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1. INTRODUCTION

Pharmaceutical research and development have now
embraced the use of artificial
encompassing
liposomes, solid lipid nanocarriers, niosomes, and self-

nanomedicine,
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ABSTRACT

Artificial intelligence (Al) is now applied across various domains in nanomedicine.
Self-microemulsifying drug delivery systems (SMEDDS) are isotropic mixtures of
active compounds that can produce spontaneous oil-in-water emulsions. SMEDDS
can improve the solubility of lipophilic drugs such as progesterone (PG). However,
the physicochemical properties of SMEDDS are sensitive to various factors,
depending on their components. This study generated a prediction model algorithm
for PG-loaded SMEDDS to provide appropriate droplet size (DS), polydispersity
index (PDI), zeta potential (ZP), and % drug loading (%DL). Various machine
learning algorithms were compared for their accuracy, as reported by root mean
square error (RMSE) and coefficient of determination (R?). The selected machine
learning algorithms were implemented with an unseen training dataset, and the
model performance was re-evaluated. The correlation of each factor was
investigated. Self-micro emulsifying (SME) time, cloud point, pH, and viscosity of
predicted PG-loaded SMEDDS were evaluated. Results showed that linear
regression algorithms gave the highest accuracy and optimal prediction
performance with the highest RMSE and R2 All components of PG-loaded
SMEDDS correlated with DS, PDI, ZP, and %DL. The physical properties of
predicted PG-loaded SMEDDS showed SME time within 39 s, cloud point at around
71.3 °C, pH between 5.53 and 6.10, and viscosity between 10.32 and 14.23 cP.
This research outlined the application of a machine learning algorithm to build a
prediction model to optimize PG-loaded SMEDDS drug delivery formulations.

Keywords: artificial intelligence; machine learning; prediction modeling; progesterone; self-
microemulsifying

microemulsifying drug delivery systems (SMEDDS). The
fusion of Al and nanotechnology addresses intricate
challenges in drug discovery, drug delivery, and
personalized interventions. This integration shows
immense promise for revolutionizing the processes of drug
research and development (Tao et al., 2021). Traditional

intelligence (AI) in

technologies such as
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drug development pipelines often face disadvantages such
as high resource utilization and prolonged time consumption.
Al algorithms, endowed with the ability to analyze vast
datasets rapidly and precisely, play a crucial role in
identifying novel formulations and predicting their potential
efficacy. This collaborative approach, where AI and
nanomedicine converge, not only accelerates drug
development but also enhances its efficiency. By overcoming
challenges inherent in traditional methods, this synergy
brings about a transformative shift in the landscape of
pharmaceutical innovation (Dasta, 1992; Han et al., 2023).

The process of Al encompasses problem-solving,
learning, pattern recognition, and decision-making. Al
systems employ algorithms, data, and computational
capabilities to imitate or reproduce human cognitive
functions such as reasoning, problem-solving, and
perception. Various techniques of Al technologies include
machine learning, neural networks, and deep learning.
These methodologies empower Al systems to screen and
interpret extensive datasets, identify intricate patterns,
make predictions, and enhance their performance
progressively through training and accumulated
experience (LeCun etal, 2015; Vora et al,, 2023).

Nanomedicine involves using nanoscale materials
within the particle size range of 100 to 1000 nm, serving as
devices to optimize drug delivery and overcome barriers
such as poor solubility, thereby maximizing target
effectiveness (Soares et al, 2018). One type of
nanomedicine, known as SMEDDS, constitutes an isotropic
mixture comprising an active compound, lipids,
surfactants, and co-surfactants. This mixture can
spontaneously produce oil-in-water emulsions when
moderately agitated in an aqueous phase. The SMEDDS
system can enhance the solubility of lipophilic drugs
classified under the Biopharmaceutical Classification
System (BCS) as class II and IV and prevent drugs
susceptible to hydrolysis (Dokania and Joshi, 2015; Mandi¢
et al,, 2017; Ujhelyi et al,, 2018). Progesterone (PG), an
extremely hydrophobic drug with a log P value of 3.9,
exhibits very low aqueous solubility of approximately 10
mg/mL PG was classified as a class II drug by the BCS and
labeled as 'practically insoluble' by the United States
Pharmacopoeia (USP) and the European Pharmacopoeia
(Ph. Eur.) (Javadzadeh et al., 2007; Yalkowsky et al.,, 2010).
PG is an endogenous steroid sex hormone that plays a
crucial role in the menstrual cycle, pregnancy, and
embryogenesis in humans (Nagy et al, 2021). PG
influences the production of inflammatory mediators,
diminishes metabolism disorders and vasomotor
symptoms, prevents cardiovascular disease (Prior et al,
2014), and acts as a neuroprotective agent in the brain,
slowing the progression of Alzheimer's disease (Singh and
Su, 2013). Therefore, we selected PG as a model for
lipophilic drugs in this study.

