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1. INTRODUCTION

Chitin, a mucopolysaccharide, is one of the most abundant
natural polymers, ranking second only to cellulose.
Composed of repeating [(1,4)-N-acetylglucosamine
units, it forms a linear polymer found in the exoskeletons
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ABSTRACT

The current study aimed to characterize the properties of chitosan, extracted from
Penaeus indicus, on the mouse fibroblast cell line (L929) for wound healing
purposes. Chitosan is well known for its wide variety of biological characteristics.
Shrimp exoskeletons were obtained from a local fish market in Chengalpattu, Tamil
Nadu. Chitosan was extracted through demineralization, deproteination, and
deacetylation processes. It was characterized using X-ray diffraction, Fourier
transform infrared spectroscopy, and scanning electron microscopy. The
characterized chitosan was processed into nanoparticles and evaluated for
cytotoxicity on cell lines. The cell line was treated with concentrations ranging from
25 to 500 pg/mL for 4 h. The results demonstrated 99% cell viability across all
concentrations. The study primarily focuses on evaluating the ability of chitosan to
repair wounds. Mouse fibroblast cell lines were seeded on a microtitre plate at a
density of 1x10° cells per well. Results indicated that the chitosan-treated groups
exhibited significantly greater wound closure, with 10% to 20% more growth
compared to the control groups. These findings underscore the potential of chitosan
derived from P. indicus shrimp waste as a valuable pharmaceutical compound.
Such applications could significantly contribute to the nation’s socioeconomic
development.
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of crustaceans, mollusks, and insects (Kang et al., 2010).
Chitosan, derived through the alkaline deacetylation of
chitin, is a copolymer consisting of -(1—4)-linked 2-
acetamido-2-deoxy-d-glucopyranose and 2-amino-2-
deoxy-d-glucopyranose units (Seenuvasan et al., 2020).
It is moderately reactive and available in various forms,
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including fiber, powder, film, and paste. While structurally
similar to cellulose, chitosan has garnered less attention
due to its perceived inert nature, resulting in its
underutilization as a resource for acids (Lim & Halim, 2010).

Chitosan can dissolve in small amounts of malic,
lactic, acetic, succinic, and formic acids when in aqueous
solutions. At a pH below 6, it becomes polycationic,
allowing it to interact readily with negatively charged
molecules (Lim & Halim, 2010; Klinkesorn, 2013).
Additionally, chitosan specifically binds metal ions such
as calcium, copper, iron, and magnesium (Ahmad et al,,
2015). Its unique properties, including biodegradability,
non-toxicity, antibacterial effects, and biocompatibility,
have made it an area of significant interest in biomedical
research.

Chitosan and its oligomers exhibit various biological
activities, including antioxidant, anti-inflammatory,
cholesterol-lowering, immunomodulatory, antitumor,
neuroprotective,  antimicrobial, antifungal, and
hypoglycemic properties (Muhamad, 2022; Varun et al,,
2017). These attributes make chitosan oligomers
valuable for enhancing animal health. Additionally,
chitosan promotes wound healing by stimulating
hemostasis and accelerating tissue regeneration (Ueno
et al, 2001). Natural materials like chitosan are
preferred in biomedical research for their superior
biocompatibility compared to synthetic materials. Its
biodegradability and ability to be metabolized by human
enzymes further enhance its appeal (Rodriguez-Vazquez
etal, 2015). Moreover, its hydrophilic nature makes it a
promising candidate for tissue engineering scaffolds
(Thein-Han et al, 2008). Notably, hyaluronic acid, an
extracellular macromolecule vital for wound healing,
shares N-acetylglucosamine as a monomeric unit with
chitosan (Keong & Halim, 2009). In recent years,
hydrogels synthesized from chitosan nanoparticles have
been widely used as antibacterial agents to prevent
wound infections (Hou et al.,, 2020; Shafique et al.,, 2020).

