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ABSTRACT

Predicting heart disease and other cardiovascular issues accurately is critical for
enabling early intervention and improving patient outcomes. This study proposed
the semantic random forest (SRF) framework, which enhances the classification
performance of conventional random forest (RF) algorithms for heart disease
prediction. The conventional RF framework is augmented through the integration of
knowledge from a formal ontology model that encapsulates domain-specific medical
knowledge, thereby providing a structured representation of concepts, relationships,
and axioms. The SRF framework utilizes this ontology during the classification
process to yield more precise predictions. The effectiveness of the proposed SRF
framework was evaluated against the conventional RF, AdaBoost, and gradient
boosting algorithms, with a focus on their ability to classify heart disease instances
accurately. Experimental results demonstrate that the proposed SRF framework
outperformed the baseline algorithms on two datasets, achieving the highest
accuracy and Matthews correlation coefficient values of 0.8296 and 0.6589 on the
University of California at Irvine dataset and 0.9856 and 0.9706 on Mendeley
dataset, respectively. The results demonstrate that ontology-based structured
knowledge significantly improves the classification power of traditional RF
algorithms, which highlights this knowledge-driven approach’s potential to predict
heart disease risks in computer-aided medical diagnoses.
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hypertension (Ishak et al, 2020). Predicting an
individual’s cardiovascular disease risk accurately is

Heart disease is a prevalent cause of morbidity and
mortality globally, with approximately 17.9 million deaths
reported in 2019 (AlGhanem et al., 2020; Ed-daoudy et
al, 2023), and cardiovascular diseases, including heart
disease and stroke, comprise approximately 31% of all
deaths globally. The risk factors for heart disease include
nonmodifiable demographic factors, e.g., age, gender, and
family history, and modifiable lifestyle factors, e.g.,
smoking, physical inactivity, obesity, diabetes, and
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essential to facilitate timely preventive measures and
mitigate health burdens. Conventional risk prediction
models utilize multivariate regression techniques based
on a limited set of established risk factors (Kwon et al,
2020); however, these models frequently demonstrate
suboptimal predictive performance due to restrictive
assumptions and their inability to capture the complex,
nonlinear relationships among risk factors (Shouman et
al,, 2011). Recent advancements in machine learning (ML)
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present opportunities to improve cardiovascular risk
prediction accuracy. ML algorithms, notably the random
forest (RF) algorithm, have exhibited promising results in
various medical applications, including cardiovascular
disease prediction and diagnosis (Hossain et al., 2023;
Shanmugasundaram et al., 2018).

The proposed approach combines the advantages of
RFs with domain-specific knowledge about cardiovascular
risk factors to enhance the predictive accuracy and clinical
utility of the traditional RF model. Typically, conventional
risk prediction models for cardiovascular disease rely on
multivariate regression techniques, e.g., logistic regression
and Cox proportional hazard models (Harrell, 2001),
which use a limited set of well-established risk factors to
estimate an individual’s risk of developing cardiovascular
disease. However, these models apply restrictive
modeling assumptions, they cannot detect the complex,
nonlinear relationships between risk factors, and they
provide suboptimal predictive performance (Tripoliti et
al,, 2017).

RF comprises ensemble-based ML algorithms that
combine multiple decision trees (DTs) to make
predictions. Unlike traditional regression models, RFs can
handle the complex, nonlinear relationships between
variables and are less susceptible to overfitting (Shouman
et al, 2011). Several studies have demonstrated the
potential of RFs and other ML algorithms in cardiovascular
disease prediction and diagnosis (Dinh et al., 2019). These
models accurately identify individuals at high risk of
developing cardiovascular disease and detect specific
cardiovascular conditions, e.g, heart failure. The RF
method has seen significant advancements through the
introduction of the WildWood (WW) algorithm, which was
proposed by Gaiffas et al. (2023). This novel ensemble
algorithm enhances traditional RF methods by
innovatively utilizing out-of-bag samples for prediction
aggregation. Conventional RF techniques rely solely on
leaf nodes for predictions; however, WW’s distinguishing
feature is its ability to aggregate predictions from every
possible subtree within each decision tree. This
comprehensive approach employs an exponential
weighting mechanism that incorporates the complete
tree structure, which results in more refined decision
boundaries. Through context tree weighting and
histogram-based split optimization, WW delivers
exceptional computational performance while producing
results that match or surpass current state-of-the-art
algorithms. This combination of improved accuracy and
interpretability establishes WW as a significant
advancement in ML ensemble methods. Incorporating
knowledge-based approaches into ML algorithms is an
important area of research. These methods leverage
domain-specific knowledge to improve ML models’
performance and interpretability (Miraftabzadeh et al,
2021). A representative example is theory-guided data
science, which emphasizes the integration of domain
knowledge into the data analysis and model development
process (Karpatne et al., 2017; Chanmee & Kesorn, 2021).
This approach has been examined in various fields and
offers promising avenues for scientific discovery and
supporting decision-making processes. However, most
existing ML-based approaches treat risk factor
relationships as purely data-driven patterns without
incorporating domain-specific knowledge, which can
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result in models that lack interpretability and clinical
relevance. In addition, ML models trained solely on
historical data frequently fail to generalize well to new
populations because they do not explicitly integrate
expert-driven insights into cardiovascular disease
mechanisms. To address these gaps, this study proposed a
semantic RF (SRF) model that integrates domain expertise
into the learning process to improve the performance of
cardiovascular risk prediction. Unlike traditional RF
models, which rely solely on statistical correlations, the
proposed SRF method enhances decision-making
processes by embedding structured knowledge about
cardiovascular risk factors, thereby improving both
interpretability and predictive accuracy.

Chanmee and Kesorn (2021) introduced the “semantic
data mining” concept after surveying the use of domain
ontologies and overcame the limitations of traditional
methods. A knowledge-based approach enables a deeper
understanding of data that goes beyond statistical patterns
to uncover meaningful insights. Chanmee and Kesorn
(2023) also proposed the semantic DT (SDT) method to
incorporate a knowledge base into a DT algorithm, which
improves the traditional Iterative Dichotomiser 3 (ID3)
algorithm by leveraging domain expertise. This
integration allows the SDT method to exploit structured
knowledge, potentially resulting in more accurate and
interpretable DTs. Inspired by this approach, the proposed
ensemble-based SRF method integrates expert knowledge
into the DT induction process. Similar knowledge-based
enhancements have been applied successfully in other
domains and ML techniques, e.g., the ARIMAXS model
(Juraphanthong & Kesorn, 2024, 2025) for COVID-19
incidence prediction, highlighting the value of integrating
structured semantic information into predictive modeling.
The primary contributions of this study are threefold.
First, it proposes the SRF framework, which incorporates
domain-specific knowledge into the RF model
development process. Second, it evaluates the predictive
performance of the proposed SRF framework by
comparing it with traditional RF methods and other ML
algorithms on cardiovascular risk prediction tasks. Finally,
the findings demonstrate that incorporating domain
knowledge can enhance the accuracy and clinical utility of
ML models for cardiovascular risk prediction.

