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ABSTRACT 
 
Accurate crack segmentation plays a crucial role in infrastructure assessment and 
preventive maintenance. This research explored the crack segmentation efficacy of 
DeepLab v3+, a modern and advanced semantic segmentation network with a high 
performance and reduced computational cost. The performance comparison was 
investigated of DeepLab v3+ with different base networks, including Inception-
ResNet-v2, Xception, ResNet-50, MobileNet-v2, and ResNet-18. The objective of 
this paper was to recommend the base network and its optimizer of DeepLab v3+ 
architecture in terms of crack segmentation of structure for structural health 
assessment and monitoring under limited resources. The optimizer algorithm, mini-
batch size, learning rate, and squared gradient decay factor were adjusted to obtain 
the best model for each base network considering limited resources of graphics 
processing unit (GPU) for model training. The best results were analyzed in terms 
of mean accuracy, class accuracy, and weighted IoU whilst taking the model size 
into account. The recommended models ranked from the most accurate to the 
smallest in size are DeepLab v3+ network based on ResNet-50 with Adam 
optimizer, Xception with RMSProp optimizer, ResNet-18 with SGDM optimizer, and 
MobileNet-v2 with RMSProp optimizer, respectively. The findings assist in choosing 
a suitable network architecture for specific applications considering the compromise 
between model size and performance. The results also highlight the feasibility of the 
network architecture with tested conditions in terms of structural crack segmentation 
under limited computational resources. 
 
Keywords: crack segmentation; DeepLab v3+; deep learning; optimization algorithm 
 
 

1. INTRODUCTION                                    
 
Cracks on the surface of concrete structures act as early 
indicators of structural deterioration, emphasizing the 
need for timely maintenance to prevent severe damage to 
the concrete structure. Crack segmentation of concrete 
surfaces is a challenging task in civil engineering due to the 
complex and varied appearance of cracks. It can be used to 

identify and assess the severity of cracks in concrete 
structures. Cracks can lead to structural failure, so it is 
important to be able to detect them early and accurately. 
There are a number of different methods that can be used 
for crack segmentation, including deep learning, machine 
learning and conventional image processing approaches. 
Conventional image processing approaches, such as 
thresholding (Talab et al., 2016) and edge detection, can be 
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effective for simple cracks, but they can struggle with more 
complex cracks, such as those with low intensity or 
significant noise characteristics (Mohan & Poobal, 2018; 
Kheradmandi & Mehranfar, 2022). 
       In recent years, deep learning has emerged as a 
promising new approach for crack segmentation (Li et al., 
2022; Xu et al., 2023; Yang et al., 2023; Mei & Gül, 2020). 
These techniques are able to learn from data, which means 
that they can improve their accuracy over time. The 
techniques of deep learning have proven to be particularly 
effective in crack segmentation because they are capable of 
learning complex patterns from images. 
       One of the most common deep learning architectures for 
crack segmentation is the convolutional neural network 
(CNN). CNN is a kind of neural network that works well for 
image analysis applications. It is capable of extracting 
characteristics and features from images, such as shapes, 
textures, and edges. These features can be then used to 
classify pixels as either cracks or non-cracks. Several studies 
have investigated the use of CNN for crack segmentation of 
concrete surfaces, roads and pavements. These studies have 
shown that CNN can achieve high accuracy in crack 
segmentation, even for images with complex or cluttered 
backgrounds (Liu et al., 2019; Su & Wang, 2020; Liu et al., 
2020; Nguyen et al., 2021; Kim et al., 2021; Han et al., 2022).  
       Other deep learning architectures have also been used 
for crack segmentation. For example, a kind of CNN called 
U-Net architecture is specifically designed for image 
segmentation applications. The U-Net and U-Net-based 
architectures have exhibited remarkable proficiency in 
crack segmentation, as it is able to learn complex patterns 
from images and segment cracks accurately and cope with 
noise and variations in crack appearance robustly (Lau et 
al., 2020; Cui et al., 2022; Su et al., 2022). 
       Another promising deep learning model for crack 
segmentation of concrete surface is DeepLab v3+ model, 
which is the advanced model for semantic segmentation 
that can be used to classify pixels in an image into different 
categories. It has demonstrated superior performance on 
large-scale crack segmentation datasets, especially in 
scenarios with diverse crack patterns and complex 
backgrounds (Fu et al., 2021; Pu et al., 2022; Sun et al., 
2022; Zhou et al., 2023). The DeepLab v3+ has strength in 
capturing multi-scale contextual information and handling 
large-scale datasets. It utilizes atrous separable convolution, 
which reduces computational cost while maintaining 
feature extraction capabilities. Therefore, DeepLab v3+ was 
selected for further study which is a recent advanced deep 
learning architecture that has not been studied on various 
base network families in crack segmentation. Based on the 
model size, accuracy, and previous researches on crack 
segmentation related to the base network of DeepLabv3+ 
(Nguyen et al., 2024; Xie et al., 2024), five competitive base 
networks were finally selected for the comparison, i.e., 
Inception-ResNet-v2, Xception, ResNet-50, MobileNet-v2, 
and Res-Net-18. The training options are optimized under 
limited resource conditions for the best model of crack 
segmentation. The model results and the associated 
analysis will be presented as a guideline for applying in 
structural crack segmentation and model development of 
new structures under limited resources. 

