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ABSTRACT

Early detection of Alzheimer’s disease (AD) is crucial for patients to begin treatment
early to slow the disease’s progression. While mild cognitive impairment (MCI) is
considered an early translational stage of AD, clinically diagnosing MCI is difficult
due to its inconsistent symptoms and the lack of standardized diagnostic tests. In
this work, we proposed forward selection models to classify patients with AD,
patients with MCI and healthy controls (HCs) based on single nucleotide
polymorphisms (SNPs). In the proposed method, the initial SNP data were
prescreened via genome-wide association studies with a suggestive significance
threshold. Then, the qualified SNPs were reselected using the forward SNP
selection algorithm to create classification models. Consequently, the forward
selection models significantly outperformed the preselection models, those based
on all prescreened SNPs, with an area under the precision-recall curve (AUPRC)
value of 0.93 in the AD-HC classification, an AUPRC value of 0.94 in the MCI-HC
classification, and an AUPRC value of 0.81 in the AD-MCI classification. Moreover,
the proposed method could identify AD-associated and MCl-associated SNPs,
which would support the clinical diagnosis of AD and MCI in the future.

Keywords: Alzheimer’s disease; classification; forward selection; mild cognitive impairment;
single nucleotide polymorphisms

worldwide, and this number is expected to double every
five years (Breijyeh and Karaman, 2020). Currently, there
is no treatment to stop or reverse the development of AD.

In the era of globally aging societies, one serious health
issue affecting many older adults is dementia, a
neurological condition that can affect their daily lives,
including impaired thinking, memory, and decision-
making. Alzheimer’s disease (AD) is the most common
type of dementia found in 60-80% of all patients with
dementia (Baek et al, 2022). It has been estimated that
there are currently about 50 million patients with AD
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Therefore, early and accurate diagnosis of AD is critical,
enabling affected individuals to start treatment to slow the
disease’s progression (Rasmussen and Langerman, 2019).

Mild cognitive impairment (MCI), a condition of
cognitive decline, is considered a translational and early
detectable stage of AD (Schmidt-Morgenroth et al., 2023).
However, clinically diagnosing MCI is sometimes
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challenging due to its inconsistent symptoms and the lack
of standardized diagnostic tests (Chen et al, 2021a).
Numerous studies have identified many genetic markers,
mainly single nucleotide polymorphisms (SNPs),
associated with AD and MCI to support their early
detection (Kim etal,, 2014). SNPs are common single-base-
pair variations found throughout the human genome. A
standard and often used method to identify AD- and MCI-
associated SNPs is a genome-wide association study
(GWAS), which statistically compares the genomes of
many individuals. Typically, a GWAS requires a large
sample size to provide the analysis with an adequate
statistical power and uses a very stringent p-value
threshold to reduce false positives (Chen et al.,, 2021b).
These requirements sometimes limit the findings of AD-
and MCl-associated SNPs and the accurate identification of
AD and MCI based on SNP data.

Numerous machine learning (ML) algorithms have
recently been introduced to support the early and accurate
detection of AD and MCI. Ahmed et al. (2020) used ML
models to identify AD based on AD-associated SNPs. In
2022, a new three-step method based on convolutional
neural networks (CNNs) was proposed to identify AD-
associated SNPs and perform AD classification based on
them (Jo et al, 2022). The most recent method uses CNNs
with deep transfer learning and support vector machine
(SVM) models to classify AD based on GWAS data
(Alatrany et al,, 2023). However, most existing methods
have been developed to classify AD but not MCL

Forward selection (FS) is an ML technique that
iteratively adds one feature at a time to increase model

performance. Due to its easy applicability and efficiency,
this technique has been widely used in various fields
(Jeong et al, 2022; Salcedo-Sanz et al, 2018;
Tangmanussukum et al.,, 2022). In GWAS, factors such as a
stringent threshold and the small number of available
samples can limit the identification of disease-associated
SNPs. Therefore, using the FS technique to improve the
identification of AD- and MCl-associated SNPs based on
GWAS is promising.

