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ABSTRACT 
 
Artificial intelligence (AI) is now applied across various domains in nanomedicine. 
Self-microemulsifying drug delivery systems (SMEDDS) are isotropic mixtures of 
active compounds that can produce spontaneous oil-in-water emulsions. SMEDDS 
can improve the solubility of lipophilic drugs such as progesterone (PG). However, 
the physicochemical properties of SMEDDS are sensitive to various factors, 
depending on their components. This study generated a prediction model algorithm 
for PG-loaded SMEDDS to provide appropriate droplet size (DS), polydispersity 
index (PDI), zeta potential (ZP), and % drug loading (%DL). Various machine 
learning algorithms were compared for their accuracy, as reported by root mean 
square error (RMSE) and coefficient of determination (R2). The selected machine 
learning algorithms were implemented with an unseen training dataset, and the 
model performance was re-evaluated. The correlation of each factor was 
investigated. Self-micro emulsifying (SME) time, cloud point, pH, and viscosity of 
predicted PG-loaded SMEDDS were evaluated. Results showed that linear 
regression algorithms gave the highest accuracy and optimal prediction 
performance with the highest RMSE and R2. All components of PG-loaded 
SMEDDS correlated with DS, PDI, ZP, and %DL. The physical properties of 
predicted PG-loaded SMEDDS showed SME time within 39 s, cloud point at around 
71.3 °C, pH between 5.53 and 6.10, and viscosity between 10.32 and 14.23 cP. 
This research outlined the application of a machine learning algorithm to build a 
prediction model to optimize PG-loaded SMEDDS drug delivery formulations. 
 
Keywords: artificial intelligence; machine learning; prediction modeling; progesterone; self-
microemulsifying 
 
 
 

1. INTRODUCTION                                    
 

Pharmaceutical research and development have now 
embraced the use of artificial intelligence (AI) in 
nanomedicine, encompassing technologies such as 
liposomes, solid lipid nanocarriers, niosomes, and self-

microemulsifying drug delivery systems (SMEDDS). The 
fusion of AI and nanotechnology addresses intricate 
challenges in drug discovery, drug delivery, and 
personalized interventions. This integration shows 
immense promise for revolutionizing the processes of drug 
research and development (Tao et al., 2021). Traditional 
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drug development pipelines often face disadvantages such 
as high resource utilization and prolonged time consumption. 
AI algorithms, endowed with the ability to analyze vast 
datasets rapidly and precisely, play a crucial role in 
identifying novel formulations and predicting their potential 
efficacy. This collaborative approach, where AI and 
nanomedicine converge, not only accelerates drug 
development but also enhances its efficiency. By overcoming 
challenges inherent in traditional methods, this synergy 
brings about a transformative shift in the landscape of 
pharmaceutical innovation (Dasta, 1992; Han et al., 2023). 
       The process of AI encompasses problem-solving, 
learning, pattern recognition, and decision-making. AI 
systems employ algorithms, data, and computational 
capabilities to imitate or reproduce human cognitive 
functions such as reasoning, problem-solving, and 
perception. Various techniques of AI technologies include 
machine learning, neural networks, and deep learning. 
These methodologies empower AI systems to screen and 
interpret extensive datasets, identify intricate patterns, 
make predictions, and enhance their performance 
progressively through training and accumulated 
experience (LeCun et al., 2015; Vora et al., 2023). 
       Nanomedicine involves using nanoscale materials 
within the particle size range of 100 to 1000 nm, serving as 
devices to optimize drug delivery and overcome barriers 
such as poor solubility, thereby maximizing target 
effectiveness (Soares et al., 2018). One type of 
nanomedicine, known as SMEDDS, constitutes an isotropic 
mixture comprising an active compound, lipids, 
surfactants, and co-surfactants. This mixture can 
spontaneously produce oil-in-water emulsions when 
moderately agitated in an aqueous phase. The SMEDDS 
system can enhance the solubility of lipophilic drugs 
classified under the Biopharmaceutical Classification 
System (BCS) as class II and IV and prevent drugs 
susceptible to hydrolysis (Dokania and Joshi, 2015; Mandić 
et al., 2017; Ujhelyi et al., 2018). Progesterone (PG), an 
extremely hydrophobic drug with a log P value of 3.9, 
exhibits very low aqueous solubility of approximately 10 
mg/mL PG was classified as a class II drug by the BCS and 
labeled as 'practically insoluble' by the United States 
Pharmacopoeia (USP) and the European Pharmacopoeia 
(Ph. Eur.) (Javadzadeh et al., 2007; Yalkowsky et al., 2010). 
PG is an endogenous steroid sex hormone that plays a 
crucial role in the menstrual cycle, pregnancy, and 
embryogenesis in humans (Nagy et al., 2021). PG 
influences the production of inflammatory mediators, 
diminishes metabolism disorders and vasomotor 
symptoms, prevents cardiovascular disease (Prior et al., 
2014), and acts as a neuroprotective agent in the brain, 
slowing the progression of Alzheimer's disease (Singh and 
Su, 2013). Therefore, we selected PG as a model for 
lipophilic drugs in this study. 
       In this exploration of the convergence of AI and 
nanomedicine in pharmaceutical development, various 
prediction model algorithms were generated to develop 
PG-loaded SMEDDS to provide appropriate droplet size 
(DS), polydispersity index (PDI), zeta potential (ZP), and  
% drug loading (%DL). The formulations were adjusted to 
achieve the precision of personalized medicine while 
maintaining appropriate properties and efficacy. This 
study redefined the boundaries of pharmaceutical 
innovation and heralded a new era in patient-centric 
healthcare solutions. 