2. MATERIALS AND METHODS    
 
2.1 Related deep learning models 
The core deep learning model used in this research is 
DeepLab v3+ with five base convolutional neural networks, 
i.e., Inception-ResNet-v2, Xception, ResNet-50, MobileNet-
v2, and Res-Net-18, which are summarized in this section. 
 
2.1.1 DeepLab v3+ 
DeepLab v3+ is a CNN-based architecture for image 
segmentation. DeepLab v3+ uses a combination of several 
cutting-edge techniques to achieve outstanding performance 
on image segmentation tasks. These techniques include 
(Chen et al., 2018): 
       Atrous spatial pyramid pooling (ASPP) module: 
Accurate segmentation of objects with varying sizes and 
shapes is made possible by the ASPP module, which 
enables the network to learn features from multiple 
scales. 
       Encoder-decoder structure: In the model, the 
decoder part generates the segmentation mask, while the 
encoder part extracts the features from the input image. 
The use of an encoder-decoder architecture allows 
DeepLab v3+ to learn more complex relationships between 
pixels in the image and capture both global and local 
context, which is essential to accurately segment the 
complicated scenes.  
       Atrous convolution: With atrous convolution, the 
network can learn features and characteristics from large 
spatial contexts without impacting computational cost. 
       Figure 1 shows the architecture of DeepLab v3+ with 
base network. In the encoder part, the image is inputted to 
the base network and two different layers are extracted. 
One is connected to ASPP and another one goes to the 
decoder part. The ASPP applied three different dilation 
rates (atrous convolution with an atrous rate of 6, 12, 18, 
respectively) for capturing multi-scale information. The 
output is then concatenated and fed through a 1×1 
convolution before going to the upsampling by a factor of 
4 in the decoder part. The output of upsampling is 
concatenated with the features from the encoder part that 
pass through a 1×1 convolution. The output from 
concatenation is fed through a 3×3 convolution before 
again upsampling by a factor of 4 in the last stage of the 
decoder part. 
       The ASPP in the encoder part of DeepLab v3+ capture 
rich contextual information from the base network by 
feature pooling at different resolutions. The decoder part 
up-samples the deep feature maps to enhance the spatial 
resolution and fuses them with shallow features from the 
base network of the encoder part to optimize the precise 
position of the crack segmentation. This encoder-decoder 
architecture effectively refines segmentation boundaries 
and contributes to improve overall segmentation 
performance. 
       The feature extraction in DeepLab v3+ is mainly done 
on the base network (sometimes called backbone 
network) which will be briefly described in section 2.1.2 to 
section 2.1.6 for the five selected base networks of this 
research. 
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Figure 1.  Architecture of DeepLabv3+ with base network 
 
2.1.2 ResNet-18 
ResNet-18 (He et al., 2016) is a CNN that is 18 layers deep 
based on the idea of residual connections. Residual 
connections are also known as “skip connections” or 
“shortcut connections”. They are a way of connecting the 
output of one layer of the network to the input of another 
layer, even if there are several layers in between. Residual 
connections allow the network to learn very deep 
representations or more complex features without a 
vanishing gradient issue, which can occur in traditional 
CNNs. This makes ResNet-18 a very powerful and accurate 
model for image recognition tasks. 
       ResNet-18 is comprised of a number of convolutional 
blocks, each block consisting of two or three convolutional 
layers, a batch normalization layer and a ReLU activation 
function. The convolutional blocks are connected to each 
other using skip connections, which allow the network to 
learn long-range dependencies in the input data. ResNet-
18 is a relatively small model, with only around 11 million 
parameters. This makes it easy to train and deploy on 
devices with limited computational resources. The layer 
that connects to the ASPP in the encoder part of DeepLab 
v3+ is “res5b_relu” (28×28×512). The shallow features 
that are fed to the decoder part of DeepLab v3+ in Figure 1 
are from layer “res2b_relu” (112×112×64). 
 
2.1.3 ResNet-50 
ResNet-50 (He et al., 2016) is a 50-layer deep CNN that is 
based on the use of residual connections. As many more 
layers are added to the network for ResNet-50, 
bottleneck blocks are used. The utilization of these 
blocks facilitates a reduction in network parameters, 
thereby enhancing computational efficiency during the 
training process. 
       ResNet-50 is a popular choice for image recognition 
tasks because it is both powerful and efficient. It has 
around 25.6 million parameters, which is more than 
ResNet-18, but still relatively small compared to other 
deep learning models. This makes it easier to train and 
deploy on GPUs and CPUs. ResNet-50 generally has better 
accuracy than ResNet-18, but it is also larger, slower and 
requires more memory to train. ResNet-18 is a good choice 
for mobile devices or resource-constrained applications, 
while ResNet-50 is a better choice for high-performance 
tasks where accuracy is the top priority. The features from 
layer “activation_49_relu” (28×28×2048) are connected to 

the ASPP in the encoder part of DeepLab v3+ and the layer 
“activation_10_relu” (112×112×256) is fed to the decoder. 
 