This study builds on our previous research on
semantic data mining (Chanmee & Kesorn, 2021) and
SDTs (Chanmee & Kesorn, 2023, 2024), which
demonstrated that incorporating domain knowledge
into tree-based algorithms enhances their reasoning
capability. The main difference between the current study
and our previous work (Chanmee & Kesorn, 2024) is the
application of various sampling methods to determine
which method is the most suitable for collaborating with
ontology knowledge to enhance the performance of
the tree-based ensemble approach. By incorporating
structured cardiovascular knowledge into the RF
modeling process, the proposed SRF framework aimed to
achieve higher predictive accuracy by integrating expert-
driven risk factor relationships, improved interpretability
for clinical decision-making, thereby enabling medical
professionals to better understand and trust model
predictions, and greater generalizability to diverse
populations, thereby reducing the bias inherent in purely
data-driven approaches.
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2. MATERIALS AND METHODS

The architecture of the proposed SRF framework is shown
in Figure 1. As can be seen, the SRF framework comprises
three primary components, i.e., data preparation, SRF
construction, and evaluation. Each component is described
in detail in the following subsections, including the
materials and processes utilized in this study.

2.1 Materials

To evaluate the proposed SRF framework, we utilized two
public cardiovascular disease datasets. The first dataset,
sourced from the University of California, Irvine (UCI) data
repository (Andras Janosi, 1988), contains 303 records
with 14 attributes. The second dataset, found in the
Mendeley data repository (Maghdid & Rashid, 2022), is an
unbalanced dataset containing 1,319 samples and nine
attributes. Note that both datasets include patient
demographics, disease signs, and physical test results, e.g.,
age, gender, heart rate, and blood pressure. The details of
these datasets are given in Table 1. The main distinction
between these datasets lies in their attribute types. The
first dataset comprises both nominal and numerical
attributes, while most of the attributes in the second
dataset are numerical. The presence of numerous nominal
attributes in the first dataset raises concerns about
potential bias in the attribute selection for DT nodes, which
could impact classification performance because attributes
with a larger number of values are more likely to be
selected. In contrast, the second dataset, with just one
nominal attribute, is less susceptible to this issue.

To address the bias selection problem and enhance the
classification performance, we integrated the heart failure
ontology (Wang, 2015) into the SRF construction process.
This ontology encompasses 1,652 classes of heart failure
information, covering disease signs, symptoms, and causes,
as well as diagnostic tests. The process of designing and
selecting an ontology involves several key steps. First, the
scope of the ontology is defined. Then, existing ontologies
are assessed for their relevance to the study area.
Subsequently, the concepts and their interrelationships
are examined using the Protégé (Knublauch et al., 2004)

Dataset
Data Cleansing ™~ il

1. Data Preparation

Figure 1. Architectural framework of the proposed SRF model
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Importance Value

ontology editing tool. Finally, the ontology that is most
relevant to the examined datasets is selected for use in the
proposed SRF. To update and maintain an ontology
effectively, several critical tasks must be completed, e.g.,
adding new concepts, refining existing definitions, merging
duplicates, and removing outdated entities, to ensure the
ontology’s accuracy and relevance. Regular reviews and
audits are also required to maintain consistency and
alignment with the latest domain knowledge. We also
handle change management and ensure efficient ontology
evolution by implementing versioning and, in certain
instances, automated updates using ML.

2.2 Data preparation

In this study, we employed the list-wise deletion method
(Emmanuel et al, 2021) to address missing data in the
datasets, where samples with missing values were
removed. In addition, we utilized the interquartile range
(IQR) measure (Smiti, 2020) to identify and remove
outliers. For the numerical attributes, each attribute’s
values were divided into four equal parts, and the IQR was
calculated using the first quartile (Q1) and the third
quartile (Q3). Any value that falls below Q1 - 1.5 x IQR or
exceeds Q3 + 1.5 x IQR was identified as an outlier and
removed from the dataset. Statistical methodologies,
including the Chi-squared test (McHugh, 2013) and
point-biserial correlation (Verma, 2019) methods, were
employed in the feature selection process to assess the
relationship between the attributes and the target class.
Here, attributes that elicited a p-value of less than 0.05
from these statistical tests were viewed as correlated with
the target classes and were included in the construction of
the proposed SRF. In addition, the synthetic minority over-
sampling technique (SMOTE) (Chawla et al., 2002) was
employed to address class imbalance in the cardiovascular
dataset obtained from the Mendeley data repository.
Finally, the cleaned datasets were divided into training and
testing data at a ratio of 70:30 for the subsequent
processes. The number of samples in the datasets after the
data preparation process is presented in Table 2, and
examples of each dataset are shown in Figure 2.

Ontology

Computation

v

Semantic Accuracy,
Random Forest » McCC
2.Semantic Random Forest 3.Evaluation

Construction
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Table 1. Datasets used to evaluate the performance of the proposed SRF framework

Attribute Data type Description

Heart disease (UCI)

age Numerical Age of patient

sex Nominal Sex of patient

cp Nominal Type of chest pain

Thresbps Nominal Resting blood pressure

chol Numerical Serum cholesterol

fbs Nominal Fasting blood sugar levels above 120 mg/dL.
restecg Nominal Resting electrocardiographic results

thalach Numerical Maximum heart rate attained

exang Nominal Exercise-induced angina

oldpeak Numerical ST depression caused by exercise compared with rest
slope Nominal Slope of the peak exercise ST segment

ca Numerical Number of major vessels (ranging from 0-3) identified by fluoroscopy
thal Numerical A blood disorder known as thalassemia

num Numerical diagnosis of heart disease

Heart disease (Mendeley)

age Numerical Age of patient

gender Nominal Sex of patient

impulse Numerical Heart rate

pressurehigh Numerical Systolic blood pressure

pressurelow Numerical Diastolic blood pressure

glucose Numerical Blood sugar

kem Numerical Creatine kinase MB

troponin Numerical Troponin test

class Nominal diagnosis of heart disease

Table 2. Number of samples in each dataset after data preparation

Dataset Number of samples

Total number of samples

Positive class
(presence of disease)