In this work, we proposed an ML-based method for
classifying AD and MCI based on SNP data collected from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
repository. An illustrated overview of this work is shown
in Figure 1. The initial SNP data of patients with AD,
patients with MCI, and healthy controls (HCs) were
combined to form three different data sets: patients with
AD and HCs (AD-HC), patients with MCI and HCs (MCI-
HC), and patients with AD and MCI (AD-MCI). Each SNP
data set was prescreened via a GWAS with a reduced
significance threshold to increase the number of
identified SNPs. Then, a forward SNP selection algorithm
was used to reselect the prescreened SNPs to optimize
AD, MCI, and HC classification. In this step, three binary
classification models were constructed: AD-HC, MCI-HC,
and AD-MCI. The SNP sets used for the classification
could be considered potential SNPs associated with AD
and MCI. Then, the SNPs chosen by the forward SNP
selection algorithm were validated by searching for
supporting evidence in the GWAS Catalog (Sollis et al,,
2023).

ADNI SNP data
(AD, MCL, HC)

Split ADNI SNP data

into three data sets

v

v

[ AD-HC data set ]

[ MCI-HC data set ]

[ AD-MCI data set ]

Perform GWASs

to preselect SNPs

[ Prescreened SNPs ]

[ Prescreened SNPs ]

[ Prescreened SNPs ]

Perform forward SNP selection|and develop classification models
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classification model

MCI-HC
classification model

AD-MCI
classification model

Figure 1. Framework used to construct SNP-based classification models for AD and MCI prediction
Note: The main procedures include (1) splitting the ADNI data into three data sets (AD-HC, MCI-HC, and AD-MCI), (2) prescreening SNPs
via GWAS, and (3) forward selecting the prescreened SNPs and creating classification models.

2. MATERIALS AND METHODS

2.1 Data sets

The SNP data of 808 individuals were downloaded from
the ADNI repository (https://adni.loni.usc.edu), comprising
232 patients with AD, 329 patients with MCI, and 247 HCs.
These data comprised SNPs on the 22 autosomal
chromosomes and the X chromosome. The ADNI SNP data
were organized into three data sets: patients with AD and
HCs (AD-HC), patients with MCI and HCs (MCI-HC), and
patients with AD and MCI (AD-MCI).
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2.2 Preselection of SNPs and data encoding

In this step, the downloaded SNPs in each data set were
first preliminarily screened via GWAS. Then, the data of
prescreened SNPs were encoded and used to develop FS
models. Before conducting the GWAS, all SNP data
underwent quality control using PLINK (version 1.07)
(Purcell et al., 2007), considering a SNP call rate of 90%,
sample call rate of 95%, minor allele frequency of 1%, and
Hardy-Weinberg p-value of 0.00001. The GWAS used
Fisher’s exact tests to identify SNPs potentially associated
with AD and MCI in the AD-HC, MCI-HC, and AD-MCI data
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sets. A relaxed p-value threshold of 1 x 10-5, known as the
suggestive significance threshold (Hammond et al., 2021),
was used instead of the commonly used conservative p-
value threshold of 5 x 108 to increase the number of
identified SNPs.

After obtaining the prescreened SNPs in the AD-HC,
MCI-HC, and AD-MCI data sets, their genotype data were
encoded into binary values for each individual (Figure 2).
The alleles observed at each SNP (e.g., A and a) were used
to generate possible genotypes, which served as separate
features (i.e., AA, Aa, and aa). At each SNP, the feature
representing an individual’s genotype was set to one, with
the other features set to zero. The values of the features of
all prescreened SNPs were concatenated, and the entire
row formed the binary SNP features of an individual. In the
AD-HC classification, the patients with AD were labeled as
one, and the HCs were labeled as zero. In the MCI-HC
classification, the patients with MCI were labeled as one,
and the HCs were labeled as zero. In the AD-MCI
classification, the patients with AD were labeled as one,
and the patients with MCI were labeled as zero.

Sample SNP1 SNP2 Class

1 AA Aa AD
2 Aa aa HC
3 aa AA AD

Genotype data encoding

SNP1 SNP2
| 1

Sample AA Aa aa AA Aa aa Class

1 1 00 0 1|0 1
2 0 I |0 0 0 1 0
3 001 1 0] 0 1

Figure 2. Example of genotype data encoding

Note: The upper table contains the genotype data of two SNPs
(SNP1 and SNP2) and the class labels of three individuals. The
lower table shows the genotype data encoding of those three
samples, with their genotype at each SNP set to one and the other
genotypes set to zero.

