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ABSTRACT 
 
Early detection of Alzheimer’s disease (AD) is crucial for patients to begin treatment 
early to slow the disease’s progression. While mild cognitive impairment (MCI) is 
considered an early translational stage of AD, clinically diagnosing MCI is difficult 
due to its inconsistent symptoms and the lack of standardized diagnostic tests. In 
this work, we proposed forward selection models to classify patients with AD, 
patients with MCI and healthy controls (HCs) based on single nucleotide 
polymorphisms (SNPs). In the proposed method, the initial SNP data were 
prescreened via genome-wide association studies with a suggestive significance 
threshold. Then, the qualified SNPs were reselected using the forward SNP 
selection algorithm to create classification models. Consequently, the forward 
selection models significantly outperformed the preselection models, those based 
on all prescreened SNPs, with an area under the precision-recall curve (AUPRC) 
value of 0.93 in the AD-HC classification, an AUPRC value of 0.94 in the MCI-HC 
classification, and an AUPRC value of 0.81 in the AD-MCI classification. Moreover, 
the proposed method could identify AD-associated and MCI-associated SNPs, 
which would support the clinical diagnosis of AD and MCI in the future. 
 
Keywords: Alzheimer’s disease; classification; forward selection; mild cognitive impairment; 
single nucleotide polymorphisms 
 
 

1. INTRODUCTION                                    
 
In the era of globally aging societies, one serious health 
issue affecting many older adults is dementia, a 
neurological condition that can affect their daily lives, 
including impaired thinking, memory, and decision-
making. Alzheimer’s disease (AD) is the most common 
type of dementia found in 60–80% of all patients with 
dementia (Baek et al., 2022). It has been estimated that 
there are currently about 50 million patients with AD 

worldwide, and this number is expected to double every 
five years (Breijyeh and Karaman, 2020). Currently, there 
is no treatment to stop or reverse the development of AD. 
Therefore, early and accurate diagnosis of AD is critical, 
enabling affected individuals to start treatment to slow the 
disease’s progression (Rasmussen and Langerman, 2019). 
       Mild cognitive impairment (MCI), a condition of 
cognitive decline, is considered a translational and early 
detectable stage of AD (Schmidt-Morgenroth et al., 2023). 
However, clinically diagnosing MCI is sometimes 
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challenging due to its inconsistent symptoms and the lack 
of standardized diagnostic tests (Chen et al., 2021a). 
Numerous studies have identified many genetic markers, 
mainly single nucleotide polymorphisms (SNPs), 
associated with AD and MCI to support their early 
detection (Kim et al., 2014). SNPs are common single-base-
pair variations found throughout the human genome. A 
standard and often used method to identify AD- and MCI-
associated SNPs is a genome-wide association study 
(GWAS), which statistically compares the genomes of 
many individuals. Typically, a GWAS requires a large 
sample size to provide the analysis with an adequate 
statistical power and uses a very stringent p-value 
threshold to reduce false positives (Chen et al., 2021b). 
These requirements sometimes limit the findings of AD- 
and MCI-associated SNPs and the accurate identification of 
AD and MCI based on SNP data. 
       Numerous machine learning (ML) algorithms have 
recently been introduced to support the early and accurate 
detection of AD and MCI. Ahmed et al. (2020) used ML 
models to identify AD based on AD-associated SNPs. In 
2022, a new three-step method based on convolutional 
neural networks (CNNs) was proposed to identify AD-
associated SNPs and perform AD classification based on 
them (Jo et al., 2022). The most recent method uses CNNs 
with deep transfer learning and support vector machine 
(SVM) models to classify AD based on GWAS data 
(Alatrany et al., 2023). However, most existing methods 
have been developed to classify AD but not MCI. 
       Forward selection (FS) is an ML technique that 
iteratively adds one feature at a time to increase model 