Negative class
(absence of disease)

Heart disease (UCI) 137 160 297

Heart disease (Mendeley) 319 319 638

Heart disease (UCI)
age sex cp | Thresbps restecg thalach | exang | oldpeak slope ca thal num
51 male |Non-Anginal_Pain| 125 Left_V_Hypertrophy | 166 No 2.4 Flat 0 Normal Absence_of_Disease
56 male Asymtomatic 130 Left_V_Hypertrophy | 103 Yes 1.6 Downsloping 0 Reversable_Defect | Presence_of_Disease
65 male Asymtomatic 120 Normal 140 No 0.4 Upsloping 0 Reversable_Defect | Absence_of Disease
41 male | Atypical_Angina 120 Normal 182 No 0 Upsloping 0 Normal Absence_of_Disease
67 male Asymtomatic 120 Normal 71 No 1 Flat 0 Normal Presence_of_Disease
47 male Asymtomatic 110 Left_V_Hypertrophy | 118 Yes 1 Flat 1 Normal Presence_of_Disease

Heart disease (Mendeley)

age gender kem troponi class

68 1 3.76 0.012 negative
70 1 5.02 0.016 positive
72 0 1.79 0.008 negative
46 1 3.43 0.008 negative
56 0 6.38 0.006 positive
65 0 6.78 0.197 positive

Figure 2. Representative samples from the UCI and Mendeley datasets

2.3 SRF mantic random forest construction

This section outlines the process of leveraging knowledge
to enhance classification performance. Based on DTs, the
proposed SRF is an ensemble method that utilizes the ID3
algorithm, which is integrated with knowledge from
the ontology. This knowledge was used to assess each
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attribute’s significance, thereby helping the algorithm
identify the key attributes for building each DT in the SRF.

In this study, the weighted semantic PageRank method,
as used by Chanmee and Kesorn (2023), was employed to
evaluate each attribute’s significance based on the concepts
and relationships in the ontology. The computation of the
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attribute importance value is described in the Appendix
(Table S1). The process of constructing the SRF is shown in
Figure 3. Here, multiple subsamples were generated to
enhance diversity and reduce the ensemble classifier’s
generalization error. Each subsample served as training data
to construct an individual DT within the SRF. The random
subspace technique (Ho, 1998) was also employed to
increase diversity by randomly selecting subsets of features
rather than using the entire set of features. In constructing
the DT, we calculated the information gain (IG), which
served as the splitting criterion in the ID3 algorithm. To
counteract bias favoring attributes with many values, we
adjusted each attribute’s IG using the importance values
obtained from the ontology to ensure that significant
attributes with fewer values were more likely to be selected
as nodes in the DT. The altered IG was calculated using
Equations (1)-(3).

(1

where, Entropy (D) represents the entropy of dataset D,
which comprisesj classes, and p; denotes the probability of
the samples being classified into class i.

Entropy(D) = ¥)_, pi logap;

Entropy(4) = Y™ 1Ll Entropy(D,)

v=1 D]

(2)

where, Entropy (A) represents the average entropy of
attribute A, which possesses m unique values, |D|denotes
the total number of samples in dataset D, and | D,,| denotes
the number of samples for attribute A with value v. In
addition, Entropy (Dv) represents the entropy of attribute
A for the specific value v (Han et al.,, 2011).

AIG(A) = (Entropy(D) - Entropy(A)) +Ip(4) (3)

where, AIG(A) represents the altered IG for attribute A, and
Ip(A) denotes the importance value of attribute A.

Note that each DT was constructed to its maximum
depth without undergoing pruning. To derive the final
classification result, the outcomes from each DT were
aggregated, and a majority vote was employed to
determine the overall classification.

Figure 4 shows the fundamental difference between
how the proposed SRF and the conventional method
approach the DT construction process when analyzing
the same dataset. The proposed SRF incorporates
domain knowledge through a heart failure ontology,
which provides crucial context about the relative
importance of different attributes in the diagnosis of
cardiovascular disease. In the conventional methods,
when constructing individual DTs, attributes like Age
and Chest Pain are initially considered based on random
selection. Then, the algorithm calculates the IG for these
attributes to determine their splitting effectiveness.
Although the Chest Pain attribute is a direct clinical
indicator of cardiovascular disease, the traditional DT
method selects the Age attribute as the root node simply
because it shows higher IG. This selection pushes the
more diagnostically relevant Chest Pain attribute
further down the tree, which results in a more
convoluted structure that may compromise the
diagnostic accuracy of the model. The proposed SRF
addresses this limitation by synthesizing two key
factors, i.e., the attribute importance values derived
from the heart failure ontology and the calculated IG.
This integrated approach ensures that attributes are
evaluated based on both their statistical properties and
their clinical significance. Thus, the Chest Pain attribute
is selected as the root node, thereby creating a DT
structure that better reflects medical knowledge and
potentially enhances the model’s ability to classify heart
failure accurately.
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Sample Data

Chest Pain Blood pressure heart rate Class

Atypical_Angina 120 Normal

Absence_of_Heart_Disease

Non-Anginal_Pain 125 Normal

Absence of Heart Disease

Asymtomatic 110 Normal

Presence_of Heart_Disease

Asymtomatic 110 Normal

Presence_of Heart_Disease

130
120
125

Reversable_Defect
Reversable_Defect
Reversable_Defect

Asymtomatic
Non-Anginal_Pain
Asymtomatic

Presence_of_Heart_Disease
Presence_of_Heart_Disease
Absence_of_Heart_Disease

Non-Anginal_Pain 130 Reversable_Defect

Presence_of_Heart_Disease

Atypical_Angina 110 Normal

Absence_of_Heart_Disease

Asymtomatic 125 Reversable_Defect

Presence_of_Heart_Disease

Non-Anginal_Pain 120 Normal

Absence_of_Heart_Disease
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Figure 4. Diagram illustrating the influence of attribute importance values on the node selection mechanism

2.4 Evaluation
In this study, standard performance metrics were used to
evaluate and validate the proposed SRF framework. Here,
accuracy was used to assess the proposed SRF’s overall
performance, and the Matthews correlation coefficient (MCC)
(Chicco & Jurman, 2020) was used as an alternative metric,
offering robustness in the presence of unbalanced datasets
and maintaining its value when positive and negative classes
were interchanged. The MCC value ranges from -1 to 1, where
-1 indicates extreme misclassification, 1 indicates perfect
classification, and 0 indicates random guessing by the classifier.
The accuracy and MCC are defined in Equations (4) and

(5), respectively.
TP+TN

Accuracy = ——
Y TP+TN+FP+FN

(4)

TPXTN—FPXFN

McCC =
J(TP+FP)X(TP+FN)X(TN+FP)X(TN+FN)

(5)

where, TP represents the number of instances correctly
classified as cardiovascular disease, TN represents the
number of instances correctly classified as the absence of
cardiovascular disease, FP represents the number of instances

of absent cardiovascular disease incorrectly classified as
cardiovascular, and FN represents the number of
cardiovascular disease instances incorrectly classified as
absent.

