

1 https://doi.org/10.69598/sehs.19.25020009

Comparison of DeepLab v3+ base
networks for crack segmentation
under limited computational
resources

Thitiporn Lertrusdachakul1* and Pierre-Emmanuel Leni2

1 Multimedia Technology Program, Faculty of Information Technology, Thai-Nichi Institute of
Technology, Bangkok 10250, Thailand
2 Chrono-Environment Laboratory, University of Franche-Comté, Montbéliard 25200, France

*Corresponding author:
Thitiporn Lertrusdachakul

thitiporn@tni.ac.th

Received: 20 June 2024
Revised: 27 January 2025

Accepted: 22 February 2025
Published: 30 December 2025

Citation:
Lertrusdachakul, T., & Leni, P.-E.
(2025). Comparison of DeepLab

v3+ base networks for crack
segmentation under limited

computational resources.
Science, Engineering and Health

Studies, 19, 25020009.

ABSTRACT

Accurate crack segmentation plays a crucial role in infrastructure assessment and
preventive maintenance. This research explored the crack segmentation efficacy of
DeepLab v3+, a modern and advanced semantic segmentation network with a high
performance and reduced computational cost. The performance comparison was
investigated of DeepLab v3+ with different base networks, including Inception-
ResNet-v2, Xception, ResNet-50, MobileNet-v2, and ResNet-18. The objective of
this paper was to recommend the base network and its optimizer of DeepLab v3+
architecture in terms of crack segmentation of structure for structural health
assessment and monitoring under limited resources. The optimizer algorithm, mini-
batch size, learning rate, and squared gradient decay factor were adjusted to obtain
the best model for each base network considering limited resources of graphics
processing unit (GPU) for model training. The best results were analyzed in terms
of mean accuracy, class accuracy, and weighted IoU whilst taking the model size
into account. The recommended models ranked from the most accurate to the
smallest in size are DeepLab v3+ network based on ResNet-50 with Adam
optimizer, Xception with RMSProp optimizer, ResNet-18 with SGDM optimizer, and
MobileNet-v2 with RMSProp optimizer, respectively. The findings assist in choosing
a suitable network architecture for specific applications considering the compromise
between model size and performance. The results also highlight the feasibility of the
network architecture with tested conditions in terms of structural crack segmentation
under limited computational resources.

Keywords: crack segmentation; DeepLab v3+; deep learning; optimization algorithm

1. INTRODUCTION

Cracks on the surface of concrete structures act as early
indicators of structural deterioration, emphasizing the
need for timely maintenance to prevent severe damage to
the concrete structure. Crack segmentation of concrete
surfaces is a challenging task in civil engineering due to the
complex and varied appearance of cracks. It can be used to

identify and assess the severity of cracks in concrete
structures. Cracks can lead to structural failure, so it is
important to be able to detect them early and accurately.
There are a number of different methods that can be used
for crack segmentation, including deep learning, machine
learning and conventional image processing approaches.
Conventional image processing approaches, such as
thresholding (Talab et al., 2016) and edge detection, can be

Science, Engineering and Health Studies
https://li01.tci-thaijo.org/index.php/sehs

ISSN (Online): 2630-0087

 Research Article

https://doi.org/10.69598/sehs.19.25020009

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

2

effective for simple cracks, but they can struggle with more
complex cracks, such as those with low intensity or
significant noise characteristics (Mohan & Poobal, 2018;
Kheradmandi & Mehranfar, 2022).
 In recent years, deep learning has emerged as a
promising new approach for crack segmentation (Li et al.,
2022; Xu et al., 2023; Yang et al., 2023; Mei & Gül, 2020).
These techniques are able to learn from data, which means
that they can improve their accuracy over time. The
techniques of deep learning have proven to be particularly
effective in crack segmentation because they are capable of
learning complex patterns from images.
 One of the most common deep learning architectures for
crack segmentation is the convolutional neural network
(CNN). CNN is a kind of neural network that works well for
image analysis applications. It is capable of extracting
characteristics and features from images, such as shapes,
textures, and edges. These features can be then used to
classify pixels as either cracks or non-cracks. Several studies
have investigated the use of CNN for crack segmentation of
concrete surfaces, roads and pavements. These studies have
shown that CNN can achieve high accuracy in crack
segmentation, even for images with complex or cluttered
backgrounds (Liu et al., 2019; Su & Wang, 2020; Liu et al.,
2020; Nguyen et al., 2021; Kim et al., 2021; Han et al., 2022).
 Other deep learning architectures have also been used
for crack segmentation. For example, a kind of CNN called
U-Net architecture is specifically designed for image
segmentation applications. The U-Net and U-Net-based
architectures have exhibited remarkable proficiency in
crack segmentation, as it is able to learn complex patterns
from images and segment cracks accurately and cope with
noise and variations in crack appearance robustly (Lau et
al., 2020; Cui et al., 2022; Su et al., 2022).
 Another promising deep learning model for crack
segmentation of concrete surface is DeepLab v3+ model,
which is the advanced model for semantic segmentation
that can be used to classify pixels in an image into different
categories. It has demonstrated superior performance on
large-scale crack segmentation datasets, especially in
scenarios with diverse crack patterns and complex
backgrounds (Fu et al., 2021; Pu et al., 2022; Sun et al.,
2022; Zhou et al., 2023). The DeepLab v3+ has strength in
capturing multi-scale contextual information and handling
large-scale datasets. It utilizes atrous separable convolution,
which reduces computational cost while maintaining
feature extraction capabilities. Therefore, DeepLab v3+ was
selected for further study which is a recent advanced deep
learning architecture that has not been studied on various
base network families in crack segmentation. Based on the
model size, accuracy, and previous researches on crack
segmentation related to the base network of DeepLabv3+
(Nguyen et al., 2024; Xie et al., 2024), five competitive base
networks were finally selected for the comparison, i.e.,
Inception-ResNet-v2, Xception, ResNet-50, MobileNet-v2,
and Res-Net-18. The training options are optimized under
limited resource conditions for the best model of crack
segmentation. The model results and the associated
analysis will be presented as a guideline for applying in
structural crack segmentation and model development of
new structures under limited resources.