2.3 Development of FS models

Initially, six ML models, including naive Bayes (NB)
(Devroye et al,, 1996), k-nearest neighbors (KNN) (Cover
and Hart, 1967), support vector machine (SVM) (Cortes
and Vapnik, 1995), multi-layer perceptron (MLP) (Haykin,
2009), random forest (RF) (Ho, 1995), and extreme
gradient boosting (XGB) (Chen and Guestrin, 2016), were
compared in the AD-HC, MCI-HC, and AD-MCI
classifications based on the encoded data of all
prescreened SNPs. The best-performing ML algorithm was
then chosen to develop the FS models. The FS models were
independently constructed for each classification case
(AD-HC, MCI-HC, and AD-MCI). For the MLP, the simple
architecture with a single hidden layer was used due to the
limited existing training data. The pseudocode of the
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forward SNP selection algorithm is shown in Table 1,
where | - | represents the number of elements in a set or
list, and Gs is a genotype matrix of binary values
corresponding to the list of prescreened SNPs S = {s1, s2, ...,
sk}, where k is the total number of SNPs in S. We
implemented the proposed algorithm using the Python
programming language (version 3.9.7) and related
packages, including numpy (version 1.24.3), scikit-learn
(version 1.2.1), and xgboost (version 1.6.2).

Table 1. The forward SNP selection algorithm

Algorithm: Forward SNP selection

Input: List of all prescreened SNPs S = {5y, s2, ..., s} and
genotype matrix Gs corresponding to the SNPsin S

Output: List of the forward selected SNPs F
1 initialize F = & and isImproved = Yes
2 while | F| < kand islmproved == Yes do

3 for eachs e Sdo
4 evaluate the performance p; of a model trained on
genotype matrix Gry ), wherei=1,2, ..., | S|
5 end for
6 imax = argmaxp;
15
7 ifpimax > Diatest then
8 SetF=Fu {Simax}, §=5- {Simax}, and Dlatest = Pimax
9 islmproved = Yes
10  else
11 islmproved = No
12 end if
13 end while
14 return F

The forward SNP selection algorithm aims to identify
an approximately optimal subset (F) of a given SNP set (S)
via FS to create the best-performing classification model.
As shown in Table 1, the list of forward-selected SNPs (F)
is initialized as an empty set. In order to choose which SNP
will be moved into F, the genotype data of SNPs from S is
experimentally used to train a model with the genotype
data of SNPs in F, and the classification performance (pi) of
the trained model is evaluated, wherei=1, 2, ..., | S|. ASNP
that gives the best classification performance (pimax) will
be moved into Fif the performance of the model trained on
Gru (s, ) is better than that of the latest iteration (piaest).

max-
The algorithm stops the iteration when F contains all
prescreened SNPs or the performance of the models
trained on Gr u {5, for every s in S, is not greater than that
of the latest model.

2.4 Evaluation of model performance

We evaluated the performance of a classification model
using ten-fold nested cross-validation. This validation
technique preserved 10% of the data for testing model
performance in each iteration, and this process was
repeated ten times with different testing folds. Only the
training data set (90% of the data) was used to tune the
hyperparameters of ML models. A grid search with five-
fold cross-validation was performed on a training data set
to specify the generalized values of the hyperparameters.
The considered values of the hyperparameters are listed
in Table 2.
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Table 2. The considered hyperparameter values of the
ML models

Model Hyperparameter Considered values

NB - -
KNN n_neighbors [5,9,13,17,21]

RF n_estimators [128, 256,512, 1024]
MLP hidden_layer_sizes [20, 40, 60, 100]
SVM c [0.01,0.1,1,10]
XGB n_estimators [128, 256,512, 1024]

This work used standard evaluation metrics, including
precision (PRE), recall (REC), accuracy (ACC), Matthew’s
correlation coefficients (MCC), and F1l-score (F1). The
formulas of the performance metrics are shown in
Equations (1) - (4), where TP, TN, FP, and FN are the
number of true positives, true negatives, false positives,
and false negatives, respectively. We also calculated the
area under a receiver operating characteristic curve
(AUROC) and the area under a precision-recall curve
(AUPRC) to comprehensively evaluate model performance.
The values of all evaluation metrics, except MCC, were
between 0 and 1. The higher the value of an evaluation
metric, the better the model performance.