3. RESULTS AND DISCUSSION

After preprocessing, the cleaned UCI dataset comprised 11
attributes and 297 records, and the cleaned Mendeley
dataset comprised four attributes and 853 records. In
addition, various tree-based ensemble methods were
employed to perform a comparative analysis of the
proposed SRF.

3.1 Feature selection

In this experiment, statistical techniques, i.e., the Chi-
squared (X?) test and point-biserial correlation (Rpp),
were utilized to identify the attributes associated with the
defined classes in the datasets. Table 3 shows the results of
the statistical tests. In this evaluation, an association was
indicated when the p-value of a statistical test between an
attribute and the target class was less than 0.05.

Table 3. Results of Chi-squared test and point-biserial correlation analysis

Attribute Ry, p-value Attribute X2 p-value
Heart disease (UCI)
age 0.227" <0.001 sex 23.030" <0.001
Thresbps 0.153" 0.008 cp 77.276" <0.001
chol 0.080 0.168 fbs 0.003 0.956
thalach -0.424" <0.001 restecg 9.576™ 0.008
oldpeak 0.424" <0.001 exang 52.730" <0.001
ca 0.463™ <0.001 slope 43.473™ <0.001
thal 82.460™ <0.001
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Table 3. Results of Chi-squared test and point-biserial correlation analysis (continued)

Attribute R, p-value Attribute X? p-value
Heart disease (Mendeley)

age 0.238™ <0.001 gender 11.36™ <0.001
impulse 0.007 0.801

pressurehigh -0.021 0.449

pressurelow -0.010 0.726

glucose -0.033 0.230

kem 0.218™ <0.001

troponin 0.229™ <0.001

In the UCI dataset, the “chol” and “fbs” attributes were
unrelated to the target class. However, in the Mendeley
dataset, no association was found between the “impulse,”
“pressurehigh,” “pressurelow,” and “glucose” attributes
and the target class. Thus, these uncorrelated attributes
were removed from the datasets. Consequently, eleven
attributes from the UCI dataset and four attributes from
the Mendeley dataset were used to construct the SRF.

3.2 Sampling method examination

In ensemble learning, generating multiple data subsamples
to construct uncorrelated individual classifiers is a
strategy utilized to enhance diversity, which directly
influences the performance of the ensemble classifier
(Kuncheva & Whitaker, 2003). Thus, this experiment
attempted to identify the most effective sampling method
that incorporates the ontological knowledge to generate
uncorrelated DTs. In this study, various techniques to
generate subsample data to optimize the performance of
the proposed SRF were investigated. The first method was
bagging (Han etal.,, 2011), which is a widely used technique
in the RF algorithm. The bagging approach randomly
selected samples with replacement, comprising 63.2% of
the original training data, and the remaining samples were
duplicates. The second method involved varying the
sampling rate between 60% and 80%, as discussed by
Adnan and Islam (2015). Here, the remaining portion of
the subsample data was generated by randomly
duplicating data from the initially selected 30%. The third
method adopted the sampling approach employed in the
balanced decision forest (BDF) technique (Adnan et al,
2021), which involves adjusting both the number of
samples and the number of random features. Specifically,
an inverse relationship exists between the number of
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selected samples and the number of random features. As
the number of samples increases, the number of features
decreases (and vice versa). For example, when the
proportion of subsample data comprises 37% of the total
dataset, the number of features in the random subset used
to construct the DT comprises approximately 99% of the
total available features. In this experiment, 100 DTs were
constructed for the proposed SRF. The classification
results obtained by the proposed SRF framework using
different sampling methods are shown in Figure 5.

The classification results indicate that using a variable
sampling rate between 60% and 80% to generate
subsample data yielded the highest performance
compared with other approaches tested on both datasets.
Figure 5(a) shows the accuracy of the SRF’s classification
results obtained using different sampling methods. For the
UCI dataset, applying the variable sampling rate method to
generate subsample data results in an accuracy of 0.8296.
However, utilizing the bagging method resulted in an
accuracy of 0.8239, which was reduced to 0.8085 with the
BDF-based method for subsample data generation. For the
Mendeley dataset, the proposed SRF framework with the
variable sampling rate method achieved the highest
classification accuracy of 0.9856. In comparison, the SRF
framework with the bagging method achieved an accuracy
of 0.9850, and the BDF-based method resulted in an
accuracy of 0.9842. These findings suggest that the BDF-
based method is less effective than the varying sampling rate
method. In the BDF-based method, if a low sampling rate is
selected at random, there is a risk of using nearly all
attributes to construct the DT, which can result in significant
attributes, identified as important by integrating knowledge
into the algorithm, being frequently selected as nodes. This
may lead to the creation of redundant DTs.
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Figure 5. Comparison of classification results obtained by the proposed SRF using different sampling techniques
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The MCC was also employed to evaluate the effectiveness
of each subsampling method (Figure 5-b) aligning with the
accuracy measurements. Utilizing varying sampling rates for
subsample data demonstrates superior performance compared
with the alternative methods. The MCC value for the varying
sampling rate method was 0.6589 for the UCI dataset and
0.9706 for the Mendeley dataset. In addition, the precision,
recall, and F1-score metrics for each target class are reported
in Table 4. These metrics are derived from the confusion
matrix, which consists of the following terms:

Precision measures the proportion of correctly predicted
positive instances among all instances predicted as positive.
It is defined as (6):

TP
TP+FP (6)

Precision =

A high precision indicates that when the model predicts
a positive class, it is likely to be correct.

