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ABSTRACT 
 
Predicting heart disease and other cardiovascular issues accurately is critical for 
enabling early intervention and improving patient outcomes. This study proposed 
the semantic random forest (SRF) framework, which enhances the classification 
performance of conventional random forest (RF) algorithms for heart disease 
prediction. The conventional RF framework is augmented through the integration of 
knowledge from a formal ontology model that encapsulates domain-specific medical 
knowledge, thereby providing a structured representation of concepts, relationships, 
and axioms. The SRF framework utilizes this ontology during the classification 
process to yield more precise predictions. The effectiveness of the proposed SRF 
framework was evaluated against the conventional RF, AdaBoost, and gradient 
boosting algorithms, with a focus on their ability to classify heart disease instances 
accurately. Experimental results demonstrate that the proposed SRF framework 
outperformed the baseline algorithms on two datasets, achieving the highest 
accuracy and Matthews correlation coefficient values of 0.8296 and 0.6589 on the 
University of California at Irvine dataset and 0.9856 and 0.9706 on Mendeley 
dataset, respectively. The results demonstrate that ontology-based structured 
knowledge significantly improves the classification power of traditional RF 
algorithms, which highlights this knowledge-driven approach’s potential to predict 
heart disease risks in computer-aided medical diagnoses. 
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1. INTRODUCTION                                    
 
Heart disease is a prevalent cause of morbidity and 
mortality globally, with approximately 17.9 million deaths 
reported in 2019 (AlGhanem et al., 2020; Ed-daoudy et 
al., 2023), and cardiovascular diseases, including heart 
disease and stroke, comprise approximately 31% of all 
deaths globally. The risk factors for heart disease include 
nonmodifiable demographic factors, e.g., age, gender, and 
family history, and modifiable lifestyle factors, e.g., 
smoking, physical inactivity, obesity, diabetes, and 

hypertension (Ishak et al., 2020). Predicting an 
individual’s cardiovascular disease risk accurately is 
essential to facilitate timely preventive measures and 
mitigate health burdens. Conventional risk prediction 
models utilize multivariate regression techniques based 
on a limited set of established risk factors (Kwon et al., 
2020); however, these models frequently demonstrate 
suboptimal predictive performance due to restrictive 
assumptions and their inability to capture the complex, 
nonlinear relationships among risk factors (Shouman et 
al., 2011). Recent advancements in machine learning (ML) 
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present opportunities to improve cardiovascular risk 
prediction accuracy. ML algorithms, notably the random 
forest (RF) algorithm, have exhibited promising results in 
various medical applications, including cardiovascular 
disease prediction and diagnosis (Hossain et al., 2023; 
Shanmugasundaram et al., 2018). 
       The proposed approach combines the advantages of 
RFs with domain-specific knowledge about cardiovascular 
risk factors to enhance the predictive accuracy and clinical 
utility of the traditional RF model. Typically, conventional 
risk prediction models for cardiovascular disease rely on 
multivariate regression techniques, e.g., logistic regression 
and Cox proportional hazard models (Harrell, 2001), 
which use a limited set of well-established risk factors to 
estimate an individual’s risk of developing cardiovascular 
disease. However, these models apply restrictive 
modeling assumptions, they cannot detect the complex, 
nonlinear relationships between risk factors, and they 
provide suboptimal predictive performance (Tripoliti et 
al., 2017). 
       RF comprises ensemble-based ML algorithms that 
combine multiple decision trees (DTs) to make 
predictions. Unlike traditional regression models, RFs can 
handle the complex, nonlinear relationships between 
variables and are less susceptible to overfitting (Shouman 
et al., 2011). Several studies have demonstrated the 
potential of RFs and other ML algorithms in cardiovascular 
disease prediction and diagnosis (Dinh et al., 2019). These 
models accurately identify individuals at high risk of 
developing cardiovascular disease and detect specific 
cardiovascular conditions, e.g., heart failure. The RF 
method has seen significant advancements through the 
introduction of the WildWood (WW) algorithm, which was 
proposed by Gaïffas et al. (2023). This novel ensemble 
algorithm enhances traditional RF methods by 
innovatively utilizing out-of-bag samples for prediction 
aggregation. Conventional RF techniques rely solely on 
leaf nodes for predictions; however, WW’s distinguishing 
feature is its ability to aggregate predictions from every 
possible subtree within each decision tree. This 
comprehensive approach employs an exponential 
weighting mechanism that incorporates the complete 
tree structure, which results in more refined decision 
boundaries. Through context tree weighting and 
histogram-based split optimization, WW delivers 
exceptional computational performance while producing 
results that match or surpass current state-of-the-art 
algorithms. This combination of improved accuracy and 
interpretability establishes WW as a significant 
advancement in ML ensemble methods. Incorporating 
knowledge-based approaches into ML algorithms is an 
important area of research. These methods leverage 
domain-specific knowledge to improve ML models’ 
performance and interpretability (Miraftabzadeh et al., 
2021). A representative example is theory-guided data 
science, which emphasizes the integration of domain 
knowledge into the data analysis and model development 
process (Karpatne et al., 2017; Chanmee & Kesorn, 2021). 
This approach has been examined in various fields and 
offers promising avenues for scientific discovery and 
supporting decision-making processes. However, most 
existing ML-based approaches treat risk factor 
relationships as purely data-driven patterns without 
incorporating domain-specific knowledge, which can  
 

result in models that lack interpretability and clinical  
relevance. In addition, ML models trained solely on 
historical data frequently fail to generalize well to new 
populations because they do not explicitly integrate 
expert-driven insights into cardiovascular disease 
mechanisms. To address these gaps, this study proposed a 
semantic RF (SRF) model that integrates domain expertise 
into the learning process to improve the performance of 
cardiovascular risk prediction. Unlike traditional RF 
models, which rely solely on statistical correlations, the 
proposed SRF method enhances decision-making 
processes by embedding structured knowledge about 
cardiovascular risk factors, thereby improving both 
interpretability and predictive accuracy. 
       Chanmee and Kesorn (2021) introduced the “semantic 
data mining” concept after surveying the use of domain 
ontologies and overcame the limitations of traditional 
methods. A knowledge-based approach enables a deeper 
understanding of data that goes beyond statistical patterns 
to uncover meaningful insights. Chanmee and Kesorn 
(2023) also proposed the semantic DT (SDT) method to 
incorporate a knowledge base into a DT algorithm, which 
improves the traditional Iterative Dichotomiser 3 (ID3) 
algorithm by leveraging domain expertise. This 
integration allows the SDT method to exploit structured 
knowledge, potentially resulting in more accurate and 
interpretable DTs. Inspired by this approach, the proposed 
ensemble-based SRF method integrates expert knowledge 
into the DT induction process. Similar knowledge-based 
enhancements have been applied successfully in other 
domains and ML techniques, e.g., the ARIMAXS model 
(Juraphanthong & Kesorn, 2024, 2025) for COVID-19 
incidence prediction, highlighting the value of integrating 
structured semantic information into predictive modeling. 
The primary contributions of this study are threefold. 
First, it proposes the SRF framework, which incorporates 
domain-specific knowledge into the RF model 
development process. Second, it evaluates the predictive 
performance of the proposed SRF framework by 
comparing it with traditional RF methods and other ML 
algorithms on cardiovascular risk prediction tasks. Finally, 
the findings demonstrate that incorporating domain 
knowledge can enhance the accuracy and clinical utility of 
ML models for cardiovascular risk prediction. 
       This study builds on our previous research on 
semantic data mining (Chanmee & Kesorn, 2021) and 
SDTs (Chanmee & Kesorn, 2023, 2024), which 
demonstrated that incorporating domain knowledge  
into tree-based algorithms enhances their reasoning 
capability. The main difference between the current study 
and our previous work (Chanmee & Kesorn, 2024) is the 
application of various sampling methods to determine 
which method is the most suitable for collaborating with 
ontology knowledge to enhance the performance of  
the tree-based ensemble approach. By incorporating 
structured cardiovascular knowledge into the RF 
modeling process, the proposed SRF framework aimed to 
achieve higher predictive accuracy by integrating expert-
driven risk factor relationships, improved interpretability 
for clinical decision-making, thereby enabling medical 
professionals to better understand and trust model 
predictions, and greater generalizability to diverse 
populations, thereby reducing the bias inherent in purely 
data-driven approaches. 
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2. MATERIALS AND METHODS 
 