In this exploration of the convergence of Al and
nanomedicine in pharmaceutical development, various
prediction model algorithms were generated to develop
PG-loaded SMEDDS to provide appropriate droplet size
(DS), polydispersity index (PDI), zeta potential (ZP), and
% drug loading (%DL). The formulations were adjusted to
achieve the precision of personalized medicine while
maintaining appropriate properties and efficacy. This
study redefined the boundaries of pharmaceutical
innovation and heralded a new era in patient-centric
healthcare solutions.
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2. MATERIALS AND METHODS

2.1 Materials

Micronized progesterone (PG) was supplied by Enviero,
Michigan Facility (Kalamazoo, USA). Eugenol was received
from Bruno Court (Grasse, France). Labrasol®
(caprylocaproyl polyoxyl-8 glycerides) was received from
Gattefossé (Lyon, France). Absolute ethanol was purchased
from Sigma-Aldrich (Missouri, USA). All other chemicals
and solvents used were of analytical grade.

2.2 Preparation of PG-loaded SMEDDS

The SMEDDS formulation was prepared by mixing eugenol,
Labrasol®, and ethanol obtained from a previous
microemulsion experiment study, selected based on a
pseudo-ternary phase diagram (Aumklad et al, 2022).
After mixing until a homogeneous solution was achieved,
20% w/w of PG was dissolved in the SMEDDS. The PG-
loaded SMEDDS was thoroughly mixed using a vortex
mixer to obtain uniform, transparent, clear formulations.
The excess PG from PG-SMEDDS was centrifuged at 14000
rpm for 20 min at 25 °C. The PG-loaded SMEDDS was
evaluated for DS, PDI, ZP, and %DL, and the results were
recorded as a dataset. Thirty PG-loaded SMEDDS
formulations were prepared, as listed in Table 1, with raw
data provided in Supplementary Data S1.

Table 1. The component range concentration of PG-loaded
SMEDDS formulations

SMEDDS components Rang of concentration
Eugenol (%) 20-40

Labrasol® (%) 15-30

Ethanol (%) 32.25-60

2.3 Characterization of PG-loaded SMEDDS

The dynamic light scattering (DLS) technique, utilizing a
Zetasizer Nano Series (Malvern Instruments, version 4.10),
was employed to determine the DS, PDI, and ZP. For each
PG-loaded SMEDDS formulation, a microemulsion was
initially formed by diluting 100 times with water and then
mixing using a vortex mixer to achieve a uniform droplet
distribution. The formulation was then filled into a
disposable folded capillary cell and measured. All
measurement settings were carried out at a 90° angle to
the light beam and at 25 °C (Suriyaamporn et al., 2023).

2.4 PG content assay using HPLC

The determination of PG was conducted using HPLC. The
samples were appropriately diluted with methanol and
filtered using a 0.45-pum syringe filter. Chromatographic
separation was achieved using a Zorbax Eclipse XDB-C18
column (250x4.6 mm, 5 um pore size, Agilent, United
States) with temperature set at 30 °C. The mobile phase
consisted of 90% v/v methanol and 10% v/v ultrapure
water, flowing at a rate of 1 mL/min, with detection carried
out at a wavelength of 240 nm. The retention time for PG
was approximately 4.4 min (Biruss and Valenta, 2008).
The calibration curve was plotted using five different
concentrations of PG for analysis. The PG assay percentage
was calculated following Equation (1).
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Quantified amount of PG in SMEDDS
Amount of PG added to the formulation

%DL = 100 (1)