Recall (also called Sensitivity or True Positive Rate)
measures the proportion of correctly predicted positive
instances among all actual positive instances. It is given by (7):

Precision = ——— (7
TP+FP
A high recall indicates that the model is good at
identifying all positive instances.
F1-score is the harmonic mean of precision and recall.
It balances both metrics and is useful when we need to
consider both false positives and false negatives equally. It
is calculated as (8):

F1— score = 2 X Prea:s%'oanecall (8)
Precision+Recall

This metric ensures that both precision and recall are
maximized, preventing an imbalance between the two. The
F1l-score provides a single score that considers both
precision and recall, making it useful for evaluating models
where both false positives and false negatives are
significant concerns. There is often a trade-off between
precision and recall. Increasing precision may lead to a
decrease in recall and vice versa. For example, if a model is
very conservative in labeling positive instances, precision
may increase, but recall may decrease because fewer true
positives are detected.

The results demonstrate that the varying sampling rate
method achieved strong performance across all metrics on
both datasets. The experimental results indicate that
varying the sampling rate improved the classifier
performance compared with the traditional techniques,
e.g., the bagging method. However, when the BDF-based
method was employed to generate multiple subsample
datasets, the proposed SRF framework produced

unsatisfactory results. These findings emphasize the
importance of selecting a sampling method that effectively
integrates the available knowledge to realize satisfactory
classification performance.

As shown in Figure 6, the dataset includes attributes A1
through A5, with attribute A3 having the highest
importance. When the varying sampling rate method is
employed, a maximum of three attributes are used to
construct each DT. As a result, attribute A3 may not be
selected as the root node, leading to the creation of DTs
with different structures. However, when the BDF-based
method is used, most attributes are employed to construct
the DT, depending on the sample size. This increases the
probability of selecting attribute A3 as the root node,
thereby resulting in the generation of identical DTs. If all
DTs in the proposed SRF yield the same classification
outcomes, the improvement in classification performance
may be minimal. However, when the varying sampling rate
method is utilized, the attributes are selected randomly in
consistent quantities for the node selection process, which
enhances the likelihood of selecting diverse root nodes for
the DT, and this enables the generation of distinct DTs in
the proposed SRF and consequently improving the
classification performance.

3.3 Comparison with tree-based ensemble
algorithms

We also conducted an experiment to compare the
classification performance of the SRF framework with
existing ensemble algorithms, e.g., the RF, AdaBoost, and
gradient boosting algorithms. Here, each algorithm utilized
100 DTs, and the final outcomes were obtained by
averaging the results obtained over 30 experiments. As
shown in Table 5, the proposed SRF framework
outperformed the other tree-based ensemble algorithms in
terms of accuracy and MCC. On the UCI dataset, the SRF
framework obtained the highest accuracy of 0.8296. In
contrast, the RF, AdaBoost, and gradient boosting
algorithms obtained lower classification accuracies of
0.8141,0.8170, and 0.7978, respectively. Note that similar
trends were observed when analyzing the Mendeley
dataset. On this dataset, the proposed SRF framework
achieved a classification accuracy of 0.9856, which was the
highest among the evaluated algorithms. In comparison,
the RF, AdaBoost, and gradient boosting algorithms
obtained accuracy values of 0.9807, 0.9817, and 0.9794,
respectively. In addition, the MCC was used as a validation
measure for the proposed SRF framework. On both
datasets, the proposed SRF achieved the highest MCC
scores, obtaining a value of 0.6589 on the UCI dataset and
0.9706 on the Mendeley dataset.

Table 4. Performance metrics (precision, recall, and F1-score) of the SRF with various sampling techniques

Dataset Sampling Positive class (presence of disease) Negative class (absence of disease)
method Precision Recall F1-score Precision Recall F1-score
Heart disease Bagging 0.8241 0.7773 0.8000 0.8232 0.8631 0.8427
(ucn Varying 0.8343 0.7837 0.8082 0.8284 0.8714 0.8494
sampling rate
BDF-based 0.8063 0.7664 0.7859 0.8129 0.8460 0.8291
method
Heart disease Bagging 0.9870 0.9790 0.9830 0.9840 0.9902 0.9871
(Mendeley) Varying 0.9873 0.9793 0.9833 0.9843 0.9904 0.9874
sampling rate
BDF-based 0.9881 0.9751 0.9816 0.9812 0.9912 0.9861
method

S:H science, engineering
- and health studies



Chanmee, S., & Kesorn, K.
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Figure 6. Example of the SRF construction process using different sampling methods

Table 5. Performance comparison of proposed SRF framework and other ensemble learning algorithms

Dataset Algorithms Accuracy MCC

Heart disease (UCI) SRF 0.8296 0.6589
RF 0.8141 0.6319
AdaBoost 0.8170 0.6367
Gradient boosting 0.7978 0.5978

Heart disease (Mendeley) SRF 0.9856 0.9706
RF 0.9807 0.9606
AdaBoost 0.9817 0.9628
Gradient boosting 0.9794 0.9580

The knowledge derived from the ontology, particularly
in terms of the attribute importance values, helps the
algorithm identify significant attributes to serve as nodes in
each DT of the SRF. Integrating relevant attributes into the
model construction process further improves the classification
performance (Spencer etal,, 2020); however, slight differences
were observed in the classification performance in terms of
both the accuracy and MCC results and between the SRF and
other algorithms on the Mendeley dataset. Utilizing the
attribute importance values effectively mitigates the bias in
attribute selection, particularly when handling datasets that
contain categorical attributes with numerous values. When
considering the Mendeley dataset, in which most attributes
are numerical, the likelihood of such bias is reduced.
Consequently, applying only the proposed SRF yields a
modest enhancement in the classification performance. The
findings of this experiment demonstrate that the proposed
SRF framework can be used to develop a classification model
that accurately identifies patients with cardiovascular
diseases. As a result, this improved classification capability
may help reduce the mortality risk among these patients.