The architecture of the proposed SRF framework is shown 
in Figure 1. As can be seen, the SRF framework comprises 
three primary components, i.e., data preparation, SRF 
construction, and evaluation. Each component is described 
in detail in the following subsections, including the 
materials and processes utilized in this study. 
 
2.1 Materials 
To evaluate the proposed SRF framework, we utilized two 
public cardiovascular disease datasets. The first dataset, 
sourced from the University of California, Irvine (UCI) data 
repository (Andras Janosi, 1988), contains 303 records 
with 14 attributes. The second dataset, found in the 
Mendeley data repository (Maghdid & Rashid, 2022), is an 
unbalanced dataset containing 1,319 samples and nine 
attributes. Note that both datasets include patient 
demographics, disease signs, and physical test results, e.g., 
age, gender, heart rate, and blood pressure. The details of 
these datasets are given in Table 1. The main distinction 
between these datasets lies in their attribute types. The 
first dataset comprises both nominal and numerical 
attributes, while most of the attributes in the second 
dataset are numerical. The presence of numerous nominal 
attributes in the first dataset raises concerns about 
potential bias in the attribute selection for DT nodes, which 
could impact classification performance because attributes 
with a larger number of values are more likely to be 
selected. In contrast, the second dataset, with just one 
nominal attribute, is less susceptible to this issue. 
       To address the bias selection problem and enhance the 
classification performance, we integrated the heart failure 
ontology (Wang, 2015) into the SRF construction process. 
This ontology encompasses 1,652 classes of heart failure 
information, covering disease signs, symptoms, and causes, 
as well as diagnostic tests. The process of designing and 
selecting an ontology involves several key steps. First, the 
scope of the ontology is defined. Then, existing ontologies 
are assessed for their relevance to the study area. 
Subsequently, the concepts and their interrelationships 
are examined using the Protégé (Knublauch et al., 2004)  

ontology editing tool. Finally, the ontology that is most 
relevant to the examined datasets is selected for use in the 
proposed SRF. To update and maintain an ontology 
effectively, several critical tasks must be completed, e.g., 
adding new concepts, refining existing definitions, merging 
duplicates, and removing outdated entities, to ensure the 
ontology’s accuracy and relevance. Regular reviews and 
audits are also required to maintain consistency and 
alignment with the latest domain knowledge. We also 
handle change management and ensure efficient ontology 
evolution by implementing versioning and, in certain 
instances, automated updates using ML. 
 
2.2 Data preparation 
In this study, we employed the list-wise deletion method 
(Emmanuel et al., 2021) to address missing data in the 
datasets, where samples with missing values were 
removed. In addition, we utilized the interquartile range 
(IQR) measure (Smiti, 2020) to identify and remove 
outliers. For the numerical attributes, each attribute’s 
values were divided into four equal parts, and the IQR was 
calculated using the first quartile (Q1) and the third 
quartile (Q3). Any value that falls below Q1 − 1.5 × IQR or 
exceeds Q3 + 1.5 × IQR was identified as an outlier and 
removed from the dataset. Statistical methodologies, 
including the Chi-squared test (McHugh, 2013) and 
point-biserial correlation (Verma, 2019) methods, were 
employed in the feature selection process to assess the 
relationship between the attributes and the target class. 
Here, attributes that elicited a p-value of less than 0.05 
from these statistical tests were viewed as correlated with 
the target classes and were included in the construction of 
the proposed SRF. In addition, the synthetic minority over-
sampling technique (SMOTE) (Chawla et al., 2002) was 
employed to address class imbalance in the cardiovascular 
dataset obtained from the Mendeley data repository. 
Finally, the cleaned datasets were divided into training and 
testing data at a ratio of 70:30 for the subsequent 
processes. The number of samples in the datasets after the 
data preparation process is presented in Table 2, and 
examples of each dataset are shown in Figure 2. 

 

 
 
Figure 1. Architectural framework of the proposed SRF model 
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Table 1. Datasets used to evaluate the performance of the proposed SRF framework 
 

Attribute Data type Description 
Heart disease (UCI) 
age Numerical Age of patient 
sex Nominal Sex of patient 
cp Nominal Type of chest pain  
Thresbps Nominal Resting blood pressure 
chol Numerical Serum cholesterol 
fbs Nominal Fasting blood sugar levels above 120 mg/dL. 
restecg Nominal Resting electrocardiographic results 
thalach Numerical Maximum heart rate attained 
exang Nominal Exercise-induced angina 
oldpeak Numerical ST depression caused by exercise compared with rest 
slope Nominal Slope of the peak exercise ST segment 
ca Numerical Number of major vessels (ranging from 0–3) identified by fluoroscopy 
thal Numerical A blood disorder known as thalassemia 
num Numerical diagnosis of heart disease 
Heart disease (Mendeley) 
age Numerical Age of patient 
gender Nominal Sex of patient 
impulse Numerical Heart rate 
pressurehigh Numerical Systolic blood pressure 
pressurelow Numerical Diastolic blood pressure 
glucose Numerical Blood sugar 
kcm Numerical Creatine kinase MB 
troponin Numerical Troponin test 
class Nominal diagnosis of heart disease 

 
Table 2. Number of samples in each dataset after data preparation 
 

Dataset Number of samples Total number of samples 

Positive class 
(presence of disease) 

Negative class 
(absence of disease) 

 

Heart disease (UCI) 137 160 297 
Heart disease (Mendeley) 319 319 638 

 

 
 