2. MATERIALS AND METHODS 
 
2.1 Materials 
Micronized progesterone (PG) was supplied by Enviero, 
Michigan Facility (Kalamazoo, USA). Eugenol was received 
from Bruno Court (Grasse, France). Labrasol® 
(caprylocaproyl polyoxyl-8 glycerides) was received from 
Gattefossé (Lyon, France). Absolute ethanol was purchased 
from Sigma-Aldrich (Missouri, USA). All other chemicals 
and solvents used were of analytical grade. 
 
2.2 Preparation of PG-loaded SMEDDS 
The SMEDDS formulation was prepared by mixing eugenol, 
Labrasol®, and ethanol obtained from a previous 
microemulsion experiment study, selected based on a 
pseudo-ternary phase diagram (Aumklad et al., 2022). 
After mixing until a homogeneous solution was achieved, 
20% w/w of PG was dissolved in the SMEDDS. The PG-
loaded SMEDDS was thoroughly mixed using a vortex 
mixer to obtain uniform, transparent, clear formulations. 
The excess PG from PG-SMEDDS was centrifuged at 14000 
rpm for 20 min at 25 °C. The PG-loaded SMEDDS was 
evaluated for DS, PDI, ZP, and %DL, and the results were 
recorded as a dataset. Thirty PG-loaded SMEDDS 
formulations were prepared, as listed in Table 1, with raw 
data provided in Supplementary Data S1. 
 
Table 1. The component range concentration of PG-loaded 
SMEDDS formulations 
 

SMEDDS components Rang of concentration 

Eugenol (%) 20 – 40 

Labrasol® (%) 15 – 30 

Ethanol (%) 32.25 – 60 

 

2.3 Characterization of PG-loaded SMEDDS  
The dynamic light scattering (DLS) technique, utilizing a 
Zetasizer Nano Series (Malvern Instruments, version 4.10), 
was employed to determine the DS, PDI, and ZP. For each 
PG-loaded SMEDDS formulation, a microemulsion was 
initially formed by diluting 100 times with water and then 
mixing using a vortex mixer to achieve a uniform droplet 
distribution. The formulation was then filled into a 
disposable folded capillary cell and measured. All 
measurement settings were carried out at a 90° angle to 
the light beam and at 25 °C (Suriyaamporn et al., 2023). 
 

2.4 PG content assay using HPLC  
The determination of PG was conducted using HPLC. The 
samples were appropriately diluted with methanol and 
filtered using a 0.45-μm syringe filter. Chromatographic 
separation was achieved using a Zorbax Eclipse XDB-C18 
column (250×4.6 mm, 5 μm pore size, Agilent, United 
States) with temperature set at 30 °C. The mobile phase 
consisted of 90% v/v methanol and 10% v/v ultrapure 
water, flowing at a rate of 1 mL/min, with detection carried 
out at a wavelength of 240 nm. The retention time for PG 
was approximately 4.4 min (Biruss and Valenta, 2008).  
The calibration curve was plotted using five different 
concentrations of PG for analysis. The PG assay percentage 
was calculated following Equation (1). 
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%DL  = Quantified amount of PG in SMEDDS
Amount of PG added to the formulation