Silpakorn University

3.4 Comparison with nontree-based machine
learning models

In our previous study (Chanmee & Kesorn, 2024), the
performance of the proposed approach was not compared
with that of nontree-based classification algorithms.
However, currently, various algorithms, e.g., neural networks
and support vector machines (SVMs), are recognized as
high-performance classification methods. Thus, the proposed
SRF framework was also compared with such nontree-based
algorithms. In this experiment, the performance of the
proposed SRF framework was compared with that of several
nontree-based classification algorithms, including the
multilayer perceptron (MLP), a type of artificial neural
network (ANN), SVM, and k-nearest neighbors (k-NN)
methods. Here, the GridSearchCV (Avinash et al, 2022)
technique was employed to identify the optimal parameter
values that obtained the best performance for each
algorithm. Examples of the parameters used to optimize
each algorithm are shown in Table 6. In this evaluation, 30
experiments were conducted, and the results, which were
averaged to derive the final outcomes, are shown in Table 7.
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Table 6. Parameter configurations used in different classification algorithms

Algorithm Parameter Parameter range
MLP Hidden layer size {50, 100, 150}
Maximum number of iterations {50, 100, 150, 200}
Activation function {“tanh,” “relu,” “logistic”}
SVM C {0.1,1, 10,100}
gamma {0.001, 0.01,0.1, 1}
kernel {“rbf,” “linear,” “poly,” “sigmoid”}
k-NN k {3,5,7,9,11,13,15}

Table 7. Performance evaluation of the SRF against
various classification algorithms

Dataset Algorithm Accuracy MCC
Heart disease SRF 0.8296 0.6589
(ucn MLP 0.7710 0.5589
SVM 0.8256 0.6569
k-NN 0.7202 0.4576
Heart disease SRF 0.9856 0.9706
(Mendeley) MLP 0.8324 0.6842
SVM 0.8053 0.6407
k-NN 0.7852 0.6048

The results demonstrate that the proposed SRF framework
outperformed the compared classification algorithms in
terms of both accuracy and the MCC score. The proposed
SRF framework is based on an ensemble learning method
that combines multiple models to achieve better predictive
performance than a single model (Sagi & Rokach, 2018),
thereby leading to superior classification performance.
However, the accuracy and MCC score obtained by the SVM
on the UCI dataset, i.e, 0.8256 and 0.6569, respectively,
were close to the results obtained by the SRF framework,
as this balanced dataset with a binary class tends to
perform well with SVMs (Zhang et al,, 2017). In addition,
the ANN algorithm, which has garnered increasing interest
from researchers, obtained low classification results on
both datasets. The ANN algorithm requires a large amount
of training data to achieve high predictive performance
(Alwosheel et al, 2018), and the limited size of the
examined datasets may have been insufficient to produce
accurate classification models. The results suggest that
employing an ensemble learning approach alongside
ontology knowledge can yield satisfactory outcomes.
Notably, the proposed SRF framework demonstrated
strong performance even when applied to small datasets.

3.5 Computation complexity of proposed SRF
framework
Computational complexity is a foundational concept in
computer science that examines the intrinsic difficulty of
solving computational problems. To assess the
computational performance of the proposed SRF
framework relative to different baseline models, we
evaluated and compared the computational complexity
costs of the DT, RF, and SRF models. Typically, constructing
a single DT within an RF has a time complexity of O (n * m
* log [m]), where n denotes the number of samples in the
training data, m denotes the number of features, and log
(m) denotes the average depth of the DT. In a traditional
RF, numerous DTs are constructed, and if the RF comprises
k trees, the overall time complexity of constructing the RF
model is O (k *n *m *log [m]).

To make a prediction using a traditional RF, the data
point is passed through each DT in the forest, and the final
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prediction is made by aggregating the predictions of
individual trees. Typically, the time complexity of making a
prediction with an RF is O (k * log [m]), where k denotes
the number of trees in the forest, and log (m) denotes the
average depth of the DT. In this evaluation, two algorithms
were employed to construct the SRF model. The first
algorithm, detailed in Algorithm 1, calculated the attribute
importance values. The second algorithm, outlined in
Algorithm 2, focused on the SRF construction process. To
evaluate the time complexity of Algorithm 1, we analyzed
its performance in the worst-case scenario for size n inputs.
In Algorithm 1, lines 1-4 represent simple operations that
are conducted once. However, line 3 involves the
Relationship Weighted function, which is executed n? times
based on the amount of knowledge and their relationship
in the ontology. In addition, the FOR loop in lines 6-8 is
executed n times. Thus, the total number of executions for
lines 1-8 can be determined from Equation (9).

T, =n?+n+3 9

The REPEAT loop continues until the stopping
condition is satisfied; thus, we assumed that it would be
executed p times. Lines 11-14 include the FOR loop, which
ran n times, and line 16 represents a single statement that
is executed only once. Thus, the execution time for lines
10-16 is obtained from Equation (10).

T, = (pxn)+1 (10)

Therefore, the total time complexity of Algorithm 1 is
calculated from Equation (11).

Tagorithm1 = T1+ T2 = n?2+ (pxn) +n+4 (11)

Consequently, Algorithm 1's complexity is 0(n?),
where n? denotes the function’s highest order of growth.
Note that the SRF procedure is similar to that of the RF
algorithm; therefore, the time complexity of Algorithm 2
is O(k *n*m* (log m)), which is consistent with the time
complexity of the RF algorithm. Finally, the time
complexity of the proposed SRF is 0(n?) + O(k * m = n *
(logm)). In addition, the prediction procedure for an SRF
is similar to that of the traditional RF; thus, the time
complexity for the prediction of the SRF is O (k * log [m]).
These findings suggest that the proposed SRF
reinforcement process has the highest complexity cost in
this implementation. Therefore, when the ontology
contains numerous concepts and relationships, the
algorithm may need considerable time to calculate
attribute  importance values and conduct data
classification. Thus, in the future, we plan to conduct
algorithmic optimizations to achieve a more acceptable
computational complexity cost for the overall process.

3.6 Limitations
The purpose of this study was to enhance the classification
performance of the traditional RF algorithm when applied
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to a cardiovascular dataset, and our main innovation is the
incorporation of domain knowledge into the ensemble
learning method. However, certain limitations are notable
when applying a knowledge-based approach in a clinical
setting. The first limitation relates to knowledge
maintenance. Medical knowledge evolves over time, which
requires the knowledge-based approach to remain
updated with new advancements to achieve optimal
performance. Thus, the ontology used in the SRF must be
adjusted to include the latest knowledge, which is a manual
process conducted by experts. However, maintaining the
ontology, e.g, adding new information or correcting
inaccuracies, is a time-consuming and tedious process. To
streamline this task, integrating ontology learning

techniques (Khadir et al, 2021) that automatically
generate ontologies into the knowledge-based approach
can yield satisfactory results. Although the proposed SRF
framework has its limitations, it can still offer significant
assistance in reducing the mortality rates of cardiovascular
patients. To apply the proposed SRF to other illnesses,
collaboration with established and trustworthy disease
ontologies, e.g., COVID-19 (Sargsyan et al, 2020) and
dengue fever (Mitraka et al, 2015), is essential. By
incorporating these ontologies into the proposed SRF
framework, it will be possible to develop classification
models for these specific conditions. In addition,
adjustments to the SRF’s source code are required to
enable it to learn the characteristics of these diseases.