performance. Due to its easy applicability and efficiency, 
this technique has been widely used in various fields 
(Jeong et al., 2022; Salcedo-Sanz et al., 2018; 
Tangmanussukum et al., 2022). In GWAS, factors such as a 
stringent threshold and the small number of available 
samples can limit the identification of disease-associated 
SNPs. Therefore, using the FS technique to improve the 
identification of AD- and MCI-associated SNPs based on 
GWAS is promising. 
       In this work, we proposed an ML-based method for 
classifying AD and MCI based on SNP data collected from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
repository. An illustrated overview of this work is shown 
in Figure 1. The initial SNP data of patients with AD, 
patients with MCI, and healthy controls (HCs) were 
combined to form three different data sets: patients with 
AD and HCs (AD-HC), patients with MCI and HCs (MCI-
HC), and patients with AD and MCI (AD-MCI). Each SNP 
data set was prescreened via a GWAS with a reduced 
significance threshold to increase the number of 
identified SNPs. Then, a forward SNP selection algorithm 
was used to reselect the prescreened SNPs to optimize 
AD, MCI, and HC classification. In this step, three binary 
classification models were constructed: AD-HC, MCI-HC, 
and AD-MCI. The SNP sets used for the classification 
could be considered potential SNPs associated with AD 
and MCI. Then, the SNPs chosen by the forward SNP 
selection algorithm were validated by searching for 
supporting evidence in the GWAS Catalog (Sollis et al., 
2023).

 

 
 
Figure 1. Framework used to construct SNP-based classification models for AD and MCI prediction  
Note: The main procedures include (1) splitting the ADNI data into three data sets (AD-HC, MCI-HC, and AD-MCI), (2) prescreening SNPs 
via GWAS, and (3) forward selecting the prescreened SNPs and creating classification models. 
 
2. MATERIALS AND METHODS 
 
2.1 Data sets 
The SNP data of 808 individuals were downloaded from 
the ADNI repository (https://adni.loni.usc.edu), comprising 
232 patients with AD, 329 patients with MCI, and 247 HCs. 
These data comprised SNPs on the 22 autosomal 
chromosomes and the X chromosome. The ADNI SNP data 
were organized into three data sets: patients with AD and 
HCs (AD-HC), patients with MCI and HCs (MCI-HC), and 
patients with AD and MCI (AD-MCI). 

2.2 Preselection of SNPs and data encoding 
In this step, the downloaded SNPs in each data set were 
first preliminarily screened via GWAS. Then, the data of 
prescreened SNPs were encoded and used to develop FS 
models. Before conducting the GWAS, all SNP data 
underwent quality control using PLINK (version 1.07) 
(Purcell et al., 2007), considering a SNP call rate of 90%, 
sample call rate of 95%, minor allele frequency of 1%, and 
Hardy-Weinberg p-value of 0.00001. The GWAS used 
Fisher’s exact tests to identify SNPs potentially associated 
with AD and MCI in the AD-HC, MCI-HC, and AD-MCI data 
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sets. A relaxed p-value threshold of 1 × 10-5, known as the 
suggestive significance threshold (Hammond et al., 2021), 
was used instead of the commonly used conservative p-
value threshold of 5 × 10-8 to increase the number of 
identified SNPs. 
       After obtaining the prescreened SNPs in the AD-HC, 
MCI-HC, and AD-MCI data sets, their genotype data were 
encoded into binary values for each individual (Figure 2). 
The alleles observed at each SNP (e.g., A and a) were used 
to generate possible genotypes, which served as separate 
features (i.e., AA, Aa, and aa). At each SNP, the feature 
representing an individual’s genotype was set to one, with 
the other features set to zero. The values of the features of 
all prescreened SNPs were concatenated, and the entire 
row formed the binary SNP features of an individual. In the 
AD-HC classification, the patients with AD were labeled as 
one, and the HCs were labeled as zero. In the MCI-HC 
classification, the patients with MCI were labeled as one, 
and the HCs were labeled as zero. In the AD-MCI 
classification, the patients with AD were labeled as one, 
and the patients with MCI were labeled as zero. 
 

 
 
Figure 2. Example of genotype data encoding  
Note: The upper table contains the genotype data of two SNPs 
(SNP1 and SNP2) and the class labels of three individuals. The 
lower table shows the genotype data encoding of those three 
samples, with their genotype at each SNP set to one and the other 
genotypes set to zero. 
 