×100                         (1)  

 
2.5 Generation of PG-loaded SMEDDS dataset 
In this study, the dataset of PG-loaded SMEDDS was 
generated randomly by a computer program. The 
components of PG-loaded SMEDDS such as eugenol, 
Labrasol®, and ethanol were mixed in various 
concentrations following Table 1, modified from a previous 
study (Aumklad et al., 2022). The components of PG-loaded 
SMEDDS were labeled as input data. Thirty formulations of 
PG-loaded SMEDDS were measured for DS, PDI, ZP, and 
%DL as output data. After completing all experiments in 
the preprocessing step, the dataset was cleaned by 
detecting outliers and normalized for data analysis to 
generate a prediction model. Visualization of the dataset 
was observed to describe the trend of data and the 
physicochemical properties of PG-loaded SMEDDS. 
 
2.6 Prediction model formulation using machine 
learning 
The critical factors impacting PG-loaded SMEDDS which 
affected DS, PDI, ZP, and %DL were eugenol, Labrasol®, and 
ethanol. The predictability of output data depending on 
these critical factors involved the application of various 
machine learning algorithms such as linear regression 
(LR), polynomial regression (PR), support vector 
regression (SVR), K-nearest neighbor regression (K-NN), 
Gaussian process regressor (GPR), and neural networks 
(NN) on the prepared dataset adapted from a previous 
study (Öztürk et al., 2018). The machine learning 
algorithms were run with default parameter settings. The 
prepared dataset was applied to each machine learning 
algorithm with cross-validation to avoid overfitting of the 
prediction model. The performance of the machine 
learning algorithms was evaluated by root mean square 
error (RMSE) (Equation (2)), describing the differences 
between actual experiments and prediction data, and 
coefficient of determination (R2) exceeding 0.5. To analyze 
the correlation of data, Spearman’s rank correlation 
coefficient was reported as a correlation matrix. The 
machine learning algorithms were developed using 
RapidMiner Studio version 10.3 and PyCharm version 
2023.3.2. A p-value less than 0.05 was considered 
significant. 
 

RMSE =  ��
(Xi - X� i)

2

N

N

i=1

                                                             (2) 

 

2.7 Implementation and assessment of the 
prediction model 
The five new randomly unseen testing datasets of PG-
loaded SMEDDS were formulated and remeasured. The 
unseen testing datasets were obtained from the random 
components of PG-loaded SMEDDS, which were never 

trained in the AI model. All output data were applied to the 
optimal prediction model from a previous study, and 
model accuracy was evaluated by RMSE. Five formulations 
with DS < 300 nm, PDI < 0.4, ZP < -30, and the highest %DL 
were selected for further evaluation. The criteria of PG-
SMEDDS were determined from a previous study to adapt 
to the AI model selection. All criteria represented the 

appropriate physical properties in SMEDDS (van Staden et 
al., 2020).  
 

2.7.1 Self-emulsification time (SME time)  
The self-emulsification time refers to the duration needed 
to achieve a clear and transparent microemulsion when 
PG-loaded SMEDDS were combined with water. For each 
PG-loaded SMEDDS formulation, 0.1 g was added to 25 mL 
of phosphate buffer solution (PBS) at pH 7.4. The mixture 
was maintained at 37 °C with gentle agitation using a 
magnetic stirrer set at 50 rpm. The time taken for complete 
self-emulsification, resulting in a clear physical appearance 
was recorded. 
 
2.7.2 Cloud point (TCloud)  
The assessment of the impact of temperature on the phase 
behavior of microemulsions involved determining the 
cloud point (TCloud) to evaluate the storage stability of PG-
loaded SMEDDS formulations. The cloud point, indicating 
the temperature at which the formulation becomes turbid, 
was examined. In brief, 0.1 g of each PG-loaded SMEDDS 
formulation was dispersed in 25 mL of PBS at pH 7.4 and 
allowed to stabilize. The PG-loaded SMEDDS formulations 
were then subjected to gradual temperature increases in a 
water bath and the temperatures at which the clear 
samples turned turbid were recorded. 
 

2.7.3 pH  
The pH of each PG-loaded SMEDDS formulation was 
measured using a pH meter (Laquatwin Horiba, Kyoto, 
Japan) at 25±2 °C to ensure that the formulation was 
suitable for application and non-irritating. 
 