(a) AD vs. HC

TP TP

PRE = TP+FP’ T TP+EN M
ACC = % 2)
McC = \/(TP+FP)(:‘F1:X+71;7v;:TPNX+FI?;)(TN+FN) ()
= @

3. RESULTS AND DISCUSSION

3.1 Preselection of SNPs

The Manhattan plots for the AD-HC, MCI-HC, and AD-MCI
GWAS to preselect SNPs are shown in Figure 3, where the
top horizontal line in red represents the gold standard
threshold (p-value = 5 x 10-8), and the bottom horizontal
line in blue represents the suggestive threshold (p-value =
1 x 10-5). With the gold standard threshold, 25 SNPs on
chromosome 19 were identified in the AD-HC case. One
SNP on chromosome 11 was identified in the MCI-HC case,
and five SNPs on chromosome 19 were identified in the
AD-MCI case. To increase the number of prescreened SNPs,
those below the suggestive threshold (p-value < 1 x 10-5)
were selected and used to develop the classification
models: 138 for the AD-HC case, 109 for the MCI-HC case,
and 78 for the AD-MCI case.

(b) MCI vs. HC

10
8 8-
_ ]
3 S
P 0
< 2 g4
1 2 3 45 6789101112 14161820 X 2 3 4 5678 91001112 14161820 X
Chromosome Chromosome
(c) AD vs. MCI
10
8
_
S '
= :
=

1 2 3 4 5 6
Chromosome

9101112 14 16 1820 X

Figure 3. The Manhattan plots for the GWAS of (a) AD-HC, (b) MCI-HC, and (c) AD-MCI cases

3.2 Performance comparison of the ML models
The mean AUROC values of six ML models were compared
in Table 3 to identify the best one to be applied in the
forward SNP selection. For each classification case, models
were created based on the genotype data of all preselected
SNPs. We compared the mean AUROC values of two models
using paired t-tests, particularly in cases of two
approximately equal values, and then specified ranks. An
average rank for all classification cases was computed for
each model. The lower the average rank, the better the
model performs over all classification cases.

‘:H science, engineering
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According to Table 3, the SVM achieved the lowest
average rank with mean AUROC values of 0.915, 0.892, and
0.820 in the AD-HC, MCI-HC, and AD-MCI classification
cases, respectively. While the MLP achieved the highest
AUROC values for the AD-HC and MCI-HC classification
cases, it did not perform well in the AD-MCI classification
case. Therefore, we used the SVM for forward SNP
selection to classify AD, MCI, and HC samples.
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Table 3. Performance comparison of the six ML models

Model AD-HC MCI-HC AD-MCI Average rank
AUROC Rank AUROC Rank AUROC Rank
SVM 0.915 1 0.892 2 0.820 1 1.33
MLP 0.916 1 0.896 1 0.784 4 2.00
XGB 0.899 3 0.881 3 0.804 2 2.67
RF 0.869 4 0.848 4 0.792 3 3.67
KNN 0.821 6 0.784 5 0.755 5 5.33
NB 0.852 5 0.784 5 0.748 6 5.33

Note: The largest AUROC value for each case is shown in bold.

3.3 Improved performance of FS models
We presumed that the genotype data of some preselected
SNPs may not be useful for AD-HC, MCI-HC, and AD-MCI
classification. Therefore, we used an SVM model for
forward SNP selection to identify sets of important SNPs
for each classification case. Consequently, 50 of the 138
SNPs, 36 of the 109 SNPs, and 34 of the 78 SNPs were
reselected and used in the AD-HC, MCI-HC, and AD-MCI
classifications, respectively. Based on ten replicates, the
average performance values of the SVM models with the
preselection (PS) and FS methods are shown in Table 4.

In the AD-HC classification case, the FS method had
significantly higher AUPRC (p-value = 0.041) and AUROC
(p-value = 0.039) values than the PS method although their

other performance values did not differ significantly. In the
MCI-HC classification case, the FS method had significantly
higher values than the PS method for all performance
metrics, except REC (p-value = 0.694). Similarly, in the AD-
MCI classification case, the FS method had significantly
higher values than the PS method for all performance
metrics except REC.

Table 4 shows that forward SNP selection significantly
improved the performance of models trained on the
preselected SNPs, implying that the preselected SNPs
included some that did not contribute substantially to
classifications, resulting in lower performance. Additionally,
the forward SNP selection algorithm could efficiently select
SNPs that were important for classification.