Algorithm 1: Procedure to determine attribute importance values

Input: Ontology (0), Relationships in ontology (R)

Output: Attribute importance value (Ip)

1 generate an empty set to store the importance values for attributes Ip = {}
2 d=0.85

3 r_weight = RelationshipWeighted (O, R)

4 N = the quantity of concepts present in the ontology O

5 // set an initial importance value for all concepts

6 FOR each 0; where 0; € 0

7 IP(0) =1/N

8 ENDFOR

9 //determine importance value

10 REPEAT

11 FOR each concept 0; has connections from the concept 0; andr € R
12 Ip(0;) = d X Zjeoutlink(i)% +(1-4d)

13 UPDATE Ip with Ip(0;)

14 ENDFOR

15 UNTIL Ip(0;)of all O; no longer changes

16 RETURN Ip

Algorithm 2: Semantic random forest algorithm

Input: Dataset (D), Target Attribute (a;qyge), Number of trees (N), Attribute importance values (Ip)

Output: Semantic Random Forest (SRF)

1 //build the Semantic Random Forest

2 SemanticRandomForest (D, a;yge:, ID)

3 FORi=1toN

4 randomly create subsample D; where D; eD

5 SRF_Tree = Build_SDT (D, G¢qrget, IP)

6 ENDFOR

7 // establish the final decision by using a majority vote

8 SRF = mode (SRF_Tree)

9 RETURN SRF

10 // build each decision tree of the Semantic Random Forest

11 Build_SDT (D, a4y ger, IP)

12 Creating an empty set designated for the decision tree SDT_Tree = {}
13 IF the instances within D; are uniform in class or alternative stopping criteria are activated
14 generate a leaf node that represents the predominant class in D;
15 ENDIF

16 randomly select m attributes from the set of attributes

17 FOR each attribute a; where a; e m and a; # a;qrger

18 AIG(a;) = (Entropy(D;) — Entropy(a;)) + Ip(a;)

19 ENDFOR

20 pese= attribute that achieves the maximum AIG (a;)

21 SDT_Tree = create a decision tree node based on the attribute a; 4
22 Dj;. = create a sub-dataset from D; using the attribute a,;

23 FOR each attribute a; where a; € Dy, and a; # Grqrger

24 // execute the recursive algorithm

25 SDT_Treej= Build_SDT (Djy, Ararger, D)

26 connect SDT_Tree; to the appropriate branch of the SDT_Tree

27 ENDFOR

28 RETURN SDT_Tree

Silpakorn University

11



A smarter forest: Enhancing cardiovascular risk prediction using a knowledge-based random forest

3.7 Extending the SRF model to other medical
domains

The current study focused on cardiovascular risk
prediction; however, the proposed SRF framework has the
potential to be applied to other medical domains. By
modifying key components of the proposed framework,
e.g., feature selection, ontology design, and model training
strategies, the SRF model can be adapted to support a
variety of healthcare applications. To ensure successful
extension, a structured approach that considers key
aspects, e.g., data quality, ontology integration, parameter
tuning, and model evaluation, should be adopted. Ensuring
dataset quality is fundamental when adapting the SRF
model to new medical domains, which involves applying
data preparation techniques, e.g., handling missing values
and implementing feature selection to identify the most
relevant attributes for model training. High-quality data
enhance the model’s predictive power and reliability
across different medical contexts. Another approach to
extending the model is domain-specific feature
engineering. By identifying and incorporating relevant
features from diverse medical datasets, e.g, imaging
biomarkers for radiology or genomic data for precision
medicine, the model can be tailored to new clinical
applications. In addition, transfer learning techniques (Tan
et al, 2023) can facilitate adaptation by leveraging
knowledge from cardiovascular risk prediction to train
models for other diseases with minimal retraining.

Furthermore, a critical component of adaptation is
ontology customization and integration. Incorporating
well-validated disease ontologies, e.g., those for cancer
(Polpinij, 2011), diabetes (Spoladore et al, 2024), or
neurological disorders (Jensen et al, 2013), into the
knowledge-based component of the SRF model would
enable it to capture specialized relationships and improve
prediction accuracy for different medical conditions.
Ensuring the use of robust ontologies enhances the model’s
generalizability across medical domains. In addition,
parameter tuning is essential in terms of achieving
satisfactory performance when extending the model
Selecting an appropriate number of decision trees,
optimizing the hyperparameters, and adjusting the model
configurations based on the characteristics of the new
dataset can enhance the predictive accuracy and efficiency.
Finally, to validate the model's adaptability, a cross-
domain evaluation should be performed. Applying the
proposed SRF model to diverse medical datasets and
assessing its performance using key metrics, e.g., accuracy,
precision, recall, and the F1-score, will ensure its
effectiveness across different healthcare applications, and
we can refine the methodology and improve its robustness
through rigorous evaluations.

By following this structured approach, i.e., ensuring
data quality, utilizing reliable ontologies, tuning parameters,
and evaluating results, the SRF model can be extended
beyond cardiovascular risk prediction, thereby making it a
versatile tool for a wider range of medical applications.

4. CONCLUSION

This paper has proposed the SRF framework to improve
the classification of cardiovascular disease. The proposed
SRF framework combines the traditional RF algorithm
with the weighted semantic PageRank method to
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determine attribute importance. By considering both the
statistical significance and contextual relevance of
features, the proposed SRF framework selects features
that enhance the overall classification accuracy. In
addition, incorporating ontological knowledge into the
SRF framework provides a structured representation of
medical concepts, relationships, and axioms, and this
structured knowledge guides each DT in the SRF, which
enables more informed and precise predictions about
heart disease. Compared with the baseline RF, AdaBoost,
and gradient boosting algorithms, the proposed SRF
framework outperforms in terms of accuracy and MCC.
Furthermore, the use of diverse subsampling techniques
enhances the ensemble’s ability to generalize across
datasets, thereby reducing overfitting and improving the
robustness of the predictions.