2. MATERIALS AND METHODS

2.1 Related deep learning models
The core deep learning model used in this research is
DeepLab v3+ with five base convolutional neural networks,
i.e., Inception-ResNet-v2, Xception, ResNet-50, MobileNet-
v2, and Res-Net-18, which are summarized in this section.

2.1.1 DeepLab v3+
DeepLab v3+ is a CNN-based architecture for image
segmentation. DeepLab v3+ uses a combination of several
cutting-edge techniques to achieve outstanding performance
on image segmentation tasks. These techniques include
(Chen et al., 2018):
 Atrous spatial pyramid pooling (ASPP) module:
Accurate segmentation of objects with varying sizes and
shapes is made possible by the ASPP module, which
enables the network to learn features from multiple
scales.
 Encoder-decoder structure: In the model, the
decoder part generates the segmentation mask, while the
encoder part extracts the features from the input image.
The use of an encoder-decoder architecture allows
DeepLab v3+ to learn more complex relationships between
pixels in the image and capture both global and local
context, which is essential to accurately segment the
complicated scenes.
 Atrous convolution: With atrous convolution, the
network can learn features and characteristics from large
spatial contexts without impacting computational cost.
 Figure 1 shows the architecture of DeepLab v3+ with
base network. In the encoder part, the image is inputted to
the base network and two different layers are extracted.
One is connected to ASPP and another one goes to the
decoder part. The ASPP applied three different dilation
rates (atrous convolution with an atrous rate of 6, 12, 18,
respectively) for capturing multi-scale information. The
output is then concatenated and fed through a 1×1
convolution before going to the upsampling by a factor of
4 in the decoder part. The output of upsampling is
concatenated with the features from the encoder part that
pass through a 1×1 convolution. The output from
concatenation is fed through a 3×3 convolution before
again upsampling by a factor of 4 in the last stage of the
decoder part.
 The ASPP in the encoder part of DeepLab v3+ capture
rich contextual information from the base network by
feature pooling at different resolutions. The decoder part
up-samples the deep feature maps to enhance the spatial
resolution and fuses them with shallow features from the
base network of the encoder part to optimize the precise
position of the crack segmentation. This encoder-decoder
architecture effectively refines segmentation boundaries
and contributes to improve overall segmentation
performance.
 The feature extraction in DeepLab v3+ is mainly done
on the base network (sometimes called backbone
network) which will be briefly described in section 2.1.2 to
section 2.1.6 for the five selected base networks of this
research.

Lertrusdachakul, T., & Leni, P.-E.

3

Figure 1. Architecture of DeepLabv3+ with base network

2.1.2 ResNet-18
ResNet-18 (He et al., 2016) is a CNN that is 18 layers deep
based on the idea of residual connections. Residual
connections are also known as “skip connections” or
“shortcut connections”. They are a way of connecting the
output of one layer of the network to the input of another
layer, even if there are several layers in between. Residual
connections allow the network to learn very deep
representations or more complex features without a
vanishing gradient issue, which can occur in traditional
CNNs. This makes ResNet-18 a very powerful and accurate
model for image recognition tasks.
 ResNet-18 is comprised of a number of convolutional
blocks, each block consisting of two or three convolutional
layers, a batch normalization layer and a ReLU activation
function. The convolutional blocks are connected to each
other using skip connections, which allow the network to
learn long-range dependencies in the input data. ResNet-
18 is a relatively small model, with only around 11 million
parameters. This makes it easy to train and deploy on
devices with limited computational resources. The layer
that connects to the ASPP in the encoder part of DeepLab
v3+ is “res5b_relu” (28×28×512). The shallow features
that are fed to the decoder part of DeepLab v3+ in Figure 1
are from layer “res2b_relu” (112×112×64).

2.1.3 ResNet-50
ResNet-50 (He et al., 2016) is a 50-layer deep CNN that is
based on the use of residual connections. As many more
layers are added to the network for ResNet-50,
bottleneck blocks are used. The utilization of these
blocks facilitates a reduction in network parameters,
thereby enhancing computational efficiency during the
training process.
 ResNet-50 is a popular choice for image recognition
tasks because it is both powerful and efficient. It has
around 25.6 million parameters, which is more than
ResNet-18, but still relatively small compared to other
deep learning models. This makes it easier to train and
deploy on GPUs and CPUs. ResNet-50 generally has better
accuracy than ResNet-18, but it is also larger, slower and
requires more memory to train. ResNet-18 is a good choice
for mobile devices or resource-constrained applications,
while ResNet-50 is a better choice for high-performance
tasks where accuracy is the top priority. The features from
layer “activation_49_relu” (28×28×2048) are connected to

the ASPP in the encoder part of DeepLab v3+ and the layer
“activation_10_relu” (112×112×256) is fed to the decoder.

2.1.4 MobileNet-v2
MobileNet-v2 (Sandler et al., 2018) is a lightweight CNN with
53 layers deep (default configuration). It is significantly
smaller and faster than other CNNs, making it suitable for
mobile and embedded applications. MobileNet-v2 improves
upon the original MobileNet architecture by introducing
several key innovations, including the following:
 Inverted residual blocks: These blocks utilize a
“bottleneck” design that reduces the number of channels in
the intermediate layers, leading to significant computational
efficiency.
 Linear bottlenecks: The bottlenecks in MobileNet-v2
use a linear activation function, such as ReLU, instead of a
non-linear activation function like sigmoid or tanh. This
further reduces the computational cost of the network. The
width of the bottleneck layers is determined by a “width
multiplier” parameter, allowing the model to be scaled for
different accuracy and resource constraints.
 Depthwise separable convolutions: This technique
factorizes the standard convolution operation into two
distinct steps: a depthwise convolution for feature extraction
within each input channel and a pointwise convolution for
channel-wise combination. This factorization leads to a
significant reduction in both computational complexity and
network parameters, ultimately improving model efficiency.
The layer “block_16_project_BN” (28×28×320) is connected
to the ASPP in the encoder part and the layer
“block_3_expand_relu” (112×112×144) is fed to the decoder
of DeepLabv3+.