Table 4. Performance of the models with the PS and FS methods

Performance AD-HC MCI-HC AD-MCI

metrics PS FS p-value PS FS p-value PS FS p-value
AUPRC 0.91 0.93 0.041" 0.92 0.94 6.3 x 104 0.75 0.81 4.1 x 10-5*
AUROC 0.91 0.93 0.039" 0.89 0.91 2.4 x 103" 0.82 0.85 1.5 x 105"
PRE 0.88 0.88 0.925 0.84 0.89 0.021" 0.67 0.74 0.037°
REC 0.88 0.87 0.871 0.89 0.88 0.694 0.88 0.85 0.392

ACC 0.88 0.88 0.499 0.84 0.87 2.1 x 103" 0.77 0.81 0.033"
MCC 0.76 0.76 0.419 0.67 0.74 2.0 x 103 0.57 0.63 0.014"

Fi 0.87 0.87 0.444 0.86 0.88 3.0 x 103" 0.76 0.78 0.015"

Note: The highest performance values between the FS and PS methods for each classification case are shown in bold. Key: *, p < 0.05; ™,

p <0.01.

3.4 Comparison of different SNP selection methods
Using forward SNP selection, we could identify the sets of
SNPs important for the AD-HC, MCI-HC, and AD-MCI
classification models. For each classification case, the
number of SNPs obtained from three selection methods,
including GWAS with the gold standard threshold (p-value
<5 x 10-8), GWAS with the suggestive threshold (p-value <
1 x 10-5), and forward SNP selection, is shown in Table 5.
The complete lists of the SNPs are provided in the
Supplementary Data File at https://github.com/
thitipongk/ForwardSnpSelection.

Few SNPs were identified with the gold standard
threshold (Table 5). Notably, in the MCI-HC classification
case, only one SNP (rs2919475) was detected using GWAS
with the stringent gold standard threshold. More SNPs
were identified with the relaxed suggestive threshold: 138
for the AD-HC case, 109 for the MCI-HC case, and 78 for the
AD-MCI case. However, many false positive SNPs could be
selected for the classification models using this relaxed p-
value threshold of 1 x 10-5. By leveraging the classification
models, the forward SNP selection algorithm prescreened
SNPs obtained from GWAS with the suggestive threshold
to identify those contributing substantially to the
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classifications. Consequently, 50 of the 138 SNPs, 36 of the
109 SNPs, and 34 of the 78 SNPs were identified as
important for AD-HC, MCI-HC, and AD-MCI classification,
respectively. Therefore, the proposed method could identify
more important SNPs than the standard GWAS, potentially
including novel SNPs associated with MCI and AD.
Interestingly, our analysis revealed that some SNPs
identified by GWAS with the gold standard threshold
overlapped those selected through FS. However, the final
FS results excluded a subset of the gold standard SNPs. In
the AD-HC classification case, 11 gold standard SNPs were
not chosen using the proposed FS method (see the
Supplementary Data File). The p-values of all excluded
SNPs were above 10-11, and most ranked at the bottom with
p-values near the gold standard threshold. In the MCI-HC
classification case, the gold standard SNP was also selected
using the FS method. In the AD-MCI classification case, only
one gold standard SNP, which had the highest p-value
among the gold standard SNPs, was not selected by the
proposed FS method. The forward SNP selection method
identified SNPs based on their contributions to
classification models. Therefore, it could be suggested that
those removed SNPs might not contribute sufficiently to the
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classification and could be suspected of being unassociated
with AD and MCIL In addition, genotype data encoding
could substantially increase the input data size, especially
in cases initiated with many prescreened SNPs, because
too many features can negatively affect the learning
efficiency of ML models. Therefore, additional feature
selection or extraction is required to enhance classification
performance when many prescreened SNPs are obtained.

Table 5. The number of SNPs obtained with the different
selection methods

Selection methods Number of SNPs

AD-HC MCI-HC AD-MdI
GWAS with the gold 25 1 5
standard threshold
(p<5x10%)
GWAS with the suggestive 138 109 78
threshold
(p<1x10%)
Forward SNP selection 50 36 34

3.5 Identification and verification of AD- and
MCI-associated SNPs
Based on forward SNP selection, 50 of the 138 SNPs were
reselected for the AD-HC classification. These SNPs were
considered genetic markers potentially associated with
AD. Similarly, 34 of the 78 SNPs were reselected for the
AD-MCI classification. 10 of which overlapped those
reselected for the AD-HC classification (Figure 4). These
SNPs are all in or near the genes apolipoprotein E (APOE)
and apolipoprotein C1 (APOCI1). Many studies have
confirmed that polymorphisms in both APOE and APOC1
underlie AD progression (Yamazaki etal., 2019; Zhou et al,,
2014). According to the GWAS, the p-values of all
overlapping SNPs were below the gold standard threshold
of 5 x 108. Moreover, five of the 10 SNPs (rs429358,
rs769449, rs483082, rs56131196, and rs4420638) were
already reported as AD biomarkers in the GWAS Catalog.
Among the other AD-associated SNPs identified by the
AD-HC classification model, four (rs6857, rs283815,
rs59007384, and rs75627662) were also reported in the