2.7.4 Viscosity  
The viscosity of the PG-loaded SMEDDS was evaluated 
using a viscometer equipped with a stainless-steel spindle 
SC4-18 (Brookfield DV2T; Toronto, Canada) at 100 rpm 
(60–80% torque) at 25±2 °C. Then, 7 mL of each PG-loaded 
SMEDDS was filled into the sample chamber and the 
viscosity was measured at three points every minute. 
 

2.7.5 Statistical analysis 
The machine learning algorithm generated a prediction 
model using RapidMiner Studio version 10.3 and PyCharm 
version 2023.3.2. The cross-validation process was 
considered successful if the attained R2 value exceeded 0.5. 
To evaluate the predictive performance of the model, 
RMSE was applied. The research was conducted in 
triplicate, and the results were presented as mean ± 
standard deviation (SD). The two-sided independent t-test 
was employed to compare the two groups, utilizing SPSS® 
software version 19 (SPSS Inc., Chicago, IL). Statistical 
significance was determined at p-values below 0.05. 
 
 
3. RESULTS AND DISCUSSION 
 

3.1 Generation of PG-loaded SMEDDS dataset 
Data visualizations of 30 experimental PG-loaded SMEDDS 
formulations in terms of DS, PDI, ZP, and %DL are 
illustrated in Figure 1. The DS of each formulation ranged 
from 166.1 to 312.3 nm. The appropriate DS of PG-loaded 
SMEDDS should be less than 300 nm to facilitate delivery 
into the target sites, while the PDI, which refers to the 
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droplet size distribution, should be less than 0.4. The PDI 
serves as an indicator of the colloidal solution of 
nanoparticles, describing the width or spread of the DS 
distribution. A high PDI value can also indicate droplet 
aggregation or coalescence resulting from variations in 
droplet sizes, both small and large, thereby affecting the 
consistency and stability of the particles (Clayton et al., 2016). 
In this study, the PDI ranged from 0.17 to 0.64. The ZP of PG-

loaded SMEDDS should be greater than +30 mV or less than  
-30 mV to prevent droplet aggregation of colloidal systems, 
which can lead to unstable DS. In this study, the ZP ranged 
from -22.1 to -45.33 mV (Jaiswal et al., 2014; Suriyaamporn 
et al., 2022). The %DL in this study represented the amount 
of drug that could be entrapped in SMEDDS compared with 
the initial drug loading. The highest %DL observed in this 
study ranged from 16.25% to 31.20%.

 

 
Figure 1. The data visualizations (box plot graphs) of (A) DS, (B) PDI, (C) ZP, and (D) %DL from the experimental study, 
illustrated the individual and distribution values such as the median, upper limit, and lower limit 
 
       For the data preprocessing step, the outliers were 
removed, and values for DS and PDI exceeding 300 nm and 
0.4, respectively, were eliminated. ZP values > -30 mV were 
also removed from the dataset. Finally, the dataset was 
normalized for data analysis to generate a prediction 
model. The total number of data points after the 
preprocessing step was 20. 
 
3.2 Prediction model of PG-loaded SMEDDS 
formulation using machine learning algorithms 
The results in Table 2 present the performance of various 
machine learning algorithms in predicting outcomes for 
PG-loaded SMEDDS formulations. The results evaluated 
included RMSE and R2, which provided insights into the 
accuracy and goodness-of-fit of each algorithm. Linear 
regression (LR) emerged as the top-performing algorithm 
 

across all assessed parameters, exhibiting the lowest RMSE 
values and the highest R2 values compared to the other 
algorithms. This suggested that a linear relationship 
existed between the input data and the predicted 
outcomes. The observed trends in the dataset indicated a 
predominantly linear correlation, where changes in 
individual components had a proportional impact on the 
outcome in the context of linear regression (Janairo et al., 
2021). PR displayed competitive results, particularly in 
predicting %DL but fell short in terms of overall 
performance compared to linear regression. SVR and K-NN 
demonstrated comparable performances, with both 
algorithms exhibiting reasonable accuracy across the 
evaluated parameters. GPR and NN models showed less 
favorable results, indicating their limitations in capturing 
the underlying patterns in the dataset. 