2.3 Development of FS models 
Initially, six ML models, including naïve Bayes (NB) 
(Devroye et al., 1996), k-nearest neighbors (KNN) (Cover 
and Hart, 1967), support vector machine (SVM) (Cortes 
and Vapnik, 1995), multi-layer perceptron (MLP) (Haykin, 
2009), random forest (RF) (Ho, 1995), and extreme 
gradient boosting (XGB) (Chen and Guestrin, 2016), were 
compared in the AD-HC, MCI-HC, and AD-MCI 
classifications based on the encoded data of all 
prescreened SNPs. The best-performing ML algorithm was 
then chosen to develop the FS models. The FS models were 
independently constructed for each classification case 
(AD-HC, MCI-HC, and AD-MCI). For the MLP, the simple 
architecture with a single hidden layer was used due to the 
limited existing training data. The pseudocode of the 

forward SNP selection algorithm is shown in Table 1, 
where | ⋅ | represents the number of elements in a set or 
list, and GS is a genotype matrix of binary values 
corresponding to the list of prescreened SNPs S = {s1, s2, …, 
sk}, where k is the total number of SNPs in S. We 
implemented the proposed algorithm using the Python 
programming language (version 3.9.7) and related 
packages, including numpy (version 1.24.3), scikit-learn 
(version 1.2.1), and xgboost (version 1.6.2). 
 
Table 1. The forward SNP selection algorithm 
 

Algorithm: Forward SNP selection 
Input:   List of all prescreened SNPs S = {s1, s2, …, sk} and 

genotype matrix GS corresponding to the SNPs in S 
 

Output: List of the forward selected SNPs F  
1   initialize F = ∅ and isImproved = Yes 
2   while | F | < k and isImproved == Yes do 
3          for each s ∈ S do 
4                 evaluate the performance pi of a model trained on  
                   genotype matrix G F ∪ {s}, where i = 1, 2, …, | S | 
5          end for 
6          𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = argmax

𝑖𝑖
𝑝𝑝𝑖𝑖 

7          if pimax > platest then 
8                 Set F = F ∪ {simax}, S = S – {simax}, and platest = pimax 
9                 isImproved = Yes 
10        else 
11               isImproved = No 
12        end if 
13  end while 
14  return F  
 

 
       The forward SNP selection algorithm aims to identify 
an approximately optimal subset (F) of a given SNP set (S) 
via FS to create the best-performing classification model. 
As shown in Table 1, the list of forward-selected SNPs (F) 
is initialized as an empty set. In order to choose which SNP 
will be moved into F, the genotype data of SNPs from S is 
experimentally used to train a model with the genotype 
data of SNPs in F, and the classification performance (pi) of 
the trained model is evaluated, where i = 1, 2, …, | S |. A SNP 
that gives the best classification performance (pimax) will 
be moved into F if the performance of the model trained on 
GF ∪ {simax} is better than that of the latest iteration (platest). 
The algorithm stops the iteration when F contains all 
prescreened SNPs or the performance of the models 
trained on GF ∪ {s}, for every s in S, is not greater than that 
of the latest model. 
 
2.4 Evaluation of model performance 
We evaluated the performance of a classification model 
using ten-fold nested cross-validation. This validation 
technique preserved 10% of the data for testing model 
performance in each iteration, and this process was 
repeated ten times with different testing folds. Only the 
training data set (90% of the data) was used to tune the 
hyperparameters of ML models. A grid search with five-
fold cross-validation was performed on a training data set 
to specify the generalized values of the hyperparameters. 
The considered values of the hyperparameters are listed 
in Table 2.
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Table 2. The considered hyperparameter values of the 
ML models 
 

Model Hyperparameter Considered values 

NB - - 
KNN n_neighbors [5, 9, 13, 17, 21] 

RF n_estimators [128, 256, 512, 1024] 

MLP hidden_layer_sizes [20, 40, 60, 100] 

SVM C [0.01, 0.1, 1, 10] 
XGB n_estimators [128, 256, 512, 1024] 

 
       This work used standard evaluation metrics, including 
precision (PRE), recall (REC), accuracy (ACC), Matthew’s 
correlation coefficients (MCC), and F1-score (F1). The 
formulas of the performance metrics are shown in 
Equations (1) – (4), where TP, TN, FP, and FN are the 
number of true positives, true negatives, false positives, 
and false negatives, respectively. We also calculated the 
area under a receiver operating characteristic curve 
(AUROC) and the area under a precision-recall curve 
(AUPRC) to comprehensively evaluate model performance. 
The values of all evaluation metrics, except MCC, were 
between 0 and 1. The higher the value of an evaluation 
metric, the better the model performance. 