Figure 2. Representative samples from the UCI and Mendeley datasets 
 
2.3 SRF mantic random forest construction 
This section outlines the process of leveraging knowledge 
to enhance classification performance. Based on DTs, the 
proposed SRF is an ensemble method that utilizes the ID3 
algorithm, which is integrated with knowledge from 
the ontology. This knowledge was used to assess each  

attribute’s significance, thereby helping the algorithm 
identify the key attributes for building each DT in the SRF. 
       In this study, the weighted semantic PageRank method, 
as used by Chanmee and Kesorn (2023), was employed to 
evaluate each attribute’s significance based on the concepts 
and relationships in the ontology. The computation of the 
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attribute importance value is described in the Appendix 
(Table S1). The process of constructing the SRF is shown in 
Figure 3. Here, multiple subsamples were generated to 
enhance diversity and reduce the ensemble classifier’s 
generalization error. Each subsample served as training data 
to construct an individual DT within the SRF. The random 
subspace technique (Ho, 1998) was also employed to 
increase diversity by randomly selecting subsets of features 
rather than using the entire set of features. In constructing 
the DT, we calculated the information gain (IG), which 
served as the splitting criterion in the ID3 algorithm. To 
counteract bias favoring attributes with many values, we 
adjusted each attribute’s IG using the importance values 
obtained from the ontology to ensure that significant 
attributes with fewer values were more likely to be selected 
as nodes in the DT. The altered IG was calculated using 
Equations (1)–(3). 

                         𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐷𝐷) = ∑ 𝑝𝑝𝑖𝑖
𝑗𝑗
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖      (1) 

where, Entropy (D) represents the entropy of dataset D, 
which comprises j classes, and 𝑝𝑝𝑖𝑖 denotes the probability of 
the samples being classified into class i. 

                 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐴𝐴) = ∑ |𝐷𝐷𝑣𝑣|
|𝐷𝐷|

𝑚𝑚
𝑣𝑣=1  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐷𝐷𝑣𝑣) (2) 

where, Entropy (A) represents the average entropy of 
attribute A, which possesses m unique values, |𝐷𝐷|denotes 
the total number of samples in dataset D, and |𝐷𝐷𝑣𝑣| denotes 
the number of samples for attribute A with value v. In 
addition, Entropy (Dv) represents the entropy of attribute 
A for the specific value v (Han et al., 2011). 

        𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐷𝐷) − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐴𝐴)� + 𝐼𝐼𝐼𝐼(𝐴𝐴) (3) 

where, AIG(A) represents the altered IG for attribute A, and 
Ip(A) denotes the importance value of attribute A. 

       Note that each DT was constructed to its maximum 
depth without undergoing pruning. To derive the final 
classification result, the outcomes from each DT were 
aggregated, and a majority vote was employed to 
determine the overall classification. 
       Figure 4 shows the fundamental difference between 
how the proposed SRF and the conventional method 
approach the DT construction process when analyzing 
the same dataset. The proposed SRF incorporates 
domain knowledge through a heart failure ontology, 
which provides crucial context about the relative 
importance of different attributes in the diagnosis of 
cardiovascular disease. In the conventional methods, 
when constructing individual DTs, attributes like Age 
and Chest Pain are initially considered based on random 
selection. Then, the algorithm calculates the IG for these 
attributes to determine their splitting effectiveness. 
Although the Chest Pain attribute is a direct clinical 
indicator of cardiovascular disease, the traditional DT 
method selects the Age attribute as the root node simply 
because it shows higher IG. This selection pushes the 
more diagnostically relevant Chest Pain attribute 
further down the tree, which results in a more 
convoluted structure that may compromise the 
diagnostic accuracy of the model. The proposed SRF 
addresses this limitation by synthesizing two key 
factors, i.e., the attribute importance values derived 
from the heart failure ontology and the calculated IG. 
This integrated approach ensures that attributes are 
evaluated based on both their statistical properties and 
their clinical significance. Thus, the Chest Pain attribute 
is selected as the root node, thereby creating a DT 
structure that better reflects medical knowledge and 
potentially enhances the model’s ability to classify heart 
failure accurately.

 
 

 
 
Figure 3. Systematic construction and implementation of SRF 
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Figure 4. Diagram illustrating the influence of attribute importance values on the node selection mechanism 
 
2.4 Evaluation 
In this study, standard performance metrics were used to 
evaluate and validate the proposed SRF framework. Here, 
accuracy was used to assess the proposed SRF’s overall 
performance, and the Matthews correlation coefficient (MCC) 
(Chicco & Jurman, 2020) was used as an alternative metric, 
offering robustness in the presence of unbalanced datasets 
and maintaining its value when positive and negative classes 
were interchanged. The MCC value ranges from −1 to 1, where 
−1 indicates extreme misclassification, 1 indicates perfect 
classification, and 0 indicates random guessing by the classifier.  
       The accuracy and MCC are defined in Equations (4) and 
(5), respectively. 

                           𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                            (4) 
 

            𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑇𝑇×𝑇𝑇𝑁𝑁−𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)×(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)×(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)×(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

            (5) 

where, TP represents the number of instances correctly 
classified as cardiovascular disease, TN represents the 
number of instances correctly classified as the absence of 
cardiovascular disease, FP represents the number of instances 

of absent cardiovascular disease incorrectly classified as 
cardiovascular, and FN represents the number of 
cardiovascular disease instances incorrectly classified as 
absent. 
 
 
3. RESULTS AND DISCUSSION 
 
After preprocessing, the cleaned UCI dataset comprised 11 
attributes and 297 records, and the cleaned Mendeley 
dataset comprised four attributes and 853 records. In 
addition, various tree-based ensemble methods were 
employed to perform a comparative analysis of the 
proposed SRF.  
 
3.1 Feature selection 
In this experiment, statistical techniques, i.e., the Chi-
squared (𝑋𝑋2) test and point-biserial correlation (𝑅𝑅𝑝𝑝𝑝𝑝), 
were utilized to identify the attributes associated with the 
defined classes in the datasets. Table 3 shows the results of 
the statistical tests. In this evaluation, an association was 
indicated when the p-value of a statistical test between an 
attribute and the target class was less than 0.05. 

 
Table 3. Results of Chi-squared test and point-biserial correlation analysis 
 

Attribute 𝑹𝑹𝒑𝒑𝒑𝒑 p-value Attribute 𝑿𝑿𝟐𝟐 p-value 
Heart disease (UCI) 
age 0.227** < 0.001 sex 23.030** < 0.001 
Thresbps 0.153** 0.008 cp 77.276** < 0.001 
chol 0.080 0.168 fbs 0.003 0.956 
thalach -0.424** < 0.001 restecg 9.576** 0.008 
oldpeak 0.424** < 0.001 exang 52.730** < 0.001 
ca 0.463** < 0.001 slope 43.473** < 0.001 
   thal 82.460** < 0.001 
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Table 3. Results of Chi-squared test and point-biserial correlation analysis (continued) 
 

Attribute 𝑹𝑹𝒑𝒑𝒑𝒑 p-value Attribute 𝑿𝑿𝟐𝟐 p-value 
Heart disease (Mendeley) 
age 0.238** < 0.001 gender 11.36** < 0.001 
impulse 0.007 0.801    
pressurehigh -0.021 0.449    
pressurelow -0.010 0.726    
glucose -0.033 0.230    
kcm 0.218** < 0.001    
troponin 0.229** < 0.001    

       In the UCI dataset, the “chol” and “fbs” attributes were 
unrelated to the target class. However, in the Mendeley 
dataset, no association was found between the “impulse,” 
“pressurehigh,” “pressurelow,” and “glucose” attributes 
and the target class. Thus, these uncorrelated attributes 
were removed from the datasets. Consequently, eleven 
attributes from the UCI dataset and four attributes from 
the Mendeley dataset were used to construct the SRF. 
 