2.5 Generation of PG-loaded SMEDDS dataset

In this study, the dataset of PG-loaded SMEDDS was
generated randomly by a computer program. The
components of PG-loaded SMEDDS such as eugenol,
Labrasol®, and ethanol were mixed in various
concentrations following Table 1, modified from a previous
study (Aumklad et al.,, 2022). The components of PG-loaded
SMEDDS were labeled as input data. Thirty formulations of
PG-loaded SMEDDS were measured for DS, PDI, ZP, and
%DL as output data. After completing all experiments in
the preprocessing step, the dataset was cleaned by
detecting outliers and normalized for data analysis to
generate a prediction model. Visualization of the dataset
was observed to describe the trend of data and the
physicochemical properties of PG-loaded SMEDDS.

2.6 Prediction model formulation using machine
learning

The critical factors impacting PG-loaded SMEDDS which
affected DS, PDI, ZP, and %DL were eugenol, Labrasol®, and
ethanol. The predictability of output data depending on
these critical factors involved the application of various
machine learning algorithms such as linear regression
(LR), polynomial regression (PR), support vector
regression (SVR), K-nearest neighbor regression (K-NN),
Gaussian process regressor (GPR), and neural networks
(NN) on the prepared dataset adapted from a previous
study (Oztirk et al, 2018). The machine learning
algorithms were run with default parameter settings. The
prepared dataset was applied to each machine learning
algorithm with cross-validation to avoid overfitting of the
prediction model. The performance of the machine
learning algorithms was evaluated by root mean square
error (RMSE) (Equation (2)), describing the differences
between actual experiments and prediction data, and
coefficient of determination (R2) exceeding 0.5. To analyze
the correlation of data, Spearman’s rank correlation
coefficient was reported as a correlation matrix. The
machine learning algorithms were developed using
RapidMiner Studio version 10.3 and PyCharm version
2023.3.2. A p-value less than 0.05 was considered
significant.

(2)

2.7 Implementation and assessment of the
prediction model

The five new randomly unseen testing datasets of PG-
loaded SMEDDS were formulated and remeasured. The
unseen testing datasets were obtained from the random
components of PG-loaded SMEDDS, which were never
trained in the Al model. All output data were applied to the
optimal prediction model from a previous study, and
model accuracy was evaluated by RMSE. Five formulations
with DS <300 nm, PDI < 0.4, ZP < -30, and the highest %DL
were selected for further evaluation. The criteria of PG-
SMEDDS were determined from a previous study to adapt
to the Al model selection. All criteria represented the
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appropriate physical properties in SMEDDS (van Staden et
al, 2020).

2.7.1 Self-emulsification time (SME time)

The self-emulsification time refers to the duration needed
to achieve a clear and transparent microemulsion when
PG-loaded SMEDDS were combined with water. For each
PG-loaded SMEDDS formulation, 0.1 g was added to 25 mL
of phosphate buffer solution (PBS) at pH 7.4. The mixture
was maintained at 37 °C with gentle agitation using a
magnetic stirrer set at 50 rpm. The time taken for complete
self-emulsification, resulting in a clear physical appearance
was recorded.

2.7.2 Cloud point (Tcioud)

The assessment of the impact of temperature on the phase
behavior of microemulsions involved determining the
cloud point (Tcioud) to evaluate the storage stability of PG-
loaded SMEDDS formulations. The cloud point, indicating
the temperature at which the formulation becomes turbid,
was examined. In brief, 0.1 g of each PG-loaded SMEDDS
formulation was dispersed in 25 mL of PBS at pH 7.4 and
allowed to stabilize. The PG-loaded SMEDDS formulations
were then subjected to gradual temperature increases in a
water bath and the temperatures at which the clear
samples turned turbid were recorded.

2.7.3 pH

The pH of each PG-loaded SMEDDS formulation was
measured using a pH meter (Laquatwin Horiba, Kyoto,
Japan) at 25%2 °C to ensure that the formulation was
suitable for application and non-irritating.

2.7.4 Viscosity

The viscosity of the PG-loaded SMEDDS was evaluated
using a viscometer equipped with a stainless-steel spindle
SC4-18 (Brookfield DV2T; Toronto, Canada) at 100 rpm
(60-80% torque) at 25+2 °C. Then, 7 mL of each PG-loaded
SMEDDS was filled into the sample chamber and the
viscosity was measured at three points every minute.