2.1.4 MobileNet-v2 
MobileNet-v2 (Sandler et al., 2018) is a lightweight CNN with 
53 layers deep (default configuration). It is significantly 
smaller and faster than other CNNs, making it suitable for 
mobile and embedded applications. MobileNet-v2 improves 
upon the original MobileNet architecture by introducing 
several key innovations, including the following: 
       Inverted residual blocks: These blocks utilize a 
“bottleneck” design that reduces the number of channels in 
the intermediate layers, leading to significant computational 
efficiency. 
       Linear bottlenecks: The bottlenecks in MobileNet-v2 
use a linear activation function, such as ReLU, instead of a 
non-linear activation function like sigmoid or tanh. This 
further reduces the computational cost of the network. The 
width of the bottleneck layers is determined by a “width 
multiplier” parameter, allowing the model to be scaled for 
different accuracy and resource constraints. 
       Depthwise separable convolutions: This technique 
factorizes the standard convolution operation into two 
distinct steps: a depthwise convolution for feature extraction 
within each input channel and a pointwise convolution for 
channel-wise combination. This factorization leads to a 
significant reduction in both computational complexity and 
network parameters, ultimately improving model efficiency. 
The layer “block_16_project_BN” (28×28×320) is connected 
to the ASPP in the encoder part and the layer 
“block_3_expand_relu” (112×112×144) is fed to the decoder 
of DeepLabv3+. 
 
2.1.5 Xception 
Xception (Chollet, 2017) is a deep CNN architecture that is 
71 layers deep. It stands for “extreme inception”, aiming to 
increase the Inception-v3 model’s performance by utilizing 
depthwise separable convolutions and residual connections. 
The architecture consists of a series of depthwise 
separable convolutions, which are a more efficient type of 
convolution than standard convolutions. This reduces the 
computational cost of the network while maintaining 
accuracy, allowing for deeper and more efficient networks. 
Depthwise separable convolutions make Xception more 
efficient than other deep CNNs, making it suitable for real-
world applications with resource constraints. 
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       The Xception architecture also uses residual 
connections, which are a type of skip connection that 
helps to address the vanishing gradient problem. In deep 
neural networks, training can be hindered by the 
vanishing gradient problem. This phenomenon arises 
when gradients of the loss function with respect to the 
weights in earlier layers diminish significantly. 
Consequently, the network struggles to learn meaningful 
features in these initial layers. This attenuation impedes 
the network’s ability to learn meaningful features from 
the input data. Residual connections mitigate the 
vanishing gradient problem by establishing direct 
gradient flow between input and output of the layer. This 
bypass mechanism ensures that gradients propagate 
more effectively through the network, facilitating the 
training of deeper architectures and enabling the 
network to effectively learn complex representations for 
improved prediction accuracy. The Xception architecture 
is a popular choice for researchers and developers due to 
its simplicity, efficiency, and accuracy. The features from 
layer “block14_sepconv2_act” (28×28×2048) were fed to 
the ASPP in the encoder part and the layer “add_1” 
(112×112×128) was fed to the decoder of DeepLab v3+. 
 
2.1.6 Inception-ResNet-v2 
Inception-ResNet-v2 is a CNN architecture that takes 
advantage of two powerful architectures: Inception and 
ResNet (Szegedy et al., 2017). It combines these two 
approaches by replacing the filter concatenation stage of 
the inception architecture with residual connections. The 
residual connections help to improve the flow of information 
throughout the network, potentially leading to enhanced 
performance. The network is enabled to extract more robust 
feature representations and achieve higher accuracy. 
       Inception-ResNet-v2 is a 164-layer deep network that 
uses a combination of convolutional layers, pooling layers, 
and residual connections. The network comprises several 
“inception modules”, each containing multiple convolution 
layers with different filter sizes. It uses batch 
normalization and ReLU activation functions to stabilize 
training and improve performance. The input image is first 
processed by several initial convolution layers. Then, the 
image flows through multiple inception modules, each 
extracting features at different scales and combining them 
effectively. Within each inception module, residual 
connections bypass some layers, allowing information to 
flow directly from earlier stages to later stages. This 
process continues through multiple inception modules and 
residual connections, progressively building more complex 
representations of the image. Finally, the extracted 
features are put into a series of fully-connected layers for 
classification or other tasks. Overall, Inception-ResNet-v2 
is a powerful and efficient CNN architecture with a wide 
range of applications. The features from layer “conv_7b_ac” 
(28×28×1536) is fed to the ASPP in the encoder part and 
the layer “activation_5” (112×112×192) is fed to the 
decoder part of DeepLab v3+. 
 