2.1.5 Xception
Xception (Chollet, 2017) is a deep CNN architecture that is
71 layers deep. It stands for “extreme inception”, aiming to
increase the Inception-v3 model’s performance by utilizing
depthwise separable convolutions and residual connections.
The architecture consists of a series of depthwise
separable convolutions, which are a more efficient type of
convolution than standard convolutions. This reduces the
computational cost of the network while maintaining
accuracy, allowing for deeper and more efficient networks.
Depthwise separable convolutions make Xception more
efficient than other deep CNNs, making it suitable for real-
world applications with resource constraints.

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

4

 The Xception architecture also uses residual
connections, which are a type of skip connection that
helps to address the vanishing gradient problem. In deep
neural networks, training can be hindered by the
vanishing gradient problem. This phenomenon arises
when gradients of the loss function with respect to the
weights in earlier layers diminish significantly.
Consequently, the network struggles to learn meaningful
features in these initial layers. This attenuation impedes
the network’s ability to learn meaningful features from
the input data. Residual connections mitigate the
vanishing gradient problem by establishing direct
gradient flow between input and output of the layer. This
bypass mechanism ensures that gradients propagate
more effectively through the network, facilitating the
training of deeper architectures and enabling the
network to effectively learn complex representations for
improved prediction accuracy. The Xception architecture
is a popular choice for researchers and developers due to
its simplicity, efficiency, and accuracy. The features from
layer “block14_sepconv2_act” (28×28×2048) were fed to
the ASPP in the encoder part and the layer “add_1”
(112×112×128) was fed to the decoder of DeepLab v3+.

2.1.6 Inception-ResNet-v2
Inception-ResNet-v2 is a CNN architecture that takes
advantage of two powerful architectures: Inception and
ResNet (Szegedy et al., 2017). It combines these two
approaches by replacing the filter concatenation stage of
the inception architecture with residual connections. The
residual connections help to improve the flow of information
throughout the network, potentially leading to enhanced
performance. The network is enabled to extract more robust
feature representations and achieve higher accuracy.
 Inception-ResNet-v2 is a 164-layer deep network that
uses a combination of convolutional layers, pooling layers,
and residual connections. The network comprises several
“inception modules”, each containing multiple convolution
layers with different filter sizes. It uses batch
normalization and ReLU activation functions to stabilize
training and improve performance. The input image is first
processed by several initial convolution layers. Then, the
image flows through multiple inception modules, each
extracting features at different scales and combining them
effectively. Within each inception module, residual
connections bypass some layers, allowing information to
flow directly from earlier stages to later stages. This
process continues through multiple inception modules and
residual connections, progressively building more complex
representations of the image. Finally, the extracted
features are put into a series of fully-connected layers for
classification or other tasks. Overall, Inception-ResNet-v2
is a powerful and efficient CNN architecture with a wide
range of applications. The features from layer “conv_7b_ac”
(28×28×1536) is fed to the ASPP in the encoder part and
the layer “activation_5” (112×112×192) is fed to the
decoder part of DeepLab v3+.

2.2 Optimization algorithms
Stochastic gradient descent with momentum (SGDM), root
mean square propagation (RMSProp), and adaptive
moment estimation (Adam) are all optimization
algorithms commonly used in machine learning and will be
tested for training neural networks in the experiment.

 The stochastic gradient descent (SGD) algorithm is a
widely used method for finding the minimum of a
function. SGD is a simple and efficient optimization
algorithm that iteratively refines the parameters of a
function by following the negative gradient direction. The
gradient is a vector that points in the direction of the
steepest descent of the function. However, SGD can be
sensitive to the choice of learning rate and can get stuck
in local optima. Therefore, three variants of the SGD
algorithm (Du, 2019), which are commonly used in neural
network training, will be introduced and used in the
experiment.

2.2.1 SGDM
SGDM is an extension of SGD that incorporates momentum
to accelerate the learning process. Momentum is a
decaying velocity term that helps the algorithm move in
the right direction and avoid getting stuck in local minima.
In the training process of the experiment, the training
option for optimizer algorithm is set to be “sgdm” with
adjustments to the mini-batch size and learning rate for the
best model of image segmentation.

2.2.2 Root mean square propagation (RMSProp)
RMSProp is another extension of SGD that addresses the
issue of oscillating gradients. Oscillating gradients can
cause the algorithm to zigzag around the optimal solution,
making it difficult to converge. RMSProp maintains an
estimate of the moving average of the squared gradients
for each parameter. This estimate is used to scale the
gradients, which helps to prevent them from exploding or
vanishing. It helps to smooth out the gradients and
improve convergence. RMSProp is often considered to be a
more stable and robust algorithm than SGDM. In this case,
the training option for optimizer algorithm is set to be
“rmsprop” with adjustments to the mini-batch size,
learning rate, and squared gradient decay factor. The
squared gradient decay factor is the decay rate of squared
gradient moving average for RMSProp and we use the
typical values of the decay rate of 0.9, 0.99, and 0.999 in the
experiment.