2.7.5 Statistical analysis

The machine learning algorithm generated a prediction
model using RapidMiner Studio version 10.3 and PyCharm
version 2023.3.2. The cross-validation process was
considered successful if the attained R2 value exceeded 0.5.
To evaluate the predictive performance of the model,
RMSE was applied. The research was conducted in
triplicate, and the results were presented as mean *
standard deviation (SD). The two-sided independent t-test
was employed to compare the two groups, utilizing SPSS®
software version 19 (SPSS Inc, Chicago, IL). Statistical
significance was determined at p-values below 0.05.

3. RESULTS AND DISCUSSION

3.1 Generation of PG-loaded SMEDDS dataset

Data visualizations of 30 experimental PG-loaded SMEDDS
formulations in terms of DS, PDI, ZP, and %DL are
illustrated in Figure 1. The DS of each formulation ranged
from 166.1 to 312.3 nm. The appropriate DS of PG-loaded
SMEDDS should be less than 300 nm to facilitate delivery
into the target sites, while the PDI, which refers to the
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droplet size distribution, should be less than 0.4. The PDI
serves as an indicator of the colloidal solution of
nanoparticles, describing the width or spread of the DS
distribution. A high PDI value can also indicate droplet
aggregation or coalescence resulting from variations in
droplet sizes, both small and large, thereby affecting the
consistency and stability of the particles (Clayton etal., 2016).
In this study, the PDI ranged from 0.17 to 0.64. The ZP of PG-

loaded SMEDDS should be greater than +30 mV or less than
-30 mV to prevent droplet aggregation of colloidal systems,
which can lead to unstable DS. In this study, the ZP ranged
from -22.1 to -45.33 mV (Jaiswal et al,, 2014; Suriyaamporn
etal, 2022). The %DL in this study represented the amount
of drug that could be entrapped in SMEDDS compared with
the initial drug loading. The highest %DL observed in this
study ranged from 16.25% to 31.20%.

(B) PDI

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

(D) %Drug loading

(A) Droplet size
@ a
= A
150 160 170 180 1%0 200 210 220 230 240 250 260 270 280 290 300 310 320 0.15
(nm)
(C) Zeta potential
|
2
N =
48 46 44 42 40 38 -36 34 -32 30 -28 -26 -24 -22 -20 15

(mV)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(%)

Figure 1. The data visualizations (box plot graphs) of (A) DS, (B) PDI, (C) ZP, and (D) %DL from the experimental study,
illustrated the individual and distribution values such as the median, upper limit, and lower limit

For the data preprocessing step, the outliers were
removed, and values for DS and PDI exceeding 300 nm and
0.4, respectively, were eliminated. ZP values > -30 mV were
also removed from the dataset. Finally, the dataset was
normalized for data analysis to generate a prediction
model. The total number of data points after the
preprocessing step was 20.

3.2 Prediction model of PG-loaded SMEDDS
formulation using machine learning algorithms
The results in Table 2 present the performance of various
machine learning algorithms in predicting outcomes for
PG-loaded SMEDDS formulations. The results evaluated
included RMSE and R?, which provided insights into the
accuracy and goodness-of-fit of each algorithm. Linear
regression (LR) emerged as the top-performing algorithm

across all assessed parameters, exhibiting the lowest RMSE
values and the highest R2? values compared to the other
algorithms. This suggested that a linear relationship
existed between the input data and the predicted
outcomes. The observed trends in the dataset indicated a
predominantly linear correlation, where changes in
individual components had a proportional impact on the
outcome in the context of linear regression (Janairo et al.,
2021). PR displayed competitive results, particularly in
predicting %DL but fell short in terms of overall
performance compared to linear regression. SVR and K-NN
demonstrated comparable performances, with both
algorithms exhibiting reasonable accuracy across the
evaluated parameters. GPR and NN models showed less
favorable results, indicating their limitations in capturing
the underlying patterns in the dataset.

Table 2. The performance of machine learning algorithm for generated prediction model of PG-loaded SMEDDS formulations

ML algorithms DS PDI VA4 %DL
RMSE R? RMSE R? RMSE R? RMSE R?