2.2 Optimization algorithms 
Stochastic gradient descent with momentum (SGDM), root 
mean square propagation (RMSProp), and adaptive 
moment estimation (Adam) are all optimization 
algorithms commonly used in machine learning and will be 
tested for training neural networks in the experiment. 

       The stochastic gradient descent (SGD) algorithm is a 
widely used method for finding the minimum of a 
function. SGD is a simple and efficient optimization 
algorithm that iteratively refines the parameters of a 
function by following the negative gradient direction. The 
gradient is a vector that points in the direction of the 
steepest descent of the function. However, SGD can be 
sensitive to the choice of learning rate and can get stuck 
in local optima. Therefore, three variants of the SGD 
algorithm (Du, 2019), which are commonly used in neural 
network training, will be introduced and used in the 
experiment. 
 
2.2.1 SGDM 
SGDM is an extension of SGD that incorporates momentum 
to accelerate the learning process. Momentum is a 
decaying velocity term that helps the algorithm move in 
the right direction and avoid getting stuck in local minima. 
In the training process of the experiment, the training 
option for optimizer algorithm is set to be “sgdm” with 
adjustments to the mini-batch size and learning rate for the 
best model of image segmentation. 
 
2.2.2 Root mean square propagation (RMSProp) 
RMSProp is another extension of SGD that addresses the 
issue of oscillating gradients. Oscillating gradients can 
cause the algorithm to zigzag around the optimal solution, 
making it difficult to converge. RMSProp maintains an 
estimate of the moving average of the squared gradients 
for each parameter. This estimate is used to scale the 
gradients, which helps to prevent them from exploding or 
vanishing. It helps to smooth out the gradients and 
improve convergence. RMSProp is often considered to be a 
more stable and robust algorithm than SGDM. In this case, 
the training option for optimizer algorithm is set to be 
“rmsprop” with adjustments to the mini-batch size, 
learning rate, and squared gradient decay factor. The 
squared gradient decay factor is the decay rate of squared 
gradient moving average for RMSProp and we use the 
typical values of the decay rate of 0.9, 0.99, and 0.999 in the 
experiment. 
 
2.2.3 Adam 
Adam is a popular optimization algorithm that combines 
the advantages of SGDM and RMSProp. It maintains an 
exponential moving average of both the squared 
gradient and the gradient, and it also includes a bias 
correction term to ensure that the initial estimates of the 
averages are not too small, which helps to improve the 
convergence of the algorithm. In general, Adam is the 
most powerful of the three algorithms, but it is also  
the most complex. Adam is less sensitive to 
hyperparameters than SGDM and RMSProp, and it 
converges faster than SGDM. For this case, the optimizer 
algorithm in the training process is set to be “adam” with 
adjustments to the mini-batch size, learning rate, and 
squared gradient decay factor. We used the same typical 
decay rate to the RMSProp, i.e., 0.9, 0.99, and 0.999 in the 
experiment. 
       Ultimately, the best algorithm for any specific 
circumstance will rely on particular characteristics of 
the circumstance and the desired trade-offs between 
convergence speed, stability, and hyperparameter 
tuning. 
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2.3 Methodology 
DeepLab v3+ demonstrates an effective ability to capture 
contextual information at multiple scales, which 
significantly benefits its performance on large-scale 
datasets. It exhibits commendable computational 
efficiency. This efficiency enables training and utilization 
on graphics processing units (GPUs) with limited memory 
resources, further expanding its application potential. 
These characteristics, combined with its proven success in 
image segmentation tasks, motivated our focused study on 
DeepLab v3+ for transfer learning of crack segmentation. 
The objective of this research is to compare its base 
networks of five widely and potentially used CNN-based 
deep neural networks and find the best training 
parameters under resource limitation. This is to facilitate 
its application and practical implementation of the new 
model for diverse structures in resource-constrained 
environments. Although a high-performance GPU is 
desirable for training the neural network model, it requires 
great expense, making it difficult for the general public or 
small labs and organizations to participate in this area of 
study. Therefore, this work focusses on working under 
limited hardware resources for model training, i.e., the 
number, memory size, and performance of the GPU. The 
hardware used in this research for training the neural 
network is a single GPU: NVIDIA® GeForce RTX™ 3070 with 
8GB of GPU memory. 
       In this study, we experiment on DeepLab v3+ with base 
CNNs of Inception-ResNet-v2, Xception, ResNet-50, 
MobileNet-v2, and Res-Net-18. The architecture of 
DeepLab v3+ with a base network is fundamentally based 
on Figure 1. The crack segmentation process consists of 
model training, finding the best parameters, and model 
evaluation as illustrated in Figure 2. 
 