2.2.3 Adam
Adam is a popular optimization algorithm that combines
the advantages of SGDM and RMSProp. It maintains an
exponential moving average of both the squared
gradient and the gradient, and it also includes a bias
correction term to ensure that the initial estimates of the
averages are not too small, which helps to improve the
convergence of the algorithm. In general, Adam is the
most powerful of the three algorithms, but it is also
the most complex. Adam is less sensitive to
hyperparameters than SGDM and RMSProp, and it
converges faster than SGDM. For this case, the optimizer
algorithm in the training process is set to be “adam” with
adjustments to the mini-batch size, learning rate, and
squared gradient decay factor. We used the same typical
decay rate to the RMSProp, i.e., 0.9, 0.99, and 0.999 in the
experiment.
 Ultimately, the best algorithm for any specific
circumstance will rely on particular characteristics of
the circumstance and the desired trade-offs between
convergence speed, stability, and hyperparameter
tuning.

Lertrusdachakul, T., & Leni, P.-E.

5

2.3 Methodology
DeepLab v3+ demonstrates an effective ability to capture
contextual information at multiple scales, which
significantly benefits its performance on large-scale
datasets. It exhibits commendable computational
efficiency. This efficiency enables training and utilization
on graphics processing units (GPUs) with limited memory
resources, further expanding its application potential.
These characteristics, combined with its proven success in
image segmentation tasks, motivated our focused study on
DeepLab v3+ for transfer learning of crack segmentation.
The objective of this research is to compare its base
networks of five widely and potentially used CNN-based
deep neural networks and find the best training
parameters under resource limitation. This is to facilitate
its application and practical implementation of the new
model for diverse structures in resource-constrained
environments. Although a high-performance GPU is
desirable for training the neural network model, it requires
great expense, making it difficult for the general public or
small labs and organizations to participate in this area of
study. Therefore, this work focusses on working under
limited hardware resources for model training, i.e., the
number, memory size, and performance of the GPU. The
hardware used in this research for training the neural
network is a single GPU: NVIDIA® GeForce RTX™ 3070 with
8GB of GPU memory.
 In this study, we experiment on DeepLab v3+ with base
CNNs of Inception-ResNet-v2, Xception, ResNet-50,
MobileNet-v2, and Res-Net-18. The architecture of
DeepLab v3+ with a base network is fundamentally based
on Figure 1. The crack segmentation process consists of
model training, finding the best parameters, and model
evaluation as illustrated in Figure 2.

2.3.1 Model training
In this step, a Kaggle public dataset was utilized
(https://www.kaggle.com/datasets/lakshaymiddha/crac
k-segmentation-dataset), which was merged from 12
available crack segmentation datasets. It contains 11,298
images of 448 × 448 pixels, which includes images with
crack and no crack pixel and their masks. The mask image
is binary: the crack pixel with white color on black

background. The dataset was divided into 20% test
dataset, 20% validation dataset, and 60% training dataset.
The data splitting is stratified for minimizing bias due to
imbalanced distributions from 12 crack segmentation
datasets. This was to ensure that the test, training, and
validation sets contain similar proportions of each dataset.
 The use of data augmentation technique involves
randomly modifying the training dataset to increase
network accuracy. The same random for X/Y translation of
+/- 10 pixels and left/right reflection was applied to the
original data for both crack image and pixel label data
(mask image) during the training for data augmentation.
 Since the classes (crack and no crack) are not balanced
because crack pixels appear with much less area in the
image, this imbalance can adversely affect the learning
process because the learning is biased in favor of the
dominant class. To handle this issue and improve the
training, class weighting obtained from dataset statistics
was used to balance the classes. Each class’s allocated
weight was calculated based on median frequency, as
shown in Equation 1. The obtained class weight is applied
to the last layer of the neural network, i.e., pixel
classification layer.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑡𝑡(𝑐𝑐) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐) (1)

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐) indicates the division of the number
of pixels in the class by the total number of pixels in images
containing an instance of the class (c).
 Five distinct CNN models were utilized for the base
network training of DeepLab v3+, i.e., Inception-ResNet-
v2, Xception, ResNet-50, MobileNet-v2, and Res-Net-18.
The DeepLab v3+ of these base networks was trained with
weights initialized from a pretrained base network. These
base networks are trained on more than a million images
from the ImageNet database (http://www.image-net.org).
The validation patience was set to 4. This value indicates
the number of times that the loss on the validation set can
be more than or equal to the lowest loss that occurred
previously before neural network training ends. This is to
prevent the network from overfitting on the training
dataset by stopping the training early when the validation
accuracy converges.

Figure 2. Crack segmentation process of DeepLab v3+ with five base CNN models

2.3.2 Finding the best parameters
We compared three optimization algorithms for training
networks: SGDM, RMSProp and Adam. From the
preliminary experiment, three parameters were adjusted
for the training. The first parameter was mini-batch size
which determines how big of a mini-batch to employ in
each training iteration. A mini-batch is a subset of the
training set that is used to evaluate the gradient of the loss

function and update the weights. Next, the best result was
adjusted with the second parameter of initial learning rate.
For RMSProp and Adam optimizers, the squared gradient
decay factor was varied, which is the decay rate of squared
gradient moving average for RMSProp and Adam
optimizers. The value is specified as a nonnegative scalar
less than 1. The typical values of 0.9, 0.99, and 0.999 were
tested, which are corresponding to averaging lengths of 10,

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

6

100, and 1000 parameter updates, respectively. This was
to find the best training parameters to obtain the best
result for each model.