The Indian white shrimp (P. indicus) is abundant in
the coastal waters of India and is extensively farmed for
aquaculture, contributing significantly to the seafood
industry in the Middle East and Southeast Asia (Liu,
1985). Despite this, substantial quantities of shrimp
waste, rich in chitin, are discarded daily without
recognizing their potential. This study aimed to extract
chitosan from P. indicus shells, characterize it, and
evaluate its wound-healing properties on mouse
fibroblast cells (L929).

Chitosan’s wound-healing capabilities, such as its
hemostatic effects and ability to promote immune cell
migration (e.g., neutrophils and macrophages) during
early wound repair, are well-documented (Patrulea et
al, 2015). Previous studies have investigated the
extraction and physicochemical characterization of
chitosan from shrimp shells, including P. indicus
(Ogretmen et al,, 2021; Mittal et al,, 2020). These studies
provide valuable insights into extraction methods and
properties of chitosan from various shrimp species,
forming the basis for understanding the unique
characteristics of chitosan derived from P. indicus shells.

The use of chitosan in wound care has also been
extensively studied, demonstrating its role in wound
closure, re-epithelialization, and tissue regeneration
(Azad et al,, 2004; Mohanasrinivasan et al,, 2013; Abo
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Elsoud & El Kady, 2019). By specifically focusing on
chitosan from P. indicus shells for wound healing in the
L929 cell line, this study provides new insights into
chitosan’s application in regenerative medicine and
wound management. The unique approach of exploring
the wound-healing potential of chitosan from this
specific shrimp species can offer a valuable contribution
to the field of wound care and regenerative therapies.

2. MATERIALS AND METHODS

2.1 Materials

We obtained Indian white shrimp (P. indicus) shells from
a local fish market in Chengalpattu district, Tamil Nadu,
India. MTT reagent, H3BO3, HCl, and NaOH (all from
Merck, Germany) were procured from Scientific Advance
Company, Chennai, India. Dulbecco’s Modified Eagle
Medium (DMEM) (Himedia, India), fetal bovine serum
(Thermo Fisher), phosphate-buffered saline (Thermo
Fisher), and DMSO (Thermo Fisher) were obtained from
Southern India Scientific Corporation, Chennai, India.
The L929 cell line was sourced from the Cell Repository
at the National Centre for Cell Science (NCCS), Pune,
India.

2.2 Sample process

The shrimp shells were thoroughly washed with fresh
water, followed by rinsing with distilled water to ensure
complete cleaning. The cleaned shells were then sun-
dried and finely powdered. The powdered shells were
stored at low temperatures for subsequent extraction.

2.3 Extraction of chitin

Chitin extraction was carried out in two main steps:
demineralization and deproteinization of the powdered
shrimp shells (Percot et al,, 2002). For demineralization,
500 mL of 1 M HCI was mixed with 50 g of shrimp shells
(Nawaz et al,, 2023). The reaction was carried out at
room temperature with continuous agitation at 250 rpm
for 2 h. The demineralized shells were then filtered and
washed with distilled water until the pH reached neutral.
After bleaching by immersing the shells in ethanol for 10
min, they were dried in a hot air oven at 70°C. To
deproteinize the dried demineralized shells, 1 M NaOH
was added at a solid/liquid ratio of 1:10 (g/mL) and
heated to 80°C with agitation for 3 h (Omar etal,, 2021).
The resulting substance was filtered and rinsed with
distilled water until neutral pH was achieved. The chitin
was then subjected to a final drying process in the hot air
oven at 70°C, following a 10-minute immersion in
ethanol for additional bleaching (Figure 1).