2.3.1 Model training 
In this step, a Kaggle public dataset was utilized 
(https://www.kaggle.com/datasets/lakshaymiddha/crac
k-segmentation-dataset), which was merged from 12 
available crack segmentation datasets. It contains 11,298 
images of 448 × 448 pixels, which includes images with 
crack and no crack pixel and their masks. The mask image 
is binary: the crack pixel with white color on black 

background. The dataset was divided into 20% test 
dataset, 20% validation dataset, and 60% training dataset. 
The data splitting is stratified for minimizing bias due to 
imbalanced distributions from 12 crack segmentation 
datasets. This was to ensure that the test, training, and 
validation sets contain similar proportions of each dataset. 
       The use of data augmentation technique involves 
randomly modifying the training dataset to increase 
network accuracy. The same random for X/Y translation of 
+/- 10 pixels and left/right reflection was applied to the 
original data for both crack image and pixel label data 
(mask image) during the training for data augmentation. 
       Since the classes (crack and no crack) are not balanced 
because crack pixels appear with much less area in the 
image, this imbalance can adversely affect the learning 
process because the learning is biased in favor of the 
dominant class. To handle this issue and improve the 
training, class weighting obtained from dataset statistics 
was used to balance the classes. Each class’s allocated 
weight was calculated based on median frequency, as 
shown in Equation 1. The obtained class weight is applied 
to the last layer of the neural network, i.e., pixel 
classification layer. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑡𝑡(𝑐𝑐) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐)                   (1) 

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐) indicates the division of the number 
of pixels in the class by the total number of pixels in images 
containing an instance of the class (c). 
       Five distinct CNN models were utilized for the base 
network training of DeepLab v3+, i.e., Inception-ResNet-
v2, Xception, ResNet-50, MobileNet-v2, and Res-Net-18. 
The DeepLab v3+ of these base networks was trained with 
weights initialized from a pretrained base network. These 
base networks are trained on more than a million images 
from the ImageNet database (http://www.image-net.org). 
The validation patience was set to 4. This value indicates 
the number of times that the loss on the validation set can 
be more than or equal to the lowest loss that occurred 
previously before neural network training ends. This is to 
prevent the network from overfitting on the training 
dataset by stopping the training early when the validation 
accuracy converges.  

 

 
 
Figure 2. Crack segmentation process of DeepLab v3+ with five base CNN models 
 
2.3.2 Finding the best parameters 
We compared three optimization algorithms for training 
networks: SGDM, RMSProp and Adam. From the 
preliminary experiment, three parameters were adjusted 
for the training. The first parameter was mini-batch size 
which determines how big of a mini-batch to employ in 
each training iteration. A mini-batch is a subset of the 
training set that is used to evaluate the gradient of the loss 

function and update the weights. Next, the best result was 
adjusted with the second parameter of initial learning rate. 
For RMSProp and Adam optimizers, the squared gradient 
decay factor was varied, which is the decay rate of squared 
gradient moving average for RMSProp and Adam 
optimizers. The value is specified as a nonnegative scalar 
less than 1. The typical values of 0.9, 0.99, and 0.999 were 
tested, which are corresponding to averaging lengths of 10, 
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100, and 1000 parameter updates, respectively. This was 
to find the best training parameters to obtain the best 
result for each model.  

 
2.3.3 Model evaluation 
The performance of the trained model was evaluated on a 
test dataset and can be measured by using data set and class 
metrics. For the application of crack segmentation, the mean 
accuracy and weight IoU (Intersection over Union) from data 
set metrics and the accuracy of each class from class metrics 
were used to assess the model performance. 
       The accuracy is the proportion of each class’s correctly 
classified pixels to the total number of pixels in that class, 
determined by the ground truth, which can be expressed 
as Equation 2. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

                                 (2) 

       The terms are defined as shown in Figure 3, where true 
negative (TN) is the number of actual negative samples 
that were correctly predicted as negative; true positive 
(TP) is the number of actual positive samples that were 
correctly predicted as positive; false negative (FN) is the 
number of actual positive samples that were incorrectly 
predicted as negative; and false positive (FP) is the number 
of actual negative samples that were incorrectly predicted 
as positive. The mean accuracy is the average accuracy of 
all classes across all images.  
       The weighted IoU was determined by the average IoU 
of all classes, weighted by the number of pixels in the class, 
where the IoU of each class was the proportion of correctly 
classified pixels to all predicted and ground truth pixels in 
that class, which can be expressed as Equation 3. 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

                                      (3) 

       The weighted IoU was used to reduce the impact of 
errors in the small classes on the aggregate quality score 
when the images had disproportionally sized classes. 
       Beside the focus on class accuracy, the mean accuracy 
and the weighted IoU which provide an overview of the 

network performance, were investigated to determine the 
best model. 
 
 
3. RESULTS  
 
In this paper, DeepLab v3+ was trained with five base 
networks, i.e., Inception-ResNet-v2, Xception, ResNet-50, 
MobileNet-v2, and Res-Net-18 using three optimizers. The 
mini-batch size, learning rate and squared gradient decay 
factor were adjusted during the neural network training to 
compare the results and determine the best model under 
limited resource availability. 
       Figure 4 shows an example result of training 
accuracy for DeepLab v3+ with a ResNet-18 base 
network. The best result was obtained using the Adam 
optimizer with a mini-batch size of 32 and a learning rate 
of 0.00001. The assigned squared gradient decay factor 
for Adam optimizer was set to 0.999. The training 
stopped at 1,450 iterations when the validation criteria 
were met. 
 