3.2 Sampling method examination 
In ensemble learning, generating multiple data subsamples 
to construct uncorrelated individual classifiers is a 
strategy utilized to enhance diversity, which directly 
influences the performance of the ensemble classifier 
(Kuncheva & Whitaker, 2003). Thus, this experiment 
attempted to identify the most effective sampling method 
that incorporates the ontological knowledge to generate 
uncorrelated DTs. In this study, various techniques to 
generate subsample data to optimize the performance of 
the proposed SRF were investigated. The first method was 
bagging (Han et al., 2011), which is a widely used technique 
in the RF algorithm. The bagging approach randomly 
selected samples with replacement, comprising 63.2% of 
the original training data, and the remaining samples were 
duplicates. The second method involved varying the 
sampling rate between 60% and 80%, as discussed by 
Adnan and Islam (2015). Here, the remaining portion of 
the subsample data was generated by randomly 
duplicating data from the initially selected 30%. The third 
method adopted the sampling approach employed in the 
balanced decision forest (BDF) technique (Adnan et al., 
2021), which involves adjusting both the number of 
samples and the number of random features. Specifically, 
an inverse relationship exists between the number of 

selected samples and the number of random features. As 
the number of samples increases, the number of features 
decreases (and vice versa). For example, when the 
proportion of subsample data comprises 37% of the total 
dataset, the number of features in the random subset used 
to construct the DT comprises approximately 99% of the 
total available features. In this experiment, 100 DTs were 
constructed for the proposed SRF. The classification 
results obtained by the proposed SRF framework using 
different sampling methods are shown in Figure 5. 
       The classification results indicate that using a variable 
sampling rate between 60% and 80% to generate 
subsample data yielded the highest performance 
compared with other approaches tested on both datasets. 
Figure 5(a) shows the accuracy of the SRF’s classification 
results obtained using different sampling methods. For the 
UCI dataset, applying the variable sampling rate method to 
generate subsample data results in an accuracy of 0.8296. 
However, utilizing the bagging method resulted in an 
accuracy of 0.8239, which was reduced to 0.8085 with the 
BDF-based method for subsample data generation. For the 
Mendeley dataset, the proposed SRF framework with the 
variable sampling rate method achieved the highest 
classification accuracy of 0.9856. In comparison, the SRF 
framework with the bagging method achieved an accuracy 
of 0.9850, and the BDF-based method resulted in an 
accuracy of 0.9842. These findings suggest that the BDF-
based method is less effective than the varying sampling rate 
method. In the BDF-based method, if a low sampling rate is 
selected at random, there is a risk of using nearly all 
attributes to construct the DT, which can result in significant 
attributes, identified as important by integrating knowledge 
into the algorithm, being frequently selected as nodes. This 
may lead to the creation of redundant DTs. 

 

Figure 5. Comparison of classification results obtained by the proposed SRF using different sampling techniques 
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       The MCC was also employed to evaluate the effectiveness 
of each subsampling method (Figure 5-b) aligning with the 
accuracy measurements. Utilizing varying sampling rates for 
subsample data demonstrates superior performance compared 
with the alternative methods. The MCC value for the varying 
sampling rate method was 0.6589 for the UCI dataset and 
0.9706 for the Mendeley dataset. In addition, the precision, 
recall, and F1-score metrics for each target class are reported 
in Table 4. These metrics are derived from the confusion 
matrix, which consists of the following terms: 
       Precision measures the proportion of correctly predicted 
positive instances among all instances predicted as positive. 
It is defined as (6): 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (6) 

       A high precision indicates that when the model predicts 
a positive class, it is likely to be correct. 
       Recall (also called Sensitivity or True Positive Rate) 
measures the proportion of correctly predicted positive 
instances among all actual positive instances. It is given by (7): 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (7) 

       A high recall indicates that the model is good at 
identifying all positive instances. 
       F1-score is the harmonic mean of precision and recall. 
It balances both metrics and is useful when we need to 
consider both false positives and false negatives equally. It 
is calculated as (8): 

 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  (8) 

       This metric ensures that both precision and recall are 
maximized, preventing an imbalance between the two. The 
F1-score provides a single score that considers both 
precision and recall, making it useful for evaluating models 
where both false positives and false negatives are 
significant concerns.  There is often a trade-off between 
precision and recall. Increasing precision may lead to a 
decrease in recall and vice versa. For example, if a model is 
very conservative in labeling positive instances, precision 
may increase, but recall may decrease because fewer true 
positives are detected. 
       The results demonstrate that the varying sampling rate 
method achieved strong performance across all metrics on 
both datasets. The experimental results indicate that 
varying the sampling rate improved the classifier 
performance compared with the traditional techniques, 
e.g., the bagging method. However, when the BDF-based 
method was employed to generate multiple subsample 
datasets, the proposed SRF framework produced 

unsatisfactory results. These findings emphasize the 
importance of selecting a sampling method that effectively 
integrates the available knowledge to realize satisfactory 
classification performance. 
       As shown in Figure 6, the dataset includes attributes A1 
through A5, with attribute A3 having the highest 
importance. When the varying sampling rate method is 
employed, a maximum of three attributes are used to 
construct each DT. As a result, attribute A3 may not be 
selected as the root node, leading to the creation of DTs 
with different structures. However, when the BDF-based 
method is used, most attributes are employed to construct 
the DT, depending on the sample size. This increases the 
probability of selecting attribute A3 as the root node, 
thereby resulting in the generation of identical DTs. If all 
DTs in the proposed SRF yield the same classification 
outcomes, the improvement in classification performance 
may be minimal. However, when the varying sampling rate 
method is utilized, the attributes are selected randomly in 
consistent quantities for the node selection process, which 
enhances the likelihood of selecting diverse root nodes for 
the DT, and this enables the generation of distinct DTs in 
the proposed SRF and consequently improving the 
classification performance. 
 
3.3 Comparison with tree-based ensemble 
algorithms 
We also conducted an experiment to compare the 
classification performance of the SRF framework with 
existing ensemble algorithms, e.g., the RF, AdaBoost, and 
gradient boosting algorithms. Here, each algorithm utilized 
100 DTs, and the final outcomes were obtained by 
averaging the results obtained over 30 experiments. As 
shown in Table 5, the proposed SRF framework 
outperformed the other tree-based ensemble algorithms in 
terms of accuracy and MCC. On the UCI dataset, the SRF 
framework obtained the highest accuracy of 0.8296. In 
contrast, the RF, AdaBoost, and gradient boosting 
algorithms obtained lower classification accuracies of 
0.8141, 0.8170, and 0.7978, respectively. Note that similar 
trends were observed when analyzing the Mendeley 
dataset. On this dataset, the proposed SRF framework 
achieved a classification accuracy of 0.9856, which was the 
highest among the evaluated algorithms. In comparison, 
the RF, AdaBoost, and gradient boosting algorithms 
obtained accuracy values of 0.9807, 0.9817, and 0.9794, 
respectively. In addition, the MCC was used as a validation 
measure for the proposed SRF framework. On both 
datasets, the proposed SRF achieved the highest MCC 
scores, obtaining a value of 0.6589 on the UCI dataset and 
0.9706 on the Mendeley dataset. 