PRE = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, REC = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                      (1) 

ACC = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                                    (2) 

MCC = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

                                  (3) 

𝐹𝐹1 = 2×PRE×REC
PRE+REC

                                                                               (4) 

 
 

3. RESULTS AND DISCUSSION 
 
3.1 Preselection of SNPs 
The Manhattan plots for the AD-HC, MCI-HC, and AD-MCI 
GWAS to preselect SNPs are shown in Figure 3, where the 
top horizontal line in red represents the gold standard 
threshold (p-value = 5 × 10-8), and the bottom horizontal 
line in blue represents the suggestive threshold (p-value = 
1 × 10-5). With the gold standard threshold, 25 SNPs on 
chromosome 19 were identified in the AD-HC case. One 
SNP on chromosome 11 was identified in the MCI-HC case, 
and five SNPs on chromosome 19 were identified in the 
AD-MCI case. To increase the number of prescreened SNPs, 
those below the suggestive threshold (p-value < 1 × 10-5) 
were selected and used to develop the classification 
models: 138 for the AD-HC case, 109 for the MCI-HC case, 
and 78 for the AD-MCI case.

 
Figure 3. The Manhattan plots for the GWAS of (a) AD-HC, (b) MCI-HC, and (c) AD-MCI cases 
 
3.2 Performance comparison of the ML models 
The mean AUROC values of six ML models were compared 
in Table 3 to identify the best one to be applied in the 
forward SNP selection. For each classification case, models 
were created based on the genotype data of all preselected 
SNPs. We compared the mean AUROC values of two models 
using paired t-tests, particularly in cases of two 
approximately equal values, and then specified ranks. An 
average rank for all classification cases was computed for 
each model. The lower the average rank, the better the 
model performs over all classification cases. 

       According to Table 3, the SVM achieved the lowest 
average rank with mean AUROC values of 0.915, 0.892, and 
0.820 in the AD-HC, MCI-HC, and AD-MCI classification 
cases, respectively. While the MLP achieved the highest 
AUROC values for the AD-HC and MCI-HC classification 
cases, it did not perform well in the AD-MCI classification 
case. Therefore, we used the SVM for forward SNP 
selection to classify AD, MCI, and HC samples.
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Table 3. Performance comparison of the six ML models 
 

Model AD-HC MCI-HC AD-MCI Average rank 
AUROC Rank AUROC Rank AUROC Rank 

SVM 0.915 1 0.892 2 0.820 1 1.33 
MLP 0.916 1 0.896 1 0.784 4 2.00 
XGB 0.899 3 0.881 3 0.804 2 2.67 
RF 0.869 4 0.848 4 0.792 3 3.67 
KNN 0.821 6 0.784 5 0.755 5 5.33 
NB 0.852 5 0.784 5 0.748 6 5.33 

Note: The largest AUROC value for each case is shown in bold. 
 
3.3 Improved performance of FS models 
We presumed that the genotype data of some preselected 
SNPs may not be useful for AD-HC, MCI-HC, and AD-MCI 
classification. Therefore, we used an SVM model for 
forward SNP selection to identify sets of important SNPs 
for each classification case. Consequently, 50 of the 138 
SNPs, 36 of the 109 SNPs, and 34 of the 78 SNPs were 
reselected and used in the AD-HC, MCI-HC, and AD-MCI 
classifications, respectively. Based on ten replicates, the 
average performance values of the SVM models with the 
preselection (PS) and FS methods are shown in Table 4. 
       In the AD-HC classification case, the FS method had 
significantly higher AUPRC (p-value = 0.041) and AUROC 
(p-value = 0.039) values than the PS method although their  

other performance values did not differ significantly. In the 
MCI-HC classification case, the FS method had significantly 
higher values than the PS method for all performance 
metrics, except REC (p-value = 0.694). Similarly, in the AD-
MCI classification case, the FS method had significantly 
higher values than the PS method for all performance 
metrics except REC. 
       Table 4 shows that forward SNP selection significantly 
improved the performance of models trained on the 
preselected SNPs, implying that the preselected SNPs 
included some that did not contribute substantially to 
classifications, resulting in lower performance. Additionally, 
the forward SNP selection algorithm could efficiently select 
SNPs that were important for classification.