 
 
Figure 3. Confusion matrix 

 

 
 
Figure 4. DeepLab v3+ with base network of ResNet-18 measured performance (Adam optimizer) 
 
       The best results of accuracy for crack class and 
background class, the mean accuracy and the weighted 
IoU are summarized in Table 1 for each base network and 
all tested optimizers. The training parameters for each 
model are described in Table 2. In Table 1, the highest 
values for each base network and all networks are 
highlighted with bold and underline, respectively. The 
green highlight shows the maximum value of each 

optimizer for five base networks. When comparing the 
best results in each base network, the recommended 
model is the highest result of mean accuracy or weighted 
IoU together with the highest result of crack accuracy or 
background accuracy, i.e., having at least two highest 
values. Note that all the four values should be at least 0.9 
for the acceptable results. Therefore, the recommended 
models for each base network are indicated in cyan color 
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in Table 1. For base networks of ResNet-18 with SGDM 
optimizer and Xception with RMSProp optimizer, the 
results obviously show that they have both highest mean 
accuracy and highest weighted IoU including highest 
background accuracy (bold values). For the ResNet-50 
base network, both SGDM and Adam optimizers are 
recommended as they have two highest values out of four. 
In MobileNet-v2 base network, the model with RMSProp 
optimizer is recommended because it has the highest 
weighted IoU and background accuracy. There is no 
recommended model for Inception-ResNet-v2 base 
network because the crack accuracy does not meet the 
criteria, i.e., less than 0.9. Table 3 describes the rank of 
recommended models. The ResNet-50 base network with 
Adam optimizer was ranked as the first recommendation 
because of its highest crack accuracy and mean accuracy 
from all fifteen models (underline values). The second 
rank was the Xception base network with RMSProp 
optimizer as it had the highest background accuracy and 
weighted IoU in all models. The ResNet-50 base network 
was also ranked as the third recommendation with SGDM 
optimizer because it had high values of crack accuracy, 
background accuracy, mean accuracy, and weighted IoU. 
All the three recommended models were also the base 

models that included the highest results in that optimizer 
testing under limited resources (green-highlight values). 
The fourth and fifth recommended models were the 
ResNet-18 base network with SGDM optimizer and the 
MobileNet-v2 base network with RMSProp optimizer, 
respectively. These two models had good results with 
lower sized models. The performance of the best five 
models of DeepLab v3+ in crack segmentation is 
summarized in Table 4. It can be seen that all the models 
satisfy having at least two highest values in each base 
network (bold values), i.e., one in class accuracy (crack 
accuracy or background accuracy) and another one in 
mean accuracy or weighted IoU. The values are all greater 
than 0.9 as the minimum acceptable result. The first rank 
has the highest mean accuracy and crack accuracy while 
the second rank had the highest background accuracy and 
weighted IoU from all base networks (underline values). 
For the third rank, it did not have any highest values from 
all base networks (no underline value), but it had high 
values of mean accuracy, crack accuracy, background 
accuracy, and weighted IoU, which were all higher than 
the values of the fourth and the fifth ranks. For the fourth 
rank, it also had all evaluated values higher than the 
results of the fifth rank. 

 
Table 1. Summarization of the best performance for DeepLab v3+ with five base networks and three optimizers under 
resource limitation 
 

No. Deeplab v3+ 
with base 
network 

   Number of learnable      
   parameters 
   (millions) 

  Number 
  of layers 

   Optimizer   Accuracy 
  [crack] 
  [background] 

   Mean  
   accuracy 

  Weighted  
  IoU 

  Model size 
  (MB) 

1 ResNet-18 
 

20.6 
 

100 
 

SGDM 0.95001 
0.94230 

0.94616 0.92063 58.4 

2 RMSProp 0.95988 
0.93178 

0.94583 0.90965 58.5 

3 Adam 0.96160 
0.92299 

0.94229 0.90035 58.4 

4 ResNet-50 
 

43.9 
 

206 
 

SGDM 0.95502 
0.94417 

0.94960 0.92291 141 

5 RMSProp 0.95343 
0.94079 

0.94711 0.91912 141 

6 Adam 0.96944 
0.93151 

0.95048 0.90977 142 

7 MobileNet-v2 6.7 186 SGDM 0.95089 
0.93374 

0.94232 0.91135 9.44 

8 RMSProp 0.94354 
0.94031 

0.94192 0.91814 9.50 

9 Adam 0.94966 
0.93782 

0.94374 0.91571 9.50 

10 Xception 27.6 205 SGDM 0.93684 
0.93807 

0.93746 0.91540 83.4 

11 RMSProp 0.94789 
0.94642 

0.94716 0.92507 84.2 

12 Adam 0.94892 
0.94212 

0.94552 0.92037 84.2 

13 Inception-
ResNet-v2 
 

71.1 853 SGDM 0.90794 
0.92972 

0.91883 0.90515 238 

14 RMSProp 0.91918 
0.89852 

0.90885 0.87317 235 

15 Adam 0.86940 
0.93177 

0.90059 0.90564 240 

Note: 
Bold: The highest values in each base network. 
Underline: The highest values of all base networks. 
Green highlight: The maximum value of each optimizer for five base networks. 
Cyan highlight: The best result for each base network (the highest result of mean accuracy or weighted IoU together with the highest 
result of crack accuracy or background accuracy). 
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Table 2. Training parameters of each model in Table 1 
 