2.3.3 Model evaluation
The performance of the trained model was evaluated on a
test dataset and can be measured by using data set and class
metrics. For the application of crack segmentation, the mean
accuracy and weight IoU (Intersection over Union) from data
set metrics and the accuracy of each class from class metrics
were used to assess the model performance.
 The accuracy is the proportion of each class’s correctly
classified pixels to the total number of pixels in that class,
determined by the ground truth, which can be expressed
as Equation 2.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

 (2)

 The terms are defined as shown in Figure 3, where true
negative (TN) is the number of actual negative samples
that were correctly predicted as negative; true positive
(TP) is the number of actual positive samples that were
correctly predicted as positive; false negative (FN) is the
number of actual positive samples that were incorrectly
predicted as negative; and false positive (FP) is the number
of actual negative samples that were incorrectly predicted
as positive. The mean accuracy is the average accuracy of
all classes across all images.
 The weighted IoU was determined by the average IoU
of all classes, weighted by the number of pixels in the class,
where the IoU of each class was the proportion of correctly
classified pixels to all predicted and ground truth pixels in
that class, which can be expressed as Equation 3.

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 (3)

 The weighted IoU was used to reduce the impact of
errors in the small classes on the aggregate quality score
when the images had disproportionally sized classes.
 Beside the focus on class accuracy, the mean accuracy
and the weighted IoU which provide an overview of the

network performance, were investigated to determine the
best model.

3. RESULTS

In this paper, DeepLab v3+ was trained with five base
networks, i.e., Inception-ResNet-v2, Xception, ResNet-50,
MobileNet-v2, and Res-Net-18 using three optimizers. The
mini-batch size, learning rate and squared gradient decay
factor were adjusted during the neural network training to
compare the results and determine the best model under
limited resource availability.
 Figure 4 shows an example result of training
accuracy for DeepLab v3+ with a ResNet-18 base
network. The best result was obtained using the Adam
optimizer with a mini-batch size of 32 and a learning rate
of 0.00001. The assigned squared gradient decay factor
for Adam optimizer was set to 0.999. The training
stopped at 1,450 iterations when the validation criteria
were met.

Figure 3. Confusion matrix

Figure 4. DeepLab v3+ with base network of ResNet-18 measured performance (Adam optimizer)

 The best results of accuracy for crack class and
background class, the mean accuracy and the weighted
IoU are summarized in Table 1 for each base network and
all tested optimizers. The training parameters for each
model are described in Table 2. In Table 1, the highest
values for each base network and all networks are
highlighted with bold and underline, respectively. The
green highlight shows the maximum value of each

optimizer for five base networks. When comparing the
best results in each base network, the recommended
model is the highest result of mean accuracy or weighted
IoU together with the highest result of crack accuracy or
background accuracy, i.e., having at least two highest
values. Note that all the four values should be at least 0.9
for the acceptable results. Therefore, the recommended
models for each base network are indicated in cyan color

Lertrusdachakul, T., & Leni, P.-E.

7

in Table 1. For base networks of ResNet-18 with SGDM
optimizer and Xception with RMSProp optimizer, the
results obviously show that they have both highest mean
accuracy and highest weighted IoU including highest
background accuracy (bold values). For the ResNet-50
base network, both SGDM and Adam optimizers are
recommended as they have two highest values out of four.
In MobileNet-v2 base network, the model with RMSProp
optimizer is recommended because it has the highest
weighted IoU and background accuracy. There is no
recommended model for Inception-ResNet-v2 base
network because the crack accuracy does not meet the
criteria, i.e., less than 0.9. Table 3 describes the rank of
recommended models. The ResNet-50 base network with
Adam optimizer was ranked as the first recommendation
because of its highest crack accuracy and mean accuracy
from all fifteen models (underline values). The second
rank was the Xception base network with RMSProp
optimizer as it had the highest background accuracy and
weighted IoU in all models. The ResNet-50 base network
was also ranked as the third recommendation with SGDM
optimizer because it had high values of crack accuracy,
background accuracy, mean accuracy, and weighted IoU.
All the three recommended models were also the base

models that included the highest results in that optimizer
testing under limited resources (green-highlight values).
The fourth and fifth recommended models were the
ResNet-18 base network with SGDM optimizer and the
MobileNet-v2 base network with RMSProp optimizer,
respectively. These two models had good results with
lower sized models. The performance of the best five
models of DeepLab v3+ in crack segmentation is
summarized in Table 4. It can be seen that all the models
satisfy having at least two highest values in each base
network (bold values), i.e., one in class accuracy (crack
accuracy or background accuracy) and another one in
mean accuracy or weighted IoU. The values are all greater
than 0.9 as the minimum acceptable result. The first rank
has the highest mean accuracy and crack accuracy while
the second rank had the highest background accuracy and
weighted IoU from all base networks (underline values).
For the third rank, it did not have any highest values from
all base networks (no underline value), but it had high
values of mean accuracy, crack accuracy, background
accuracy, and weighted IoU, which were all higher than
the values of the fourth and the fifth ranks. For the fourth
rank, it also had all evaluated values higher than the
results of the fifth rank.

Table 1. Summarization of the best performance for DeepLab v3+ with five base networks and three optimizers under
resource limitation

No. Deeplab v3+
with base
network

 Number of learnable
 parameters
 (millions)

 Number
 of layers

 Optimizer Accuracy
 [crack]
 [background]

 Mean
 accuracy

 Weighted
 IoU

 Model size
 (MB)

1 ResNet-18

20.6

100

SGDM 0.95001
0.94230

0.94616 0.92063 58.4

2 RMSProp 0.95988
0.93178

0.94583 0.90965 58.5

3 Adam 0.96160
0.92299

0.94229 0.90035 58.4

4 ResNet-50

43.9

206

SGDM 0.95502
0.94417

0.94960 0.92291 141

5 RMSProp 0.95343
0.94079

0.94711 0.91912 141

6 Adam 0.96944
0.93151

0.95048 0.90977 142

7 MobileNet-v2 6.7 186 SGDM 0.95089
0.93374

0.94232 0.91135 9.44

8 RMSProp 0.94354
0.94031

0.94192 0.91814 9.50

9 Adam 0.94966
0.93782

0.94374 0.91571 9.50

10 Xception 27.6 205 SGDM 0.93684
0.93807

0.93746 0.91540 83.4

11 RMSProp 0.94789
0.94642

0.94716 0.92507 84.2

12 Adam 0.94892
0.94212

0.94552 0.92037 84.2

13 Inception-
ResNet-v2

71.1 853 SGDM 0.90794
0.92972

0.91883 0.90515 238

14 RMSProp 0.91918
0.89852

0.90885 0.87317 235

15 Adam 0.86940
0.93177

0.90059 0.90564 240

Note:
Bold: The highest values in each base network.
Underline: The highest values of all base networks.
Green highlight: The maximum value of each optimizer for five base networks.
Cyan highlight: The best result for each base network (the highest result of mean accuracy or weighted IoU together with the highest
result of crack accuracy or background accuracy).