 
Table 4. Performance of the models with the PS and FS methods 
 

Performance 
metrics 

AD-HC MCI-HC AD-MCI 
PS FS p-value PS FS p-value PS FS p-value 

AUPRC 0.91 0.93 0.041* 0.92 0.94 6.3 × 10-4** 0.75 0.81 4.1 × 10-5** 
AUROC 0.91 0.93 0.039* 0.89 0.91 2.4 × 10-3** 0.82 0.85 1.5 × 10-5** 
PRE 0.88 0.88 0.925 0.84 0.89 0.021* 0.67 0.74 0.037* 
REC 0.88 0.87 0.871 0.89 0.88 0.694 0.88 0.85 0.392 
ACC 0.88 0.88 0.499 0.84 0.87 2.1 × 10-3** 0.77 0.81 0.033* 
MCC 0.76 0.76 0.419 0.67 0.74 2.0 × 10-3** 0.57 0.63 0.014* 
F1 0.87 0.87 0.444 0.86 0.88 3.0 × 10-3** 0.76 0.78 0.015* 

Note: The highest performance values between the FS and PS methods for each classification case are shown in bold. Key: *, p < 0.05; **, 
p < 0.01. 
 
3.4 Comparison of different SNP selection methods 
Using forward SNP selection, we could identify the sets of 
SNPs important for the AD-HC, MCI-HC, and AD-MCI 
classification models. For each classification case, the 
number of SNPs obtained from three selection methods, 
including GWAS with the gold standard threshold (p-value 
< 5 × 10-8), GWAS with the suggestive threshold (p-value < 
1 × 10-5), and forward SNP selection, is shown in Table 5. 
The complete lists of the SNPs are provided in the 
Supplementary Data File at https://github.com/ 
thitipongk/ForwardSnpSelection. 
       Few SNPs were identified with the gold standard 
threshold (Table 5). Notably, in the MCI-HC classification 
case, only one SNP (rs2919475) was detected using GWAS 
with the stringent gold standard threshold. More SNPs 
were identified with the relaxed suggestive threshold: 138 
for the AD-HC case, 109 for the MCI-HC case, and 78 for the 
AD-MCI case. However, many false positive SNPs could be 
selected for the classification models using this relaxed p-
value threshold of 1 × 10-5. By leveraging the classification 
models, the forward SNP selection algorithm prescreened 
SNPs obtained from GWAS with the suggestive threshold 
to identify those contributing substantially to the 

classifications. Consequently, 50 of the 138 SNPs, 36 of the 
109 SNPs, and 34 of the 78 SNPs were identified as 
important for AD-HC, MCI-HC, and AD-MCI classification, 
respectively. Therefore, the proposed method could identify 
more important SNPs than the standard GWAS, potentially 
including novel SNPs associated with MCI and AD.  
       Interestingly, our analysis revealed that some SNPs 
identified by GWAS with the gold standard threshold 
overlapped those selected through FS. However, the final 
FS results excluded a subset of the gold standard SNPs. In 
the AD-HC classification case, 11 gold standard SNPs were 
not chosen using the proposed FS method (see the 
Supplementary Data File). The p-values of all excluded 
SNPs were above 10-11, and most ranked at the bottom with 
p-values near the gold standard threshold. In the MCI-HC 
classification case, the gold standard SNP was also selected 
using the FS method. In the AD-MCI classification case, only 
one gold standard SNP, which had the highest p-value 
among the gold standard SNPs, was not selected by the 
proposed FS method. The forward SNP selection method 
identified SNPs based on their contributions to 
classification models. Therefore, it could be suggested that 
those removed SNPs might not contribute sufficiently to the 
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classification and could be suspected of being unassociated 
with AD and MCI. In addition, genotype data encoding 
could substantially increase the input data size, especially 
in cases initiated with many prescreened SNPs, because 
too many features can negatively affect the learning 
efficiency of ML models. Therefore, additional feature 
selection or extraction is required to enhance classification 
performance when many prescreened SNPs are obtained. 
 