No. Base network, optimizer Mini-batch size Learning rate Squared gradient decay factor 

1 ResNet-18, SGDM 32 0.01 N/A 

2 ResNet-18, RMSProp 28 0.00001 0.99 

3 ResNet-18, Adam 32 0.00001 0.999 

4 ResNet-50, SGDM 26 0.001 N/A 

5 ResNet-50, RMSProp 24 0.00001 0.9 

6 ResNet-50, Adam 26 0.00001 0.999 

7 MobileNet-v2, SGDM 30 0.0003 N/A 

8 MobileNet-v2, RMSProp 28 0.000003 0.9 

9 MobileNet-v2, Adam 30 0.000003 0.999 

10 Xception, SGDM 24 0.0003 N/A 

11 Xception, RMSProp 28 0.000003 0.999 

12 Xception, Adam 26 0.000003 0.9 

13 Inception-ResNet-v2, SGDM 6 0.001 N/A 

14 Inception-ResNet-v2, RMSProp 6 0.00001 0.9 

15 Inception-ResNet-v2, Adam 4 0.00001 0.9 

 
Table 3. The rank of recommended models 
 
Rank Base network, optimizer Model size (MB) Description 

1 ResNet-50, Adam 142 Highest crack accuracy and mean accuracy 

2 Xception, RMSProp 84.2 Highest background accuracy and weighted IoU 

3 ResNet-50, SGDM 141 High values of crack accuracy, background accuracy, mean accuracy, 
and weighted IoU 

4 ResNet-18, SGDM 58.4 High all measured values but less than the results of ResNet-50 base 
network with SGDM optimizer 

5 MobileNet-v2, RMSProp 9.50 High all measured values but less than the results of ResNet-18 base 
network with SGDM optimizer 

 
Table 4. Performance summarization of the best five models of DeepLab v3+ in crack segmentation 
 
Rank Base network, optimizer Mean accuracy Crack accuracy Background accuracy Weighted IoU 
1 ResNet-50, Adam 0.95048 0.96944 0.93151 0.90977 

2 Xception, RMSProp 0.94716 0.94789 0.94642 0.92507 

3 ResNet-50, SGDM 0.94960 0.95502 0.94417 0.92291 

4 ResNet-18, SGDM 0.94616 0.95001 0.94230 0.92063 

5 MobileNet-v2, RMSProp 0.94192 0.94354 0.94031 0.91814 

Note:  
Bold: The highest values in each base network. 
Underline: The highest values of all base networks. 
Green highlight: The maximum value of each optimizer for five base networks. 
 
       Figure 5 shows the example image results of the five 
recommended models. The first and second images are 
examples of two-color shade and dark surfaces, 
respectively. The third and fourth images describe some 
examples of crack patterns, while the fourth and fifth 
images show examples of non-uniform surfaces. The 
computational time of crack segmentation model in each 

example is shown in seconds below the image in Figure 5. 
The visualized image results reveal good identification of 
the crack pattern under various surface conditions. 
However, the prediction results usually segment a larger 
area of crack, which could be investigated further for future 
improvement.   
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Figure 5. Example image results of the recommended models 
Note: * 1st rank: ResNet-50, Adam; 2nd rank: Xception, RMSProp; 3rd rank: ResNet-50, SGDM; 4th rank: ResNet-18, 
SGDM; 5th rank: MobileNet-v2, RMSProp 
 
4. DISCUSSION 
 
This research prioritizes the consideration of hardware 
resource constraints to enable individuals with limited 
budgets to participate in this field and pursue future 
advancements. Therefore, the conditions of network 
architectures that can be trained using limited GPU 
hardware resources, i.e., a single GPU; NVIDIA® GeForce 
RTX™ 3070 with 8GB of GPU memory, are also related to 
the model size and mini-batch size. Large network 
architecture like DeepLab v3+ with Inception-ResNet-v2 
base network, i.e., with a model size larger than 200 MB 
and total number of layers more than 800, practically 
require a high memory GPU for training and cannot let the 
mini-batch size go so high due to the memory constraints 
(a larger mini-batch size usually requires more memory). 
Therefore, even though the DeepLab v3+ with Inception-
ResNet-v2 base network has the highest number of layers 
and learnable parameters, as shown in Table 1, it could not 