 
Table 4. Performance metrics (precision, recall, and F1-score) of the SRF with various sampling techniques 
 

Dataset Sampling 
method 

Positive class (presence of disease) Negative class (absence of disease) 
Precision Recall F1-score Precision Recall F1-score 

Heart disease 
(UCI) 

Bagging 0.8241 0.7773 0.8000 0.8232 0.8631 0.8427 
Varying 
sampling rate 

0.8343 0.7837 0.8082 0.8284 0.8714 0.8494 

BDF-based 
method 

0.8063 0.7664 0.7859 0.8129 0.8460 0.8291 

Heart disease 
(Mendeley) 

Bagging 0.9870 0.9790 0.9830 0.9840 0.9902 0.9871 
Varying 
sampling rate 

0.9873 0.9793 0.9833 0.9843 0.9904 0.9874 

BDF-based 
method 

0.9881 0.9751 0.9816 0.9812 0.9912 0.9861 
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Figure 6. Example of the SRF construction process using different sampling methods 
 
Table 5. Performance comparison of proposed SRF framework and other ensemble learning algorithms 
 

Dataset Algorithms Accuracy MCC 
Heart disease (UCI) SRF 0.8296 0.6589 

RF 0.8141 0.6319 
AdaBoost 0.8170 0.6367 
Gradient boosting 0.7978 0.5978 

Heart disease (Mendeley) SRF 0.9856 0.9706 
RF 0.9807 0.9606 
AdaBoost 0.9817 0.9628 
Gradient boosting 0.9794 0.9580 

 
       The knowledge derived from the ontology, particularly 
in terms of the attribute importance values, helps the 
algorithm identify significant attributes to serve as nodes in 
each DT of the SRF. Integrating relevant attributes into the 
model construction process further improves the classification 
performance (Spencer et al., 2020); however, slight differences 
were observed in the classification performance in terms of 
both the accuracy and MCC results and between the SRF and 
other algorithms on the Mendeley dataset. Utilizing the 
attribute importance values effectively mitigates the bias in 
attribute selection, particularly when handling datasets that 
contain categorical attributes with numerous values. When 
considering the Mendeley dataset, in which most attributes 
are numerical, the likelihood of such bias is reduced. 
Consequently, applying only the proposed SRF yields a 
modest enhancement in the classification performance. The 
findings of this experiment demonstrate that the proposed 
SRF framework can be used to develop a classification model 
that accurately identifies patients with cardiovascular 
diseases. As a result, this improved classification capability 
may help reduce the mortality risk among these patients. 

3.4 Comparison with nontree-based machine 
learning models 
In our previous study (Chanmee & Kesorn, 2024), the 
performance of the proposed approach was not compared 
with that of nontree-based classification algorithms. 
However, currently, various algorithms, e.g., neural networks 
and support vector machines (SVMs), are recognized as 
high-performance classification methods. Thus, the proposed 
SRF framework was also compared with such nontree-based 
algorithms. In this experiment, the performance of the 
proposed SRF framework was compared with that of several 
nontree-based classification algorithms, including the 
multilayer perceptron (MLP), a type of artificial neural 
network (ANN), SVM, and k-nearest neighbors (k-NN) 
methods. Here, the GridSearchCV (Avinash et al., 2022) 
technique was employed to identify the optimal parameter 
values that obtained the best performance for each 
algorithm. Examples of the parameters used to optimize 
each algorithm are shown in Table 6. In this evaluation, 30 
experiments were conducted, and the results, which were 
averaged to derive the final outcomes, are shown in Table 7. 
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Table 6. Parameter configurations used in different classification algorithms 
 

Algorithm Parameter Parameter range 
MLP Hidden layer size {50, 100, 150} 

Maximum number of iterations {50, 100, 150, 200} 
Activation function {“tanh,” “relu,” “logistic”} 

SVM C {0.1, 1, 10,100} 
gamma {0.001, 0.01, 0.1, 1} 
kernel {“rbf,” “linear,” “poly,” “sigmoid”} 

k-NN k {3, 5, 7, 9, 11, 13, 15} 

Table 7. Performance evaluation of the SRF against 
various classification algorithms 
 

Dataset Algorithm Accuracy MCC 
Heart disease 
(UCI) 

SRF 0.8296 0.6589 
MLP 0.7710 0.5589 
SVM 0.8256 0.6569 
k-NN 0.7202 0.4576 

Heart disease 
(Mendeley) 

SRF 0.9856 0.9706 
MLP 0.8324 0.6842 
SVM 0.8053 0.6407 
k-NN 0.7852 0.6048 

 
       The results demonstrate that the proposed SRF framework 
outperformed the compared classification algorithms in 
terms of both accuracy and the MCC score. The proposed 
SRF framework is based on an ensemble learning method 
that combines multiple models to achieve better predictive 
performance than a single model (Sagi & Rokach, 2018), 
thereby leading to superior classification performance. 
However, the accuracy and MCC score obtained by the SVM 
on the UCI dataset, i.e., 0.8256 and 0.6569, respectively, 
were close to the results obtained by the SRF framework, 
as this balanced dataset with a binary class tends to 
perform well with SVMs (Zhang et al., 2017). In addition, 
the ANN algorithm, which has garnered increasing interest 
from researchers, obtained low classification results on 
both datasets. The ANN algorithm requires a large amount 
of training data to achieve high predictive performance 
(Alwosheel et al., 2018), and the limited size of the 
examined datasets may have been insufficient to produce 
accurate classification models. The results suggest that 
employing an ensemble learning approach alongside 
ontology knowledge can yield satisfactory outcomes. 
Notably, the proposed SRF framework demonstrated 
strong performance even when applied to small datasets. 
 