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

8

Table 2. Training parameters of each model in Table 1

No. Base network, optimizer Mini-batch size Learning rate Squared gradient decay factor

1 ResNet-18, SGDM 32 0.01 N/A

2 ResNet-18, RMSProp 28 0.00001 0.99

3 ResNet-18, Adam 32 0.00001 0.999

4 ResNet-50, SGDM 26 0.001 N/A

5 ResNet-50, RMSProp 24 0.00001 0.9

6 ResNet-50, Adam 26 0.00001 0.999

7 MobileNet-v2, SGDM 30 0.0003 N/A

8 MobileNet-v2, RMSProp 28 0.000003 0.9

9 MobileNet-v2, Adam 30 0.000003 0.999

10 Xception, SGDM 24 0.0003 N/A

11 Xception, RMSProp 28 0.000003 0.999

12 Xception, Adam 26 0.000003 0.9

13 Inception-ResNet-v2, SGDM 6 0.001 N/A

14 Inception-ResNet-v2, RMSProp 6 0.00001 0.9

15 Inception-ResNet-v2, Adam 4 0.00001 0.9

Table 3. The rank of recommended models

Rank Base network, optimizer Model size (MB) Description

1 ResNet-50, Adam 142 Highest crack accuracy and mean accuracy

2 Xception, RMSProp 84.2 Highest background accuracy and weighted IoU

3 ResNet-50, SGDM 141 High values of crack accuracy, background accuracy, mean accuracy,
and weighted IoU

4 ResNet-18, SGDM 58.4 High all measured values but less than the results of ResNet-50 base
network with SGDM optimizer

5 MobileNet-v2, RMSProp 9.50 High all measured values but less than the results of ResNet-18 base
network with SGDM optimizer

Table 4. Performance summarization of the best five models of DeepLab v3+ in crack segmentation

Rank Base network, optimizer Mean accuracy Crack accuracy Background accuracy Weighted IoU
1 ResNet-50, Adam 0.95048 0.96944 0.93151 0.90977

2 Xception, RMSProp 0.94716 0.94789 0.94642 0.92507

3 ResNet-50, SGDM 0.94960 0.95502 0.94417 0.92291

4 ResNet-18, SGDM 0.94616 0.95001 0.94230 0.92063

5 MobileNet-v2, RMSProp 0.94192 0.94354 0.94031 0.91814

Note:
Bold: The highest values in each base network.
Underline: The highest values of all base networks.
Green highlight: The maximum value of each optimizer for five base networks.

 Figure 5 shows the example image results of the five
recommended models. The first and second images are
examples of two-color shade and dark surfaces,
respectively. The third and fourth images describe some
examples of crack patterns, while the fourth and fifth
images show examples of non-uniform surfaces. The
computational time of crack segmentation model in each

example is shown in seconds below the image in Figure 5.
The visualized image results reveal good identification of
the crack pattern under various surface conditions.
However, the prediction results usually segment a larger
area of crack, which could be investigated further for future
improvement.

Lertrusdachakul, T., & Leni, P.-E.

9

Figure 5. Example image results of the recommended models
Note: * 1st rank: ResNet-50, Adam; 2nd rank: Xception, RMSProp; 3rd rank: ResNet-50, SGDM; 4th rank: ResNet-18,
SGDM; 5th rank: MobileNet-v2, RMSProp

4. DISCUSSION

This research prioritizes the consideration of hardware
resource constraints to enable individuals with limited
budgets to participate in this field and pursue future
advancements. Therefore, the conditions of network
architectures that can be trained using limited GPU
hardware resources, i.e., a single GPU; NVIDIA® GeForce
RTX™ 3070 with 8GB of GPU memory, are also related to
the model size and mini-batch size. Large network
architecture like DeepLab v3+ with Inception-ResNet-v2
base network, i.e., with a model size larger than 200 MB
and total number of layers more than 800, practically
require a high memory GPU for training and cannot let the
mini-batch size go so high due to the memory constraints
(a larger mini-batch size usually requires more memory).
Therefore, even though the DeepLab v3+ with Inception-
ResNet-v2 base network has the highest number of layers
and learnable parameters, as shown in Table 1, it could not

provide the highest accuracy because of the limitation in
mini-batch size during the model training. As the mini-
batch size of Inception-ResNet-v2 base network that can be
run without the “out of memory error” is smaller than the
others, as shown in Table 2 (not much variation in mini-
batch size can be experimented with). This might have led
the overall result to be lower than the other models.
 For the five recommended models, based on the
summarized information related to the models, shown in
Table 5, the first three ranks had a similar number of
layers, and have a number of layers and a number of
learnable parameters higher than the fourth and the fifth
ranks without much difference in mini-batch size. The
higher complexity of the model may enable the first three
ranks to achieve superior performance compared to the
remaining two ranks. The first and the third ranked models
had the highest number of layers and number of learnable
parameters from the five recommended models. These
factors could contribute to the models achieving the