LR 0.08 0.64 36.72 0.48 4926 0.59 2.77 0.81
PR 0.08 0.48 118.80 0.34 246.21 0.19 15.66 0.63
SVR 0.09 0.50 40.65 0.34 5.172 0.35 3.11 0.72
K-NN 0.08 0.48 38.47 0.37 4.73 0.59 2.99 0.74
GPR 0.28 0.46 140.42 0.50 22.96 0.19 12.72 0.35
NN 0.08 0.48 36.86 0.43 5.50 0.54 2.51 0.78

science, engineering
and health studies

i=H



Aumklad, P., et al.

The correlation matrix presented in Table 3 provides
valuable insights into the relationships between input data
(eugenol, Labrasol®, and ethanol) and output data (DS, PDI,
ZP, and %DL) in the context of PG-loaded SMEDDS
formulations. Correlation coefficients ranged from -1 to 1,
with positive values indicating a positive correlation,
negative values indicating a negative correlation, and 0
indicating no correlation (Rodriguez-Pérez and Bajorath,
2021). The DS and PDI showed moderate positive
correlations of 0.472 and 0.595 with Labrasol®. This
suggested that as the amount of Labrasol® increased, there
was a corresponding increase in DS and PDI. The PDI
exhibited a moderate negative correlation of -0.430 with
eugenol, implying that higher concentrations of eugenol may
be associated with a decrease in PDI. Regarding the ZP
result, a moderate negative correlation of -0.302 existed
with ethanol, indicating that higher ethanol concentrations
are associated with decreases in ZP. In %DL, a strong
negative correlation of -0.645 existed between ethanol and

Table 3. The correlation matrix of input and output data

%DL. A moderate correlation of 0.410 was found between
eugenol concentration and %DL, suggesting that higher
concentrations of ethanol and lower concentrations of
eugenol were associated with a notable decrease in %DL.

These correlation coefficients provided initial insights
into the relationships within the dataset. The correlations of
eugenol, Labrasol®, and ethanol played a significant role in
the physical properties of PG-loaded SMEDDS. The
surfactant and co-surfactant were important components in
reducing the energy surface tension between oil and water
to form droplets (Gurram et al, 2015). The ZP is mostly
influenced by eugenol and surfactant due to the high
negative charge from eugenol and the uncharged nature of
ethanol (Xue et al, 2019). This countercharge is very
important for the ZP. The entrapping efficiency of the drug
in the SMEDDS formulation is mostly influenced by the
concentrations of eugenol and ethanol. The PG has a high log
P value of 3.9; therefore, it easily dissolves in oil, following
the principle of ‘like dissolves like’ (Akula et al., 2014).

Attributes Eugenol Labrasol Ethanol DP PDI 7P %DL*
Eugenol 1.0 -0.058 -0.448 -0.037 -0.430 -0.200 0.410
Labrasol -0.058 1.0 -0306 0.472 0.595 0.143 -0.174
Ethanol -0.448 -0.306 1.0 -0.225 -0.253 -0.302 -0.645
DP -0.037 0.472 -0.225 1.0 0.615 0.372 0.289
PDI -0.430 0.595 -0.253 0.615 1.0 0.362 -0.062
yAY -0.200 0.143 -0.302 0.372 0.362 1.0 0.452
%DL* 0.410 -0.174 -0.645 0.289 -0.062 0.452 1.0
Note: *%DL indicated to %drug loading
Table 4. Experimental results and model prediction of DS, PDI, ZP and %DL with RMSE
Formulations DS PDI P %DL
Actual Predict Actual Predict Actual Predict Actual Predict
T1 256.47 265.47 0.43 0.62 -34.09 -33.06 21.32 22.82
T2 250.87 260.88 0.50 0.56 -36.87 -36.65 19.34 18.28
T3 200.50 219.59 0.40 0.30 -45.34 -43.86 17.00 17.59
T4 190.30 203.55 0.24 0.23 -43.92 -43.88 24.32 21.79
T5 294.50 267.77 0.39 0.45 -34.53 -38.52 27.45 25.08
RMSE 0.103 16.35 1.960 1.774

Note: T1-T5 indicated formulations 1 to 5 in the unseen testing dataset

To implement and assess the prediction model, five new
randomly unseen testing datasets of PG-loaded SMEDDS
were formulated and measured. The RMSE values are
reported in Table 4, with results showing that the linear
regression prediction model, generated by machine learning,
demonstrated high accuracy, as evidenced by the lowest
RMSE values. However, the accuracy of predicting PDI
showed a slightly high RMSE value; therefore, concerns may
arise regarding the prediction of PDI when using this model.