3.5 Computation complexity of proposed SRF 
framework 
Computational complexity is a foundational concept in 
computer science that examines the intrinsic difficulty of 
solving computational problems. To assess the 
computational performance of the proposed SRF 
framework relative to different baseline models, we 
evaluated and compared the computational complexity 
costs of the DT, RF, and SRF models. Typically, constructing 
a single DT within an RF has a time complexity of O (n * m 
* log [m]), where n denotes the number of samples in the 
training data, m denotes the number of features, and log 
(m) denotes the average depth of the DT. In a traditional 
RF, numerous DTs are constructed, and if the RF comprises 
k trees, the overall time complexity of constructing the RF 
model is O (k *n *m *log [m]). 
       To make a prediction using a traditional RF, the data 
point is passed through each DT in the forest, and the final 

prediction is made by aggregating the predictions of 
individual trees. Typically, the time complexity of making a 
prediction with an RF is O (k * log [m]), where k denotes 
the number of trees in the forest, and log (m) denotes the 
average depth of the DT. In this evaluation, two algorithms 
were employed to construct the SRF model. The first 
algorithm, detailed in Algorithm 1, calculated the attribute 
importance values. The second algorithm, outlined in 
Algorithm 2, focused on the SRF construction process. To 
evaluate the time complexity of Algorithm 1, we analyzed 
its performance in the worst-case scenario for size n inputs. 
In Algorithm 1, lines 1–4 represent simple operations that 
are conducted once. However, line 3 involves the 
Relationship Weighted function, which is executed n2 times 
based on the amount of knowledge and their relationship 
in the ontology. In addition, the FOR loop in lines 6–8 is 
executed n times. Thus, the total number of executions for 
lines 1–8 can be determined from Equation (9). 

 𝑇𝑇1  =  𝑛𝑛2 + 𝑛𝑛 + 3 (9) 
       The REPEAT loop continues until the stopping 
condition is satisfied; thus, we assumed that it would be 
executed p times. Lines 11–14 include the FOR loop, which 
ran n times, and line 16 represents a single statement that 
is executed only once. Thus, the execution time for lines 
10–16 is obtained from Equation (10). 

 𝑇𝑇2  =  (𝑝𝑝 × 𝑛𝑛) + 1 (10) 
       Therefore, the total time complexity of Algorithm 1 is 
calculated from Equation (11). 

 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚1  =  𝑇𝑇1 + 𝑇𝑇2 =  𝑛𝑛2 + (𝑝𝑝 × 𝑛𝑛) + 𝑛𝑛 + 4 (11) 

       Consequently, Algorithm 1’s complexity is 𝑂𝑂(𝑛𝑛2), 
where n2 denotes the function’s highest order of growth. 
Note that the SRF procedure is similar to that of the RF 
algorithm; therefore, the time complexity of Algorithm 2 
is 𝑂𝑂�𝑘𝑘 ∗ 𝑛𝑛 ∗ 𝑚𝑚 ∗ (log𝑚𝑚)�, which is consistent with the time 
complexity of the RF algorithm. Finally, the time 
complexity of the proposed SRF is 𝑂𝑂(𝑛𝑛2) + 𝑂𝑂(𝑘𝑘 ∗ 𝑚𝑚 ∗ 𝑛𝑛 ∗
(log𝑚𝑚)). In addition, the prediction procedure for an SRF 
is similar to that of the traditional RF; thus, the time 
complexity for the prediction of the SRF is O (k * log [m]). 
These findings suggest that the proposed SRF 
reinforcement process has the highest complexity cost in 
this implementation. Therefore, when the ontology 
contains numerous concepts and relationships, the 
algorithm may need considerable time to calculate 
attribute importance values and conduct data 
classification. Thus, in the future, we plan to conduct 
algorithmic optimizations to achieve a more acceptable 
computational complexity cost for the overall process. 
 
3.6 Limitations 
The purpose of this study was to enhance the classification 
performance of the traditional RF algorithm when applied 
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to a cardiovascular dataset, and our main innovation is the 
incorporation of domain knowledge into the ensemble 
learning method. However, certain limitations are notable 
when applying a knowledge-based approach in a clinical 
setting. The first limitation relates to knowledge 
maintenance. Medical knowledge evolves over time, which 
requires the knowledge-based approach to remain 
updated with new advancements to achieve optimal 
performance. Thus, the ontology used in the SRF must be 
adjusted to include the latest knowledge, which is a manual 
process conducted by experts. However, maintaining the 
ontology, e.g., adding new information or correcting 
inaccuracies, is a time-consuming and tedious process. To 
streamline this task, integrating ontology learning 

techniques (Khadir et al., 2021) that automatically 
generate ontologies into the knowledge-based approach 
can yield satisfactory results. Although the proposed SRF 
framework has its limitations, it can still offer significant 
assistance in reducing the mortality rates of cardiovascular 
patients. To apply the proposed SRF to other illnesses, 
collaboration with established and trustworthy disease 
ontologies, e.g., COVID-19 (Sargsyan et al., 2020) and 
dengue fever (Mitraka et al., 2015), is essential. By 
incorporating these ontologies into the proposed SRF 
framework, it will be possible to develop classification 
models for these specific conditions. In addition, 
adjustments to the SRF’s source code are required to 
enable it to learn the characteristics of these diseases. 

 
Algorithm 1: Procedure to determine attribute importance values 
 Input: Ontology (O), Relationships in ontology (R) 
 Output: Attribute importance value (Ip) 
1 generate an empty set to store the importance values for attributes Ip = {} 
2 d = 0.85 
3 r_weight = RelationshipWeighted (O, R) 
4 N = the quantity of concepts present in the ontology O 
5 // set an initial importance value for all concepts 
6 FOR each 𝑂𝑂𝑖𝑖  where  𝑂𝑂𝑖𝑖  ∈ 𝑂𝑂  
7 𝑰𝑰𝑰𝑰(𝑶𝑶𝒊𝒊) = 𝟏𝟏/𝑵𝑵 
8 ENDFOR 
9 //determine importance value 
10 REPEAT 
11 FOR each concept  𝑂𝑂𝑖𝑖 has connections from the concept  𝑂𝑂𝑗𝑗  and 𝑟𝑟 ∈ 𝑅𝑅 
12  𝐼𝐼𝐼𝐼(𝑂𝑂𝑖𝑖) = 𝑑𝑑 × ∑ 𝐼𝐼𝐼𝐼(𝑂𝑂𝑖𝑖)×𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡�𝑟𝑟,𝑜𝑜𝑗𝑗�

∑ 𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑟𝑟∈𝑅𝑅 �𝑟𝑟,𝑜𝑜𝑗𝑗�𝑗𝑗∈𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖) + (1− 𝑑𝑑)  