Table 5. The number of SNPs obtained with the different 
selection methods 
 

Selection methods Number of SNPs 
AD-HC MCI-HC AD-MCI 

GWAS with the gold 
standard threshold  
(p < 5 × 10-8) 

25 1 5 

GWAS with the suggestive 
threshold 
(p < 1 × 10-5) 

138 109 78 

Forward SNP selection 50 36 34 
 
3.5 Identification and verification of AD- and 
MCI-associated SNPs 
Based on forward SNP selection, 50 of the 138 SNPs were 
reselected for the AD-HC classification. These SNPs were 
considered genetic markers potentially associated with 
AD. Similarly, 34 of the 78 SNPs were reselected for the 
AD-MCI classification. 10 of which overlapped those 
reselected for the AD-HC classification (Figure 4). These 
SNPs are all in or near the genes apolipoprotein E (APOE) 
and apolipoprotein C1 (APOC1). Many studies have 
confirmed that polymorphisms in both APOE and APOC1 
underlie AD progression (Yamazaki et al., 2019; Zhou et al., 
2014). According to the GWAS, the p-values of all 
overlapping SNPs were below the gold standard threshold 
of 5 × 10-8. Moreover, five of the 10 SNPs (rs429358, 
rs769449, rs483082, rs56131196, and rs4420638) were 
already reported as AD biomarkers in the GWAS Catalog. 
       Among the other AD-associated SNPs identified by the 
AD-HC classification model, four (rs6857, rs283815, 
rs59007384, and rs75627662) were also reported in the 

GWAS Catalog. Interestingly, rs283815 and rs75627662 
were not identified by regular GWAS with the gold 
standard threshold but were discovered by the proposed 
FS method. Additionally, two SNPs that were not reported 
as AD biomarkers in the GWAS Catalog were identified by 
both GWAS and the proposed FS method (rs438811 and 
rs5117).  
       In the AD-MCI classification case, three interesting 
SNPs were identified by the proposed FS method: 
rs283811, rs115881343, and rs66626994. While the GWAS 
method with the gold standard threshold did not discover 
rs283811, which was already reported as AD-associated 
SNP in the GWAS Catalog, the proposed FS method did 
discover this SNP, suggesting that it can discover rare SNPs 
associated with a trait that are missed by regular GWAS. 
Both rs115881343 and rs66626994 were not included 
among the SNPs associated with AD or MCI in the GWAS 
catalog. Nonetheless, rs115881343 was associated with 
age-inducing cognitive decline in the GWAS catalog, which 
may progress into MCI or AD. Moreover, rs66626994 was 
associated with high-density lipoprotein (HDL) cholesterol 
levels in the GWAS catalog. Since low HDL levels have been 
identified as an important risk factor for MCI (Cho et al., 
2019), it can be suggested that rs66626994 is a potential 
MCI-associated SNP. 
       The MCI-associated SNPs identified by our FS method 
are summarized in Figure 5. Notably, while rs28669215 
has not been identified by stringent GWAS, it was 
discovered by our FS method and is associated with 
impulsivity in the GWAS catalog. It has been recently 
revealed that impulsive behaviors are associated with less 
favorable prognoses in patients with MCI (Bidzan et al., 
2023). Moreover, three SNPs were only discovered by the 
proposed FS method (rs4323397, rs10224365, and 
rs10238169), which were all located in introns of the gene 
encoding dipeptidyl-peptidase 6 (DPP6). Despite the lack 
of supporting reports in the GWAS Catalog, DPP6 has been 
identified as a novel gene associated with dementia 
(Cacace et al., 2019). Lastly, rs2919475 was identified by 
both the FS method and regular GWAS. Despite the lack of 
supporting evidence, the relationship of rs2919475 with 
MCI warrants further investigation.

 

 
 
Figure 4. The SNPs identified in the AD-HC and AD-MCI classification cases 
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Figure 5. The SNPs identified in the MCI-HC classification case 
 
 
4. CONCLUSION 
 
This work proposed ML models with forward SNP 
selection to detect AD and MCI based on SNP data. They 
significantly enhanced classification performance 
compared to models based only on SNPs identified via 
GWAS. Moreover, forward SNP selection could efficiently 
screen and identify SNPs important for classification, 
which could be considered AD- and MCI-associated SNPs. 
Future studies should include other types of genetic 
variants (e.g., copy number variations) and data (e.g., 
electronic health records) in the classification models to 
enhance classification performance. 
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