Our prediction model forecasted a DS < 300 nm, ZP < -
30, and the highest %DL. However, concerns should be
raised regarding the accuracy of predicting PDI. Our
prediction model can be applied to formulate SMEDDS-
based formulations with appropriate DS, PDI, ZP, and %DL
in pharmaceutical technology and practical applications.

3.3 Characterization of predicted PG-loaded
SMEDDS formulations

Results in Table 5 report the physicochemical properties of
predicted PG-loaded SMEDDS formulations including SME
time, cloud point, pH, and viscosity. For SME time,
representing the time taken for self-micro emulsification,
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values ranged from 29.4+1.2 s to 39.3+2.3 s, with lower
SME times indicating faster self-micro emulsification
(Anand et al, 2019). The cloud point indicates the
temperature at which the formulation becomes turbid or
phase separates. Cloud point values varied from 65.7+0.3 °C
to 71.3%x1.3 °C, suggesting that all formulations were
sensitive to high temperatures. The cloud point should be
above 37 °C to maintain the stability of the formulation
when applied at body temperature (Jaiswal et al., 2014).
The pH values ranged from 5.53+0.32 to 6.10+0.56. The
formulations maintained a slightly acidic pH, which might
be suitable for oral or transdermal applications (Akula et
al, 2014; van Staden et al,, 2020). Lastly, viscosity values
ranged from 10.32+1.43 cP to 14.23x0.32 cP. All
formulations showed lower viscosity, indicating a more
liquid formulation that might influence ease of
administration and quick emulsification (Emad et al,
2023). The SME time, cloud point, pH, and viscosity
showed no significant differences. Overall, these physical
properties provided important insights into the
performance and characteristics of the PG-loaded SMEDDS
formulations.
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Table 5. The characterization of predicted PG-loaded SMEDDS formulations

Formulations SME time (s) Cloud point (°C) pH Viscosity (cP)
T1 30.0£5.4 65.7+0.3 5.98+0.13 14.23+0.32
T2 32.3+1.3 67.4+0.9 6.01+0.23 12.43+2.24
T3 39.3+2.3 70.3+1.2 5.93+0.32 10.32+1.43
T4 30.5+2.2 69.3+2.3 6.10+.0.56 13.45+1.76
T5 29.4+1.2 71.3+1.3 5.53+0.32 12.98+0.65

4. CONCLUSION

This study detailed the utilization of machine learning
algorithms to construct a predictive model for PG-loaded
SMEDDS formulations. Our method showcased that the
linear regression algorithm outperformed other
comparative machine learning algorithms in accurately
predicting DS, PDI, ZP, and %DL based on experimental
conditions. The DS, PDI, ZP, and %DL were acceptable
criteria for formulation development. In contrast to
traditional approaches, this method demanded fewer
resources and less time, thereby expediting the production
process. Consequently, Al facilitated the prediction of
diverse characteristics and delved into the intricate
relationships governing the behavior of nanomaterials.
The physical properties of predicted PG-loaded SMEDDS
such as SME time, cloud point, pH, and viscosity
demonstrated suitable performance and characteristics.

Our research findings presented an optimal predictive
Al  model for determining PG-loaded SMEDDS
formulations. This Al model can adjust the components of
the PG-SMEDDS formulation in real-time to predict DS, PD],
ZP, and %DL before formulation in real situations,
reducing both time and cost. This research established
fundamental knowledge regarding Al applications in
pharmaceutical research and development. The
incorporation of advanced tools like Al holds great promise
in advancing the field of nanomedicine, generating novel
insights and influencing future developments. In the
future, predictive Al models will accurately predict and
formulate drug formulations with desired properties,
leading to personalized drugs for patients.
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