Table 2. The performance of machine learning algorithm for generated prediction model of PG-loaded SMEDDS formulations 
 

ML algorithms DS PDI ZP %DL 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

LR 0.08 0.64 36.72 0.48 4.926 0.59 2.77 0.81 
PR 0.08 0.48 118.80 0.34 246.21 0.19 15.66 0.63 
SVR 0.09 0.50 40.65 0.34 5.172 0.35 3.11 0.72 
K-NN 0.08 0.48 38.47 0.37 4.73 0.59 2.99 0.74 
GPR 0.28 0.46 140.42 0.50 22.96 0.19 12.72 0.35 
NN 0.08 0.48 36.86 0.43 5.50 0.54 2.51 0.78 
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       The correlation matrix presented in Table 3 provides 
valuable insights into the relationships between input data 
(eugenol, Labrasol®, and ethanol) and output data (DS, PDI, 
ZP, and %DL) in the context of PG-loaded SMEDDS 
formulations. Correlation coefficients ranged from -1 to 1, 
with positive values indicating a positive correlation, 
negative values indicating a negative correlation, and 0 
indicating no correlation (Rodríguez-Pérez and Bajorath, 
2021). The DS and PDI showed moderate positive 
correlations of 0.472 and 0.595 with Labrasol®. This 
suggested that as the amount of Labrasol® increased, there 
was a corresponding increase in DS and PDI. The PDI 
exhibited a moderate negative correlation of -0.430 with 
eugenol, implying that higher concentrations of eugenol may 
be associated with a decrease in PDI. Regarding the ZP 
result, a moderate negative correlation of -0.302 existed 
with ethanol, indicating that higher ethanol concentrations 
are associated with decreases in ZP. In %DL, a strong 
negative correlation of -0.645 existed between ethanol and 
 

%DL. A moderate correlation of 0.410 was found between 
eugenol concentration and %DL, suggesting that higher 
concentrations of ethanol and lower concentrations of 
eugenol were associated with a notable decrease in %DL. 
       These correlation coefficients provided initial insights 
into the relationships within the dataset. The correlations of 
eugenol, Labrasol®, and ethanol played a significant role in 
the physical properties of PG-loaded SMEDDS. The 
surfactant and co-surfactant were important components in 
reducing the energy surface tension between oil and water 
to form droplets (Gurram et al., 2015). The ZP is mostly 
influenced by eugenol and surfactant due to the high 
negative charge from eugenol and the uncharged nature of 
ethanol (Xue et al., 2019). This countercharge is very 
important for the ZP. The entrapping efficiency of the drug 
in the SMEDDS formulation is mostly influenced by the 
concentrations of eugenol and ethanol. The PG has a high log 
P value of 3.9; therefore, it easily dissolves in oil, following 
the principle of ‘like dissolves like’ (Akula et al., 2014).

Table 3. The correlation matrix of input and output data 
 

Attributes Eugenol Labrasol Ethanol DP PDI ZP %DL* 
Eugenol 1.0 -0.058 -0.448 -0.037 -0.430 -0.200 0.410 
Labrasol -0.058 1.0 -0306 0.472 0.595 0.143 -0.174 
Ethanol -0.448 -0.306 1.0 -0.225 -0.253 -0.302 -0.645 
DP -0.037 0.472 -0.225 1.0 0.615 0.372 0.289 
PDI -0.430 0.595 -0.253 0.615 1.0 0.362 -0.062 
ZP -0.200 0.143 -0.302 0.372 0.362 1.0 0.452 
%DL* 0.410 -0.174 -0.645 0.289 -0.062 0.452 1.0 

Note: *%DL indicated to %drug loading 
 
Table 4. Experimental results and model prediction of DS, PDI, ZP and %DL with RMSE 
 

Formulations DS PDI ZP %DL 
Actual Predict Actual Predict Actual Predict Actual Predict 

T1 256.47 265.47 0.43 0.62 -34.09 -33.06 21.32 22.82 
T2 250.87 260.88 0.50 0.56 -36.87 -36.65 19.34 18.28 
T3 200.50 219.59 0.40 0.30 -45.34 -43.86 17.00 17.59 
T4 190.30 203.55 0.24 0.23 -43.92 -43.88 24.32 21.79 
T5 294.50 267.77 0.39 0.45 -34.53 -38.52 27.45 25.08 
RMSE 0.103 16.35 1.960 1.774 