However, the success of the proposed SRF framework
is strongly dependent on the quality of the ontology. Thus,
an inadequate or outdated ontology can yield incorrect
attribute importance values, which would result in
inaccurate classifications. Therefore, ongoing human
oversight is required to maintain and update the ontology
to ensure sufficient relevance and accuracy. The ontology
must evolve alongside medical knowledge advancements
to maintain the effectiveness of the proposed SRF
framework. We acknowledge that ontology information
extraction and processing can be time-consuming tasks,
particularly when handling large datasets. To address this
limitation, we suggest two potential solutions. One
approach involves applying feature selection and
dimensionality reduction techniques to minimize the
number of features used during the model training
process. By reducing the dimensionality of the dataset, we
can decrease the computational complexity and improve
the processing time without significantly compromising
the model’s accuracy. Another promising strategy is
ontology pruning using DeepOnto (He et al., 2024), which
is a Python package designed for ontology engineering.
Pruning reduces the size and complexity of the ontology,
thereby decreasing the time required for ontology extraction
and processing in the SRF model. This optimization can
improve computational efficiency significantly while
maintaining the semantic integrity of the ontology-based
knowledge representation. Thus, in future work, we plan
to investigate and implement these strategies to further
optimize the method. In addition, future research will also
focus on refining the SRF by incorporating additional
techniques, e.g., instance weighting, that effectively handle
unbalanced data by assigning different weights to
instances based on importance, frequency, or by adjusting the
influence of knowledge to achieve optimal performance for
each dataset. Furthermore, examining the integration of
probabilistic ontologies or knowledge graphs is expected
to enhance the proposed SRF framework’s ability to
capture and utilize complex medical knowledge.

To this end, the proposed SRF framework represents a
significant advancement in the application of knowledge-
based systems to medical diagnosis. Its integration of
structured ontological knowledge and advanced ML
techniques positions it as a powerful tool to predict heart
disease and other complex medical conditions. As the SRF
framework continues to evolve, it holds promise for
advancing computer-aided diagnosis and improving patient
outcomes by realizing more accurate disease prediction
models.
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Supplementary: Weighted Semantic
PageRank approach

The weighted semantic PageRank method (Chanmee &
Kesorn, 2023) is employed to determine the importance
value of each attribute. Here, let C be the set of concepts
and R be the set of relationships in the ontology, where
¢, € C represents a concept in the ontology, and r € R is
a relationship linking each concept. First, the weight of
each relationship is determined based on the frequency
of a relationship for a specific concept (FR) and the
inverse value of the FR (IFR). The weight of each
relationship is calculated using Equations (12)-(14)
(Chanmee & Kesorn, 2023).

f(rca) (12)

max{f(x,cq):x € R}

FR(r,cy) =

Where, FR(r, c,) represents a frequency relationship for
concept ¢,, and f(r,c,) is the number of relationships
I associated with concept c,, which is the starting
concept linked to another concept in the ontology. The
term max{f(x,c,)} indicates the highest number of
relationships associated with that concept.

IC]
tr(r)

IFR(r,C) = log (13)
Where, |C| denotes the total number of concepts in the
ontology, and tc(r) denotes the total number of starting
concepts of relationship r.

W(r,c) = FR(r,c,) X IFR(r,C) (14)

Where, W (r, c) denotes the weight of relationship r, which
is associated with concept c,.

The next step is determining the concept’s importance
value, which is calculated as follows (15):

IP(Cy) = deelink% +(1-d) (15)
where Ip(c,) denotes the importance value of concept cg,
Ip(cp) denotes the importance value of concept ¢, and
W(r,c,) indicates the weight of the relationship r
associated with concept ¢;,. In addition, link(a) refers to the
set of concepts connected to concept c,.

Figure S1, which shows an example ontology for the
cardiovascular disease domain, illustrates the process of
computing the attribute importance values. The example
ontology comprises five concepts, i.e, Gender, Patient,
Chest Pain, Dyspnea, and Chest Pressure, and three

types of relationships, i.e., has_gender, has_symptom, and
is_subclass.

As shown in Figure S1, Patient is the starting concept
of the has_gender and has_symptom relationships, and
Chest Pressure is the starting concept of the is_subclass
relationship. The Patient concept is connected to another
concept by one has_gender link and two has_symptom
links. As a result, the FR of the has_gender relationship

is %, and that of the has_symptom relationship is % The

Chest Pressure concept is connected to another concept
by one link of the is_subclass relationship; therefore, the
FRis .

As shown in Figure S1, the ontology contains a total
of five concepts, and each relationship is connected to a

single concept. As a result, the IFR of each concept is
log % =0.7.
The weight of each relationship is computed using

Equation (14), resulting in the following.
- W(has_gender, Patient) = 0.5x0.7=0.35
- W(has_symptom, Patient) = 1x0.7=0.7
- W(is_subclass, ChestPressure) = 1x0.7=0.7

Computing the importance value for each concept is an
iterative process in which the values are updated
continuously until convergence is achieved. In the first

iteration, the importance value is initialized as o and then

the importance value becomes% = 0.2.The importance value

of the Chest Pain concept, which is associated with the
Patient and Chest Pressure concepts, can be computed as
follows.

Ip(ChestPain) = 0.85 x ((
=0.388

a7y, (M)) +(1-0.85)

0.35+0.7+0.7, 0.7

For the Patient concept, which does not have any other
conceptlinked to it, the importance value can be calculated
as follows.

Ip(Patient) = 0.85 x 0 + (1 — 0.85)
= 0.150

Note that the importance values of the remaining
concepts can be computed using the same approach. The
computed importance values are used in the subsequent
iteration and updated iteratively until they remain
unchanged. The results of this example are shown in
Table S1.

____ is_subclass = ___.---___

Q\'O l”‘ .\\\ // \\\

& 1 Chest Pain  ¢——— i Chest Pressure

S - - \‘~ ~~~~~~~ PR

SN has_gender ____X°® /’ -
*  Gender ,‘,4—( Patient

--------- /73 ""‘___‘N\\
S 7 \
Sy, . Dyspnea
’77,0[ ~ o

0,77 -------

Figure S1. Example of an ontology for the cardiovascular disease domain
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Table S1. Importance value of each concept

Concept Importance value (0;)
First iteration Second iteration Third iteration
Gender 0.184 0.176 0.176
Patient 0.150 0.150 0.150
Chest Pain 0.388 0.329 0.329
Dyspnea 0.218 0.201 0.201
Chest Pressure 0.150 0.150 0.150
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