provide the highest accuracy because of the limitation in 
mini-batch size during the model training. As the mini-
batch size of Inception-ResNet-v2 base network that can be 
run without the “out of memory error” is smaller than the 
others, as shown in Table 2 (not much variation in mini-
batch size can be experimented with). This might have led 
the overall result to be lower than the other models.  
       For the five recommended models, based on the 
summarized information related to the models, shown in 
Table 5, the first three ranks had a similar number of 
layers, and have a number of layers and a number of 
learnable parameters higher than the fourth and the fifth 
ranks without much difference in mini-batch size. The 
higher complexity of the model may enable the first three 
ranks to achieve superior performance compared to the 
remaining two ranks. The first and the third ranked models 
had the highest number of layers and number of learnable 
parameters from the five recommended models. These 
factors could contribute to the models achieving the 
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highest and second-highest crack accuracy and mean 
accuracy, as demonstrated in Table 4. However, the 
increase in mini-batch size of the second ranked model 
compared to the first and the third ranks might assist in the 
better performance, even with a smaller number of 
learnable parameters. Therefore, the overall performance 
of the second ranked model is high particularly in 
obtaining the highest background accuracy and weighted 
IoU. However, the top three ranked models could be 
flexibly used depending on the desired model size, with the 
second ranked model offering a smaller model size. When 
examining the fourth and fifth ranked models, in Table 5, 
while the fourth ranked model had fewer layers, it 
exhibited greater complexity due to its larger number of 
learnable parameters and model size. This could lead to 
overall better performance, as observed in Table 4. 
       For the computational time, the results of each image 
example shown in Figure 5 were summarized and 
compared in Figure 6. Considering the model architecture, 
specifically the number of layers and learnable parameters 
and the model size, the results of computational time for 
crack segmentation could be grouped into the first three 
ranked models with a computational time exceeding 0.5 
seconds and the last two ranked models with 
computational times less than 0.5 seconds, as illustrated in 

Figure 6. However, the computational time for crack 
segmentation can also be influenced by other factors, 
resulting in some variations within each group. 
       Based on the model sizes listed in Table 3, all five 
recommended models can be executed on standard desktop 
or laptop computers. However, for IoT applications, the 
performance of the Raspberry Pi series is generally 
recommended. A smaller model, such as the fifth ranked 
model, might be suitable for practical implementation. 
Many Arduino and ESP32 series devices may struggle to 
run these models due to insufficient memory. 
       In general, if the model size is not a condition, the first 
ranked model (ResNet-50 based network with Adam 
optimizer) would be the best choice for this application 
and training for the new images of specific structures 
under constrained resources. However, if the model size 
needs to be considered, the second and fourth ranked 
models might be the solution. For mobile and embedded 
applications, the fifth ranked model of MobileNet-v2 base 
network with RMSProp optimizer is recommended. 
       The research results will enhance and provide 
guidance for the utilization of DeepLab v3+ on crack 
segmentation and new image training on diverse concrete 
structures using limited hardware resources. 

 
Table 5. The summarized model information of the five recommended models 
 
Rank Base network,  

optimizer 
Mini-batch  
size 

Learning  
rate 

Number of learnable 
parameters 

Number of  
layers 

Model size  
(MB) 

1 ResNet-50, Adam 26 0.00001 43,980,180 206 142 

2 Xception, RMSProp 28 0.000003 27,638,052 205 84.2 

3 ResNet-50, SGDM 26 0.001 43,980,180 206 141 

4 ResNet-18, SGDM 32 0.01 20,607,636 100 58.4 

5 MobileNet-v2, RMSProp 28 0.000003 6,784,276 186 9.50 
 

 
 
Figure 6. The Comparison of the computational time for crack segmentation of the examples in Figure 5 
 
5. CONCLUSION 
 
In this paper, the performance of DeepLab v3+ was 
compared with alternative base networks, i.e., Inception-
ResNet-v2, Xception, ResNet-50, MobileNet-v2, and Res-
Net-18. This experiment was conducted to find the best 

parameters of mini-batch size, learning rate, and squared 
gradient decay factor, for training the networks employing 
limited resource with three optimization algorithms, i.e., 
SGDM, RMSProp and Adam. The evaluation was conducted 
focusing on the accuracy and the weighted IoU. The 
accuracy of crack class and background class, the mean 
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accuracy, and the weighted IoU were investigated to 
determine the best result for each base network of 
DeepLab v3+. Then the best results were analyzed in terms 
of mean accuracy, class accuracy, weighted IoU, and model 
size to recommend the suitable model and training 
parameters for resource-constrained applications and 
training environment for a broader and more diverse 
range of infrastructure applications. The first rank of 
recommended model was DeepLab v3+ network based on 
ResNet-50 with Adam optimizer because of the highest 
crack accuracy and mean accuracy. If the model size is an 
issue to consider, the Xception base network with 
RMSProp optimizer and the ResNet-18 base network with 
SGDM optimizer are recommended. In addition, the results 
clearly show that the MobileNet-v2 base network with 
RMSProp optimizer is the smallest model and most 
suitable for mobile and embedded applications. It is hoped 
to conduct further study on the DeepLab v3+ network in 
various aspects in the future to enhance the maximum 
capability of this powerful and efficient network using 
limited processing resources. 
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