[EH rs6857 G}NECTINZ

EIH 15429358

GWAS Catalog. Interestingly, rs283815 and rs75627662
were not identified by regular GWAS with the gold
standard threshold but were discovered by the proposed
FS method. Additionally, two SNPs that were not reported
as AD biomarkers in the GWAS Catalog were identified by
both GWAS and the proposed FS method (rs438811 and
rs5117).

In the AD-MCI classification case, three interesting
SNPs were identified by the proposed FS method:
rs283811, rs115881343, and rs66626994. While the GWAS
method with the gold standard threshold did not discover
rs283811, which was already reported as AD-associated
SNP in the GWAS Catalog, the proposed FS method did
discover this SNP, suggesting that it can discover rare SNPs
associated with a trait that are missed by regular GWAS.
Both rs115881343 and rs66626994 were not included
among the SNPs associated with AD or MCI in the GWAS
catalog. Nonetheless, rs115881343 was associated with
age-inducing cognitive decline in the GWAS catalog, which
may progress into MCI or AD. Moreover, rs66626994 was
associated with high-density lipoprotein (HDL) cholesterol
levels in the GWAS catalog. Since low HDL levels have been
identified as an important risk factor for MCI (Cho et al,
2019), it can be suggested that rs66626994 is a potential
MCl-associated SNP.

The MCI-associated SNPs identified by our FS method
are summarized in Figure 5. Notably, while rs28669215
has not been identified by stringent GWAS, it was
discovered by our FS method and is associated with
impulsivity in the GWAS catalog. It has been recently
revealed that impulsive behaviors are associated with less
favorable prognoses in patients with MCI (Bidzan et al,,
2023). Moreover, three SNPs were only discovered by the
proposed FS method (rs4323397, rs10224365, and
rs10238169), which were all located in introns of the gene
encoding dipeptidyl-peptidase 6 (DPP6). Despite the lack
of supporting reports in the GWAS Catalog, DPP6 has been
identified as a novel gene associated with dementia
(Cacace et al,, 2019). Lastly, rs2919475 was identified by
both the FS method and regular GWAS. Despite the lack of
supporting evidence, the relationship of rs2919475 with
MCI warrants further investigation.

AD vs. MCI

(34 SNPs)
G}APOE 15283811  @NECTINZ
(1 3 15115881343 @ TOMM40

1566626994 @ APOC1P1

[ rs283815 © 15769449

FEIR 1559007384 @ TOMMA40 5483082
15438811 ¢ 1510414043 €

@ 1575627662 @ | APOCT 157256200
rs5117 (1]

B rs12721051 @ |
H 1512721046 :
T 156131196 ©
: rs4420638

11117893310

and 21 SNPs

Reported in the GWAS Catalog
Significant (p-value < 5 x 10°%)

Part of genes: @ Upstream

® Downstream
O Exon © Intron

® Outside of gene regions

Figure 4. The SNPs identified in the AD-HC and AD-MCI classification cases
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MCI vs. HC

36 SNPs

152919475 @©
1s28669215 @ PPARA
54323397 ©
rs10224365 G}DPPG

1510238169 @

and 31 SNPs

[@ Reported in the GWAS Catalog
Significant (p-value < 5 x 10-8)

Part of genes:
@ Upstream © Downstream
© Exon © Intron

@ Outside of gene regions

Figure 5. The SNPs identified in the MCI-HC classification case

4. CONCLUSION

This work proposed ML models with forward SNP
selection to detect AD and MCI based on SNP data. They
significantly enhanced classification performance
compared to models based only on SNPs identified via
GWAS. Moreover, forward SNP selection could efficiently
screen and identify SNPs important for classification,
which could be considered AD- and MCl-associated SNPs.
Future studies should include other types of genetic
variants (e.g., copy number variations) and data (e.g,
electronic health records) in the classification models to
enhance classification performance.
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