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

10

highest and second-highest crack accuracy and mean
accuracy, as demonstrated in Table 4. However, the
increase in mini-batch size of the second ranked model
compared to the first and the third ranks might assist in the
better performance, even with a smaller number of
learnable parameters. Therefore, the overall performance
of the second ranked model is high particularly in
obtaining the highest background accuracy and weighted
IoU. However, the top three ranked models could be
flexibly used depending on the desired model size, with the
second ranked model offering a smaller model size. When
examining the fourth and fifth ranked models, in Table 5,
while the fourth ranked model had fewer layers, it
exhibited greater complexity due to its larger number of
learnable parameters and model size. This could lead to
overall better performance, as observed in Table 4.
 For the computational time, the results of each image
example shown in Figure 5 were summarized and
compared in Figure 6. Considering the model architecture,
specifically the number of layers and learnable parameters
and the model size, the results of computational time for
crack segmentation could be grouped into the first three
ranked models with a computational time exceeding 0.5
seconds and the last two ranked models with
computational times less than 0.5 seconds, as illustrated in

Figure 6. However, the computational time for crack
segmentation can also be influenced by other factors,
resulting in some variations within each group.
 Based on the model sizes listed in Table 3, all five
recommended models can be executed on standard desktop
or laptop computers. However, for IoT applications, the
performance of the Raspberry Pi series is generally
recommended. A smaller model, such as the fifth ranked
model, might be suitable for practical implementation.
Many Arduino and ESP32 series devices may struggle to
run these models due to insufficient memory.
 In general, if the model size is not a condition, the first
ranked model (ResNet-50 based network with Adam
optimizer) would be the best choice for this application
and training for the new images of specific structures
under constrained resources. However, if the model size
needs to be considered, the second and fourth ranked
models might be the solution. For mobile and embedded
applications, the fifth ranked model of MobileNet-v2 base
network with RMSProp optimizer is recommended.
 The research results will enhance and provide
guidance for the utilization of DeepLab v3+ on crack
segmentation and new image training on diverse concrete
structures using limited hardware resources.

Table 5. The summarized model information of the five recommended models

Rank Base network,

optimizer
Mini-batch
size

Learning
rate

Number of learnable
parameters

Number of
layers

Model size
(MB)

1 ResNet-50, Adam 26 0.00001 43,980,180 206 142

2 Xception, RMSProp 28 0.000003 27,638,052 205 84.2

3 ResNet-50, SGDM 26 0.001 43,980,180 206 141

4 ResNet-18, SGDM 32 0.01 20,607,636 100 58.4

5 MobileNet-v2, RMSProp 28 0.000003 6,784,276 186 9.50

Figure 6. The Comparison of the computational time for crack segmentation of the examples in Figure 5

5. CONCLUSION

In this paper, the performance of DeepLab v3+ was
compared with alternative base networks, i.e., Inception-
ResNet-v2, Xception, ResNet-50, MobileNet-v2, and Res-
Net-18. This experiment was conducted to find the best

parameters of mini-batch size, learning rate, and squared
gradient decay factor, for training the networks employing
limited resource with three optimization algorithms, i.e.,
SGDM, RMSProp and Adam. The evaluation was conducted
focusing on the accuracy and the weighted IoU. The
accuracy of crack class and background class, the mean

Lertrusdachakul, T., & Leni, P.-E.

11

accuracy, and the weighted IoU were investigated to
determine the best result for each base network of
DeepLab v3+. Then the best results were analyzed in terms
of mean accuracy, class accuracy, weighted IoU, and model
size to recommend the suitable model and training
parameters for resource-constrained applications and
training environment for a broader and more diverse
range of infrastructure applications. The first rank of
recommended model was DeepLab v3+ network based on
ResNet-50 with Adam optimizer because of the highest
crack accuracy and mean accuracy. If the model size is an
issue to consider, the Xception base network with
RMSProp optimizer and the ResNet-18 base network with
SGDM optimizer are recommended. In addition, the results
clearly show that the MobileNet-v2 base network with
RMSProp optimizer is the smallest model and most
suitable for mobile and embedded applications. It is hoped
to conduct further study on the DeepLab v3+ network in
various aspects in the future to enhance the maximum
capability of this powerful and efficient network using
limited processing resources.

REFERENCES

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H.

(2018). Encoder-decoder with atrous separable
convolution for semantic image segmentation. In V.
Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.),
Computer vision – ECCV 2018. Lecture note in computer
science, volume 11211 (pp. 833–851). Springer.
https://doi.org/10.1007/978-3-030-01234-2_49

Chollet, F. (2017). Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 1800–1807). IEEE. https://doi.org/10.1109/
CVPR.2017.195

Cui, X., Wang, Q., Dai, J., Li, S., Xie, C., & Wang, J. (2022).
Pixel-level intelligent recognition of concrete cracks
based on DRACNN. Materials Letters, 306, Article
130867. https://doi.org/10.1016/j.matlet.2021.130867

Du, J. (2019). The frontier of SGD and its variants in
machine learning. Journal of Physics: Conference Series,
1229, Article 012046. https://doi.org/10.1088/1742-
6596/1229/1/012046

Fu, H., Meng, D., Li, W., & Wang, Y. (2021). Bridge crack
semantic segmentation based on improved Deeplabv3+.
Journal of Marine Science and Engineering, 9(6), Article
671. https://doi.org/10.3390/jmse9060671

Han, C., Ma, T., Huyan, J., Huang, X., & Zhang, Y. (2022).
CrackW-Net: A novel pavement crack image
segmentation convolutional neural network. IEEE
Transactions on Intelligent Transportation Systems,
23(11), 22135–22144. https://doi.org/10.1109/TITS.
2021.3095507

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 770–778). IEEE. https://doi.
org/10.1109/CVPR.2016.90

Kheradmandi, N., & Mehranfar, V. (2022). A critical review
and comparative study on image segmentation-based
techniques for pavement crack detection. Construction
and Building Materials, 321, Article 126162.
https://doi.org/10.1016/j.conbuildmat.2021.126162