13  UPDATE Ip with 𝐼𝐼𝐼𝐼(𝑂𝑂𝑖𝑖)  
14  ENDFOR 
15 UNTIL 𝐼𝐼𝐼𝐼(𝑂𝑂𝑖𝑖)of all 𝑂𝑂𝑖𝑖 no longer changes 
16 RETURN Ip 

 
Algorithm 2: Semantic random forest algorithm 
 Input: Dataset (D), Target Attribute (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), Number of trees (N), Attribute importance values (Ip) 
 Output: Semantic Random Forest (SRF) 
1 //build the Semantic Random Forest 
2 SemanticRandomForest (𝐷𝐷,𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝐼𝐼𝐼𝐼) 
3  FOR i = 1 to N 
4   randomly create subsample 𝐷𝐷𝑖𝑖  where 𝐷𝐷𝑖𝑖∈𝐷𝐷  
5   SRF_Tree = Build_SDT (𝐷𝐷, 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝐼𝐼𝐼𝐼) 
6  ENDFOR 
7  // establish the final decision by using a majority vote 
8  SRF = mode (SRF_Tree) 
9  RETURN SRF 
10 // build each decision tree of the Semantic Random Forest 
11 Build_SDT (𝐷𝐷, 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝐼𝐼𝐼𝐼) 
12  Creating an empty set designated for the decision tree SDT_Tree = {} 
13  IF the instances within 𝐷𝐷𝑖𝑖  are uniform in class or alternative stopping criteria are activated 
14   generate a leaf node that represents the predominant class in 𝐷𝐷𝑖𝑖   
15  ENDIF 
16  randomly select m attributes from the set of attributes  
17  FOR each attribute 𝑎𝑎𝑗𝑗  where 𝑎𝑎𝑗𝑗∈ 𝑚𝑚  and 𝑎𝑎𝑗𝑗 ≠ 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
18   𝐴𝐴𝐴𝐴𝐴𝐴�𝑎𝑎𝑗𝑗� = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐷𝐷𝑖𝑖) − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑎𝑎𝑖𝑖)�+ 𝐼𝐼𝐼𝐼�𝑎𝑎𝑗𝑗� 
19  ENDFOR 
20  𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= attribute that achieves the maximum 𝐴𝐴𝐴𝐴𝐴𝐴�𝑎𝑎𝑗𝑗� 
21  SDT_Tree = create a decision tree node based on the attribute 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
22  𝐷𝐷𝑗𝑗𝑗𝑗 = create a sub-dataset from 𝐷𝐷𝑗𝑗  using the attribute 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
23  FOR each attribute 𝑎𝑎𝑗𝑗  where 𝑎𝑎𝑗𝑗∈ 𝐷𝐷𝑗𝑗𝑗𝑗  and 𝑎𝑎𝑗𝑗 ≠ 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
24  // execute the recursive algorithm 
25   SDT_Treej = Build_SDT (𝐷𝐷𝑗𝑗𝑗𝑗 , 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐼𝐼𝐼𝐼) 
26   connect SDT_Treej to the appropriate branch of the SDT_Tree 
27  ENDFOR 
28  RETURN SDT_Tree 
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3. 7 Extending the SRF model to other medical 
domains  
The current study focused on cardiovascular risk 
prediction; however, the proposed SRF framework has the 
potential to be applied to other medical domains. By 
modifying key components of the proposed framework, 
e.g., feature selection, ontology design, and model training 
strategies, the SRF model can be adapted to support a 
variety of healthcare applications. To ensure successful 
extension, a structured approach that considers key 
aspects, e.g., data quality, ontology integration, parameter 
tuning, and model evaluation, should be adopted. Ensuring 
dataset quality is fundamental when adapting the SRF 
model to new medical domains, which involves applying 
data preparation techniques, e.g., handling missing values 
and implementing feature selection to identify the most 
relevant attributes for model training. High-quality data 
enhance the model’s predictive power and reliability 
across different medical contexts. Another approach to 
extending the model is domain-specific feature 
engineering. By identifying and incorporating relevant 
features from diverse medical datasets, e.g., imaging 
biomarkers for radiology or genomic data for precision 
medicine, the model can be tailored to new clinical 
applications. In addition, transfer learning techniques (Tan 
et al., 2023) can facilitate adaptation by leveraging 
knowledge from cardiovascular risk prediction to train 
models for other diseases with minimal retraining. 
       Furthermore, a critical component of adaptation is 
ontology customization and integration. Incorporating 
well-validated disease ontologies, e.g., those for cancer 
(Polpinij, 2011), diabetes (Spoladore et al., 2024), or 
neurological disorders (Jensen et al., 2013), into the 
knowledge-based component of the SRF model would 
enable it to capture specialized relationships and improve 
prediction accuracy for different medical conditions. 
Ensuring the use of robust ontologies enhances the model’s 
generalizability across medical domains. In addition, 
parameter tuning is essential in terms of achieving 
satisfactory performance when extending the model. 
Selecting an appropriate number of decision trees, 
optimizing the hyperparameters, and adjusting the model 
configurations based on the characteristics of the new 
dataset can enhance the predictive accuracy and efficiency. 
Finally, to validate the model’s adaptability, a cross-
domain evaluation should be performed. Applying the 
proposed SRF model to diverse medical datasets and 
assessing its performance using key metrics, e.g., accuracy, 
precision, recall, and the F1-score, will ensure its 
effectiveness across different healthcare applications, and 
we can refine the methodology and improve its robustness 
through rigorous evaluations. 
       By following this structured approach, i.e., ensuring 
data quality, utilizing reliable ontologies, tuning parameters, 
and evaluating results, the SRF model can be extended 
beyond cardiovascular risk prediction, thereby making it a 
versatile tool for a wider range of medical applications. 
 
 
4. CONCLUSION 
 
This paper has proposed the SRF framework to improve 
the classification of cardiovascular disease. The proposed 
SRF framework combines the traditional RF algorithm 
with the weighted semantic PageRank method to 

determine attribute importance. By considering both the 
statistical significance and contextual relevance of 
features, the proposed SRF framework selects features 
that enhance the overall classification accuracy. In 
addition, incorporating ontological knowledge into the 
SRF framework provides a structured representation of 
medical concepts, relationships, and axioms, and this 
structured knowledge guides each DT in the SRF, which 
enables more informed and precise predictions about 
heart disease. Compared with the baseline RF, AdaBoost, 
and gradient boosting algorithms, the proposed SRF 
framework outperforms in terms of accuracy and MCC. 
Furthermore, the use of diverse subsampling techniques 
enhances the ensemble’s ability to generalize across 
datasets, thereby reducing overfitting and improving the 
robustness of the predictions. 
       However, the success of the proposed SRF framework 
is strongly dependent on the quality of the ontology. Thus, 
an inadequate or outdated ontology can yield incorrect 
attribute importance values, which would result in 
inaccurate classifications. Therefore, ongoing human 
oversight is required to maintain and update the ontology 
to ensure sufficient relevance and accuracy. The ontology 
must evolve alongside medical knowledge advancements 
to maintain the effectiveness of the proposed SRF 
framework. We acknowledge that ontology information 
extraction and processing can be time-consuming tasks, 
particularly when handling large datasets. To address this 
limitation, we suggest two potential solutions. One 
approach involves applying feature selection and 
dimensionality reduction techniques to minimize the 
number of features used during the model training 
process. By reducing the dimensionality of the dataset, we 
can decrease the computational complexity and improve 
the processing time without significantly compromising 
the model’s accuracy. Another promising strategy is 
ontology pruning using DeepOnto (He et al., 2024), which 
is a Python package designed for ontology engineering. 
Pruning reduces the size and complexity of the ontology, 
 thereby decreasing the time required for ontology extraction 
and processing in the SRF model. This optimization can 
improve computational efficiency significantly while 
maintaining the semantic integrity of the ontology-based 
knowledge representation. Thus, in future work, we plan 
to investigate and implement these strategies to further 
optimize the method. In addition, future research will also 
focus on refining the SRF by incorporating additional 
techniques, e.g., instance weighting, that effectively handle 
unbalanced data by assigning different weights to 
instances based on importance, frequency, or by adjusting the 
influence of knowledge to achieve optimal performance for 
each dataset. Furthermore, examining the integration of 
probabilistic ontologies or knowledge graphs is expected 
to enhance the proposed SRF framework’s ability to 
capture and utilize complex medical knowledge. 
       To this end, the proposed SRF framework represents a 
significant advancement in the application of knowledge-
based systems to medical diagnosis. Its integration of 
structured ontological knowledge and advanced ML 
techniques positions it as a powerful tool to predict heart 
disease and other complex medical conditions. As the SRF 
framework continues to evolve, it holds promise for 
advancing computer-aided diagnosis and improving patient 
outcomes by realizing more accurate disease prediction 
models. 
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Supplementary: Weighted Semantic 
PageRank approach 
 
