIs and
lengths of the number of rainy days in a week

Method Confidence interval Length
PB (1.3371, 1.6898) 0.3527
BB (1.3292,1.6732) 0.3440
BCa (1.3373,1.6893) 0.3520

5. CONCLUSION

No previous research has studied bootstrap-based Cls for
the PR distribution parameter. This study evaluated the
performance of PB, BB, and BCa bootstrap approaches for
the parameter of the PR distribution. The advantages of
bootstrap-based Cls are their robustness, flexibility, and
ability to make inferences without assuming a specific data
distribution. They work well with non-Gaussian data, and
situations where traditional parametric methods are
inappropriate, providing a model-free approach to estimate
the sampling distribution of statistics and they are also
relatively simple to implement. The performances of these
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three approaches were evaluated by comparing their
empirical coverage probability and expected length using
simulated data. Results showed that the bootstrap-based
CIs were significantly influenced by the sample size (n).
When the sample sizes were 10, 30, 50, and 100 the
empirical coverage probabilities for all three bootstrap-
based Cls differed from 0.95. For large sample sizes (n =
500 and 1,000), the empirical coverage probabilities of all
bootstrap-based CIs showed no substantial deviations
from the 95% confidence level, and the expected lengths of
all bootstrap-based Cls remained relatively consistent. The
simulation results showed that the BCa bootstrap CI
outperformed the others in almost all cases, both in the
simulated research and when using a real data set
Furthermore, when we applied these proposed methods to
the meteorological data, specifically to the number of rainy
days in a week in the central region of Thailand, the results
were consistent with our simulation findings. The BCa
bootstrap CI provided a narrower interval, particularly
evident in the small sample size of 49 observations. The
expected lengths of the CIs were slightly longer in the real
data application compared to the simulation, likely due to
the real-world variability present in the data. However, the
overall consistency between the simulation results and the
real data application underscored the reliability of the
BCa bootstrap CI for practical use, even when dealing with
real-world data that may exhibit more complexity and
variability than simulated data. Table 6 displays the
estimated probability and 95% Cls for the number of rainy
days in a week in July for the central region of Thailand.

Table 6. Estimated probability and 95% Cls of the number of
rainy days in a week in July for the central region of Thailand

Number of rainy days  Estimated probability (95% CI)

0.2063 (0.1386, 0.2910)
0.1769 (0.1484, 0.2007)
0.1649 (0.1587, 0.1606)
0.1410 (0.1236, 0.1494)
0.1088 (0.0876, 0.1250)
0.0769 (0.0573, 0.0952)
0.0507 (0.0351, 0.0676)
0.0317 (0.0204, 0.0453)
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One drawback of this study was that none of the Cls
based on bootstrapping yielded exact results; however,
they demonstrated consistency because the empirical
coverage probability approached the nominal confidence
level as sample sizes increased. Our methodology showed
potential to assist environmental scientists and
government agencies in managing agriculture and water
resources. Monitoring weekly rainfall patterns helps to
identify areas at risk and take measures to prevent
disasters, while monitoring is essential for assessing and
managing water quality. Our findings provide valuable
insights into estimating parameters including the
population mean of the number of rainy days, which can
inform decision-making, support ecosystem health, and
contribute to the safety and well-being of communities.

This study had limitations because the three bootstrap-
based CIs were computationally difficult and time-
consuming. RStudio program provides numerous utilities
for computing bootstrap-based Cls such as the boot
package (Canty & Ripley, 2022), the bootstrap package
(Kostyshak, 2022), the semEff package (Murphy, 2022),
and the BootES package (Kirby & Gerlanc, 2013).

Future studies should focus on how alternative CI
estimations compare to the bootstrap-based Cls presented
in this research. The construction of Cls for functions of
parameters such as the population mean and dispersion
index is of interest. There is also a lack of statistical
theoretical research regarding hypothesis testing for the
PR distribution parameter. The bootstrap-based Cls
studied in this paper can be applied to other distributions.
These topics may be the subjects for further investigation
in subsequent studies. Moreover, other meteorological
data should study using bootstrap-based CIs for PR
distribution parameter.
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