2.4 Extraction of chitosan

The isolated chitin was deacetylated by treating it with
12.5 M NaOH at a solid/liquid ratio of 1:15 (g/mL)
(Kumar & Rajasulochana, 2021). The reaction mixture
was kept at - 80°C for 24 h (Figure 1c). After this, the
mixture was heated to 115°C, and the reaction was
continuously agitated at 250 rpm for 6 h. Following this,
the mixture was filtered and rinsed with distilled water
to neutralize the pH of the resultant chitosan. Finally, the
chitosan was dried at 70°C in a hot air oven (Panchal &
Desai, 2022) (Figure 1).
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Figure 1. Overview of chitosan extraction process

2.5 Characterization of chitosan

Fourier transform infrared spectroscopy (FTIR) analysis
was performed to characterize the chitosan (Espinosa-
Andrews et al,, 2010). The IR spectrum of lyophilized
(freeze-dried) chitosan was recorded using a Thermo
Scientific spectrometer (USA) at room temperature,
covering a wave number range from 400 to 4000 cm™.
The spectrum was obtained by averaging 32 scans with
a resolution of 8 cm™. The entire experiment was
conducted at a room temperature of 21°C.

An XRD analysis of the freeze-dried chitosan was
carried out using a Siemens D5000 XRD with a CuKa
radiation source (A = 0.154 nm) as described by Salari et
al. (2018). The generator operated at a voltage of 40 kV
and a current of 30 mA, with a step size of 0.03°. The scan
speed was set to 0.043°/s, and the scan range covered 20
from 2° to 80° Additionally, scanning electron
microscopy (SEM) was performed to investigate the
morphology, topography, and composition of the
extracted chitosan.

2.6 Chitosan nanoparticles synthesis

In this study, we adopted the approach described by
Ngan et al. (2014), employing the spray drying method
to produce nanoparticles from the extracted chitosan.
This method was used because particles within the size
range of 10-1000 nm are classified as nanoparticles
(Nawaz et al.,, 2023). In the process, chitosan was first
dissolved in aqueous acetic acid, and then nanoparticles
were generated by passing this solution through a nozzle
at elevated temperatures ranging from 120°C to 150°C.

2.7 Preparation of mouse fibroblast cell line
(L929)

2.7.1 Preparation of chitosan solution

A total of 0.618 g of boric acid (H3B03) was dissolved in
approximately 800 mL of distilled water in a 1-liter
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volumetric flask. The solution was stirred until the boric
acid was completely dissolved, and then the volume was
adjusted to 1 liter with distilled water. Chitosan solution
of varying concentrations (w/v) were subsequently
prepared by stirring the mixture on a magnetic stirrer
with gentle heating to facilitate dissolution of the
chitosan.

2.7.2 Cytotoxicity assay

To assess the cytotoxicity of chitosan, the L929 cell line
was plated in 96-well plates at a density of 1 x 10* cells
per well. The cell culture procedures were carried out
according to standard protocols (Basha et al., 2018; De
Bari et al,, 2001). The cells were cultured in Dulbecco's
Modified Eagle Medium (DMEM) (Himedia, India)
supplemented with 10% fetal bovine serum and 1X
antibiotic solution and incubated at 37°C with 5% CO,.
After reaching confluence, the cells were washed with
200 pL of 1X phosphate-buffered saline (PBS).

The cells were then exposed to different
concentrations of chitosan in serum-free medium, with
30% DMSO (dimethyl sulfoxide) as a positive control and
10 mM boric acid buffer as a negative control. The cells
were incubated for 24 h. After the treatment period, the
medium was aspirated, and 0.5 mg/mL MTT solution
prepared in 1X PBS was added. The cells were incubated
in a CO, incubator for 4 h at 37°C. After incubation, the
media containing MTT was removed, and the cells were
washed with 200 puL PBS. The formazan crystals were
dissolved in 100 pL of DMSO, and the resulting purple-
blue color intensity was measured by absorbance at 570
nm (Anjaneyulu et al,, 2016).

For the scratch wound healing experiment, L929
cells were plated in twelve-well plates (Tarsons, India)
at a density of 1 x 10° cells per well (Kanimozhi et al,,
2022). Once the cells formed a monolayer, a sterile 200
uL pipette tip was used to create a scratch. Each well was
then treated with a 500 pg/mL chitosan solution and
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incubated at 37°C. Images of the wound areas were taken
at 0, 24, and 48 h using an OPTIKA IM-3FL4 microscope
(Optika, Italy). The percentage of wound closure was
quantified using the Image] tool (Suarez-Arnedo et al,, 2020).