Kim, J., Shim, S., Cha, Y., & Cho, G.-C. (2021). Lightweight
pixel-wise segmentation for efficient concrete crack
detection using hierarchical convolutional neural
network. Smart Materials and Structures, 30(4), Article
045023. https://doi.org/10.1088/1361-665X/abea1e

Lau, S. L. H., Chong, E. K. P., Yang, X., & Wang, X. (2020).
Automated pavement crack segmentation using U-Net-
based convolutional neural network. IEEE Access, 8,
114892–114899. https://doi.org/10.1109/ACCESS.2020.
3003638

Li, H., Wang, W., Wang, M., Li, L., & Vimlund, V. (2022). A
review of deep learning methods for pixel-level crack
detection. Journal of Traffic and Transportation
Engineering (English Edition), 9(6), 945–968. https://
doi.org/10.1016/j.jtte.2022.11.003

Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V. C.-S., & Ding,
L. (2020). Automated pavement crack detection and
segmentation based on two-step convolutional neural
network. Computer-Aided Civil and Infrastructure
Engineering, 35(11), 1291–1305. https://doi.org/10.
1111/mice.12622

Liu, Y., Yao, J., Lu, X., Xie, R., & Li, L. (2019). DeepCrack: A
deep hierarchical feature learning architecture for
crack segmentation. Neurocomputing, 338, 139–153.
https://doi.org/10.1016/j.neucom.2019.01.036

Mei, Q., & Gül, M. (2020). A cost effective solution for
pavement crack inspection using cameras and deep neural
networks. Construction and Building Materials, 256,
Article 119397. https://doi.org/10.1016/j.conbuildmat.
2020.119397

Mohan, A., & Poobal, S. (2018). Crack detection using image
processing: A critical review and analysis. Alexandria
Engineering Journal, 57(2), 787–798. https://doi.org/
10.1016/j.aej.2017.01.020

Nguyen, N. H. T., Perry, S., Bone, D., Le, H. T., & Nguyen, T. T.
(2021). Two-stage convolutional neural network for
road crack detection and segmentation. Expert Systems
with Applications, 186, Article 115718. https://doi.org/
10.1016/j.eswa.2021.115718

Nguyen, T.-G., Do, T.-L., Nguyen, T.-N., & Nguyen, N.-N.
(2024). Semantic segmentation of cracks using
DeepLabv3+. In J. N. Reddy, C. M. Wang, V. H. Luong, &
A. T. Le (Eds.), Proceedings of the Third International
Conference on Sustainable Civil Engineering and
Architecture (ICSCEA 2023) (pp. 1539–1546). Springer.
https://doi.org/10.1007/978-981-99-7434-4_165

Pu, R., Ren, G., Li, H., Jiang, W., Zhang, J., & Qin, H. (2022).
Autonomous concrete crack semantic segmentation
using deep fully convolutional encoder–decoder
network in concrete structures inspection. Buildings,
12(11), Article 2019. https://doi.org/10.3390/Buildings
12112019

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-
C. (2018). MobileNetV2: Inverted residuals and linear
bottlenecks. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 4510–4520). IEEE. https://doi.org/10.1109/
CVPR.2018.00474

Su, C., & Wang, W. (2020). Concrete cracks detection using
convolutional neural network based on transfer
learning. Mathematical Problems in Engineering,
2020(1), Article 7240129. https://doi.org/10.1155/
2020/7240129

Su, H., Wang, X., Han, T., Wang, Z., Zhao, Z., & Zhang, P.
(2022). Research on a U-Net bridge crack identification

Comparison of DeepLab v3+ base networks for crack segmentation under limited computational resources

12

and feature-calculation methods based on a CBAM
attention mechanism. Buildings, 12(10), Article 1561.
https://doi.org/10.3390/buildings12101561

Sun, X., Xie, Y., Jiang, L., Cao, Y., & Liu, B. (2022). DMA-Net:
DeepLab with multi-scale attention for pavement crack
segmentation. IEEE Transactions on Intelligent
Transportation Systems, 23(10), 18392–18403.
https://doi.org/10.1109/TITS.2022.3158670

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017).
Inception-v4, Inception-ResNet and the impact of
residual connections on learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), 4278–
4284. https://doi.org/10.1609/aaai.v31i1.11231

Talab, A. M. A., Huang, Z., Xi, F., & HaiMing, L. (2016).
Detection crack in image using Otsu method and
multiple filtering in image processing techniques.
Optik, 127(3), 1030–1033. https://doi.org/10.1016/
j.ijleo.2015.09.147

Xie, Z., Lu, Q., Guo, J., Lin, W., Ge, G., Tang, Y., Pasini, D., &
Wang, W. (2024). Semantic segmentation for tooth

cracks using improved DeepLabv3+ model. Heliyon,
10(4), Article e25892. https://doi.org/10.1016/j.heliyon.
2024.e25892

Xu, G., Yue, Q., & Liu, X. (2023). Deep learning algorithm for
real-time automatic crack detection, segmentation,
qualification. Engineering Applications of Artificial
Intelligence, 126(Part C), Article 107085. https://doi.
org/10.1016/j.engappai.2023.107085

Yang, L., Huang, H., Kong, S., & Liu, Y. (2023). A deep
segmentation network for crack detection with
progressive and hierarchical context fusion. Journal of
Building Engineering, 75, Article 106886. https://doi.
org/10.1016/j.jobe.2023.106886

Zhou, Z., Zheng, Y., Zhang, J., & Yang, H. (2023). Fast
detection algorithm for cracks on tunnel linings based
on deep semantic segmentation. Frontiers of Structural
and Civil Engineering, 17(5), 732–744. https://doi.org/
10.1007/s11709-023-0965-y