The weighted semantic PageRank method (Chanmee & 
Kesorn, 2023) is employed to determine the importance 
value of each attribute. Here, let C be the set of concepts 
and R be the set of relationships in the ontology, where 
𝑐𝑐𝑎𝑎 ∈ 𝐶𝐶 represents a concept in the ontology, and 𝑟𝑟 ∈ 𝑅𝑅  is 
a relationship linking each concept. First, the weight of 
each relationship is determined based on the frequency 
of a relationship for a specific concept (FR) and the 
inverse value of the FR (IFR). The weight of each 
relationship is calculated using Equations (12)–(14) 
(Chanmee & Kesorn, 2023). 

 𝐹𝐹𝐹𝐹(𝑟𝑟, 𝑐𝑐𝑎𝑎) = 𝑓𝑓(𝑟𝑟,𝑐𝑐𝑎𝑎)
𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑥𝑥,𝑐𝑐𝑎𝑎):𝑥𝑥 𝜖𝜖 𝑅𝑅}  (12) 

Where, 𝐹𝐹𝐹𝐹(𝑟𝑟, 𝑐𝑐𝑎𝑎) represents a frequency relationship for 
concept 𝑐𝑐𝑎𝑎 , and 𝑓𝑓(𝑟𝑟, 𝑐𝑐𝑎𝑎) is the number of relationships  
r  associated with concept 𝑐𝑐𝑎𝑎 , which is the starting 
concept linked to another concept in the ontology. The 
term 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑥𝑥, 𝑐𝑐𝑎𝑎)}  indicates the highest number of 
relationships associated with that concept. 

 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝐶𝐶) = 𝑙𝑙𝑙𝑙𝑙𝑙 |𝐶𝐶|
𝑡𝑡𝑡𝑡(𝑟𝑟)

 (13) 

Where, |𝐶𝐶| denotes the total number of concepts in the 
ontology, and tc(r) denotes the total number of starting 
concepts of relationship r. 

 𝑊𝑊(𝑟𝑟, 𝑐𝑐) = 𝐹𝐹𝐹𝐹(𝑟𝑟, 𝑐𝑐𝑎𝑎) × 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝐶𝐶) (14) 

Where, 𝑊𝑊(𝑟𝑟, 𝑐𝑐) denotes the weight of relationship r, which 
is associated with concept 𝑐𝑐𝑎𝑎 . 

       The next step is determining the concept’s importance 
value, which is calculated as follows (15): 

 𝐼𝐼𝐼𝐼(𝐶𝐶𝑎𝑎) = 𝑑𝑑 ∑ 𝐼𝐼𝐼𝐼(𝑐𝑐𝑏𝑏)×𝑊𝑊(𝑟𝑟,𝑐𝑐𝑏𝑏)
∑ 𝑊𝑊(𝑟𝑟,𝑐𝑐𝑏𝑏)𝑟𝑟∈𝑅𝑅

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (1 − 𝑑𝑑) (15)  

where 𝐼𝐼𝐼𝐼(𝑐𝑐𝑎𝑎) denotes the importance value of concept 𝑐𝑐𝑎𝑎 , 
𝐼𝐼𝐼𝐼(𝑐𝑐𝑏𝑏) denotes the importance value of concept 𝑐𝑐𝑏𝑏 , and 
𝑊𝑊(𝑟𝑟, 𝑐𝑐𝑏𝑏)  indicates the weight of the relationship r 
associated with concept 𝑐𝑐𝑏𝑏 . In addition, link(a) refers to the 
set of concepts connected to concept 𝑐𝑐𝑎𝑎 . 
       Figure S1, which shows an example ontology for the 
cardiovascular disease domain, illustrates the process of 
computing the attribute importance values. The example 
ontology comprises five concepts, i.e., Gender, Patient, 
Chest Pain, Dyspnea, and Chest Pressure, and three  

types of relationships, i.e., has_gender, has_symptom, and 
is_subclass. 
       As shown in Figure S1, Patient is the starting concept 
of the has_gender and has_symptom relationships, and 
Chest Pressure is the starting concept of the is_subclass 
relationship. The Patient concept is connected to another 
concept by one has_gender link and two has_symptom 
links. As a result, the FR of the has_gender relationship  
is 1

2
, and that of the has_symptom relationship is 2

2
. The 

Chest Pressure concept is connected to another concept 
by one link of the is_subclass relationship; therefore, the 
FR is 1

1
. 

       As shown in Figure S1, the ontology contains a total 
of five concepts, and each relationship is connected to a 
single concept. As a result, the IFR of each concept is 
𝑙𝑙𝑙𝑙𝑙𝑙 |5|

1
= 0.7. 

       The weight of each relationship is computed using 
Equation (14), resulting in the following. 
       - W(has_gender, Patient) = 0.5×0.7=0.35 
       - W(has_symptom, Patient) = 1×0.7=0.7 
       - W(is_subclass, ChestPressure) = 1×0.7=0.7 
       Computing the importance value for each concept is an 
iterative process in which the values are updated 
continuously until convergence is achieved. In the first 
iteration, the importance value is initialized as 1

|𝑐𝑐|, and then 

the importance value becomes 1
5

 = 0.2. The importance value 
of the Chest Pain concept, which is associated with the 
Patient and Chest Pressure concepts, can be computed as 
follows. 

 𝐼𝐼𝐼𝐼(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 0.85 × �� 0.2×0.7
0.35+0.7+0.7

� + �0.2×0.7
0.7

��+ (1− 0.85) 
 = 0.388 

       For the Patient concept, which does not have any other 
concept linked to it, the importance value can be calculated 
as follows.  

 𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 0.85 × 0 + (1− 0.85) 
= 0.150 

       Note that the importance values of the remaining 
concepts can be computed using the same approach. The 
computed importance values are used in the subsequent 
iteration and updated iteratively until they remain 
unchanged. The results of this example are shown in 
Table S1. 

 

 
 
Figure S1. Example of an ontology for the cardiovascular disease domain 
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Table S1. Importance value of each concept 
 

Concept Importance value (𝑶𝑶𝒊𝒊) 
First iteration Second iteration Third iteration 

Gender 0.184 0.176 0.176 
Patient 0.150 0.150 0.150 
Chest Pain 0.388 0.329 0.329 
Dyspnea 0.218 0.201 0.201 
Chest Pressure 0.150 0.150 0.150 

 