2.8 Statistical analysis

The experimental data were statistically analyzed using
ANOVA and Student’s t-test to compare the variables at
the p<0.05 level, using SPSS 21.0 software.

3. RESULTS AND DISCUSSION

3.1 Characterization of chitosan

In the present study, the total yield percentage of
extracted chitin from P. indicus was found to be 13.23
0.32 %. From this extracted chitin, approximately 72 %
chitosan was obtained, constituting over 9.33 + 0.23 %
of the shell. Previous studies (Raja et al., 2012; Iber et al,,
2021) reported similar compositions of chitosan
extracted from crabs and prawns. However, Varma and
Vasudevan (2020) reported a much lower composition
of chitosan when extracted from the chitin of horse
mussels, suggesting that prawns, shrimp, and crabs are
the best sources for chitosan extraction.

Chitin yield is typically measured as the percentage
ratio of the dry weight of chitin to the dry weight of the
source material (Wu et al, 2004). The extraction and
physicochemical characterization of chitin and chitosan
from various sources, including crustacean shells and
insects, have been extensively studied, emphasizing the
significance of chitin as a bio-polysaccharide (Ibitoye et
al,, 2017). Studies have shown that chitin extraction can
be optimized using techniques such as ultrasound-
assisted extraction, with reported yields of up to 34%
achieved within a short duration (Singh et al., 2019).
Additionally, alternative sources of chitin and chitosan,
such as fungal species and insect exoskeletons, have
been explored, demonstrating the potential for
sustainable production (Kasongo et al,, 2020; Kim et al,,
2017). Various methods, including fermentation and the
use of deep eutectic solvents, have been investigated to
improve chitin extraction efficiency and yield (Xie et al.,
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Figure 2. SEM images of extracted chitosan

science, engineering
and health studies

\=H

2021; Zhang et al,, 2024). Furthermore, the application
of chitin and chitosan in diverse fields, such as
antimicrobial coatings and food preservation, underscores
the importance of efficient extraction methods (Zaghloul
& Ibrahim, 2019; Troudi, 2022).

SEM analysis revealed a folded structure (Rhim et al,,
2006), further confirming the chitosan structure (Figure 2).
FTIR analysis showed peaks between 1200 and 1225
cm™, indicating the presence of ether (0) bonds, which
are sharp and strong. Additionally, peaks between
3101.31 and 3348.18 cm™ confirmed the presence of
amine (NH;) bonds, consistent with observations made
by Cardenas and Miranda (2004). Further peaks in the
range of 1080.06 to 1257.50 cm™* indicated the presence
of hydroxyl (OH) bonds (Figure 3). XRD analysis of the
sample exhibited prominent peaks at 10° and 20° in 26
(Figure 4), closely resembling the results found in
previous studies on chitosan (Tang et al., 2003; Paulino
etal, 2005), confirming the consistency of the findings.

3.2 Cytotoxicity on mouse fibroblast

Figure 5 shows the cytotoxicity assay of extracted
chitosan on the mouse fibroblast cell line L929, using
different concentrations of chitosan. The results
indicated that there was no significant mortality among
the tested concentrations. However, significant
differences were observed between the positive and
negative controls and the extracted chitosan groups,
(p<0.05; Figure 6). Previous studies reported low
cytotoxic effects of chitosan and chitosan nanoparticles
on cell lines (Li et al, 2021; Frigaard et al, 2022). In
contrast, only 50% of the cells were viable in positive
control. Anitha et al. (2009) reported no significant
difference in the toxicity of chitosan-based nanoparticles
across different concentrations, which aligns with our
findings. Furthermore, Frigaard et al. (2022) observed
that chitosan exhibits lower cytotoxicity in various
animal cell types, irrespective of cell type or chitosan
concentration. Similarly, Ye et al. (2013) found that
chitosan has low cytotoxicity at short exposure times,
with cytotoxicity decreasing further as the exposure
time increases, suggesting a potential for cell viability
recovery.
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Figure 5. Cytotoxicity assay of extracted chitosan on mouse fibroblast cell line (L929); (a) positive control, (b) negative
control, (c) 25 pg/mL, (d) 50 pg/mL, (e) 100 pg/mL, (f) 250 ug/mL, and (g) 500 pg/mL
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Figure 6. Percentage of cell viability in the mouse fibroblast cell line (L929).