Note: T1-T5 indicated formulations 1 to 5 in the unseen testing dataset 
 
       To implement and assess the prediction model, five new 
randomly unseen testing datasets of PG-loaded SMEDDS 
were formulated and measured. The RMSE values are 
reported in Table 4, with results showing that the linear 
regression prediction model, generated by machine learning, 
demonstrated high accuracy, as evidenced by the lowest 
RMSE values. However, the accuracy of predicting PDI 
showed a slightly high RMSE value; therefore, concerns may 
arise regarding the prediction of PDI when using this model. 
       Our prediction model forecasted a DS < 300 nm, ZP < -
30, and the highest %DL. However, concerns should be 
raised regarding the accuracy of predicting PDI. Our 
prediction model can be applied to formulate SMEDDS-
based formulations with appropriate DS, PDI, ZP, and %DL 
in pharmaceutical technology and practical applications. 
 
3.3 Characterization of predicted PG-loaded 
SMEDDS formulations 
Results in Table 5 report the physicochemical properties of 
predicted PG-loaded SMEDDS formulations including SME 
time, cloud point, pH, and viscosity. For SME time, 
representing the time taken for self-micro emulsification, 

values ranged from 29.4±1.2 s to 39.3±2.3 s, with lower 
SME times indicating faster self-micro emulsification 
(Anand et al., 2019). The cloud point indicates the 
temperature at which the formulation becomes turbid or 
phase separates. Cloud point values varied from 65.7±0.3 °C 
to 71.3±1.3 °C, suggesting that all formulations were 
sensitive to high temperatures. The cloud point should be 
above 37 °C to maintain the stability of the formulation 
when applied at body temperature (Jaiswal et al., 2014). 
The pH values ranged from 5.53±0.32 to 6.10±0.56. The 
formulations maintained a slightly acidic pH, which might 
be suitable for oral or transdermal applications (Akula et 
al., 2014; van Staden et al., 2020). Lastly, viscosity values 
ranged from 10.32±1.43 cP to 14.23±0.32 cP. All 
formulations showed lower viscosity, indicating a more 
liquid formulation that might influence ease of 
administration and quick emulsification (Emad et al., 
2023). The SME time, cloud point, pH, and viscosity 
showed no significant differences. Overall, these physical 
properties provided important insights into the 
performance and characteristics of the PG-loaded SMEDDS 
formulations.
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Table 5. The characterization of predicted PG-loaded SMEDDS formulations 
 

Formulations SME time (s) Cloud point (°C) pH Viscosity (cP) 
T1 30.0±5.4 65.7±0.3 5.98±0.13 14.23±0.32 
T2 32.3±1.3 67.4±0.9 6.01±0.23 12.43±2.24 
T3 39.3±2.3 70.3±1.2 5.93±0.32 10.32±1.43 
T4 30.5±2.2 69.3±2.3 6.10±.0.56 13.45±1.76 
T5 29.4±1.2 71.3±1.3 5.53±0.32 12.98±0.65 

 
 
4. CONCLUSION 
 
This study detailed the utilization of machine learning 
algorithms to construct a predictive model for PG-loaded 
SMEDDS formulations. Our method showcased that the 
linear regression algorithm outperformed other 
comparative machine learning algorithms in accurately 
predicting DS, PDI, ZP, and %DL based on experimental 
conditions. The DS, PDI, ZP, and %DL were acceptable 
criteria for formulation development. In contrast to 
traditional approaches, this method demanded fewer 
resources and less time, thereby expediting the production 
process. Consequently, AI facilitated the prediction of 
diverse characteristics and delved into the intricate 
relationships governing the behavior of nanomaterials. 
The physical properties of predicted PG-loaded SMEDDS 
such as SME time, cloud point, pH, and viscosity 
demonstrated suitable performance and characteristics.  
       Our research findings presented an optimal predictive 
AI model for determining PG-loaded SMEDDS 
formulations. This AI model can adjust the components of 
the PG-SMEDDS formulation in real-time to predict DS, PDI, 
ZP, and %DL before formulation in real situations, 
reducing both time and cost. This research established 
fundamental knowledge regarding AI applications in 
pharmaceutical research and development. The 
incorporation of advanced tools like AI holds great promise 
in advancing the field of nanomedicine, generating novel 
insights and influencing future developments. In the 
future, predictive AI models will accurately predict and 
formulate drug formulations with desired properties, 
leading to personalized drugs for patients. 
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