Note: Data are presented as mean * SD represents from three independent experiments. Statistical analysis was
performed using ANOVA followed by Duncan’s multiple range test (DMRT). Different superscript letters indicate
significant differences between groups at p<0.05
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Previous research has also demonstrated that
chitosan has very low toxicity in cell lines, both in vivo
and in vitro (Lim et al,, 2018; Mosa et al., 2020; Thai et
al, 2020), supporting its potential as an appealing
ingredient for wound healing treatments. L929 cells are
commonly used in vitro as a sensitive model for
evaluating cytotoxicity of biomaterials (Zhang et al,
2019). The MTT assay has commonly been employed to
assess the cytotoxicity of chitosan and its derivatives on
L929 cells at different concentrations (Reys et al,, 2013;
Cannella et al,, 2020). Additionally, the viability of L929
cells after exposure to chitosan-based structures has also
been evaluated using the MTS assay (Mania et al.,, 2019).

3.3 Wound healing property of chitosan

The scratch wound assay conducted using extracted
chitosan nanoparticles on the mouse fibroblast cell line
L929 revealed a significant increase in wound closure in
the chitosan-treated groups compared to the control
groups at 24 and 48 h (Figure 7). Specifically, the
percentage of wound closure in the chitosan-treated
group was 32% at 24 h and 63% at 48 h. Statistical
analyses confirmed that the wound closure percentage
was significantly higher in the chitosan-treated groups
compared to the control (Figure 8).

Chitosan, a cationic natural polymer, has been
extensively studied for wound management due to
its hemostatic properties, healing stimulation,
antimicrobial activity, and its nontoxic, biocompatible,
and biodegradable nature (Dai etal., 2011). Studies have
demonstrated that chitosan-based materials, including
chitosan metal nanocomposites, enhance wound
healing and control infections through antimicrobial
mechanisms (Mohandas et al, 2017). Additionally,
combining chitosan with substances like silver
nanoparticles has been shown to promote wound
healing by accelerating re-epithelialization and collagen
deposition in vivo (Liang et al., 2016).

Chitosan nanoparticles loaded with epidermal
growth factor have also been developed to enhance the
stability and biological activity of the factor, thereby
improving wound healing efficacy (Montazeri et al,
2023). The application of chitosan in wound dressings is
well-supported by its biocompatibility, biodegradability,
cellular binding capability, antimicrobial properties, and
wound healing potential (Kang et al, 2010). Several
studies have shown that chitosan-based nanoparticles
significantly improve wound healing and increase cell
viability during long-term exposure (Ye et al, 2013;
Ahmed & Ikram, 2016; Dai et al, 2011). Ueno et al.
(2001) reported that chitosan promotes wound healing
by activating inflammatory cells, such as macrophages
and fibroblasts, at the wound site. Bagheri et al. (2022)
reported the antibacterial and wound-healing properties
of chitosan on bacterial wounds. Fahimirad et al. (2021)
also demonstrated the potential of combining chitosan-
based nanoparticles with natural compounds enhance
their efficacy in treating various wound types,
attributable in part to their low cytotoxicity.
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4. CONCLUSION

This study demonstrated that chitosan derived from
P. indicus shrimp waste is non-toxic to the mouse
fibroblast cell line L929 and exhibits significant wound-
healing capabilities. The findings revealed a 63%
increase in wound closure in the treated fibroblast
cell lines after 48 h, highlighting its potential as a
valuable biomaterial for wound management. These
results underscore the promise of chitosan as a
multifunctional medicinal ingredient with profound
implications for healthcare and socioeconomic
development.
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