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ABSTRACT 
 
Cassava leaves are a significant source of nitrogen; however, the severity of the 
physicochemical extraction processes negatively affects nitrogen release. The 
objective of this study was to enhance nitrogen-rich extract recovery from cassava 
leaves through a comparative analysis of various experimental designs and 
machine learning (ML) techniques. Using the Plackett–Burman design, central 
composite design, and response surface methodology, the optimal extraction 
conditions were established: 20 min extraction time, 40% solid loading, and 150 mL 
extraction volume. The predicted amino nitrogen content reached 209 mg of N, 
showing a 6% deviation from the experimentally measured value. ML models—
specifically, the support vector machine with a radial basis function kernel and 
random forest (RF)—were subsequently employed to refine the extraction 
conditions. The RF model showed a 6.6% deviation from the actual value, while 
both models identified the positive impact of increased solid loading on the total 
nitrogen recovery. These findings suggest that ML approaches offer promising 
potential for maximizing the amino nitrogen yield from cassava leaves.  
 
Keywords: nitrogen; Plackett–Burman design; central composite design; support vector machine 
with radial basis function kernel; random forest 
 
 

1. INTRODUCTION                                    
 
The demand for cassava has grown steadily over the years. 
In 2020, global cassava production reached 303 Mt, with 
Thailand producing 31.1 Mt (Sowcharoensuk, 2023). After 
harvesting the desirable cassava root, despite their high 
protein content (ca. 20% db.) (Lammens et al., 2012), a 

large amount of cassava leaves is often left in the field as 
agricultural waste. The potential use of cassava leaves as a 
nitrogen/protein source for fermentation processes has 
recently been reported (Boundy-Mills et al., 2019; Karuna 
et al., 2025; Karuna et al., 2023). Compared with the 
traditional nitrogen source in the culture medium, 
specifically yeast extract, using cassava leaf extract as the 
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nitrogen source in Saccharomyces cerevisiae culture 
significantly enhances ethanol production (Karuna et al., 
2023). As cassava leaves constitute lignocellulosic biomass, 
with proteins encapsulated within the structure alongside 
cellulose, hemicellulose, and lignin (Boundy-Mills et al., 
2019; Karuna et al., 2023), an effective extraction method 
needs to be studied and developed to obtain an extract rich 
in proteins and nitrogen content. 
       Although several physicochemical methods, including 
those with either a diluted acid (Ashokkumar et al., 2022) 
or an alkaline condition (Karuna et al., 2014; Kim et al., 
2016), have been previously used for extracting non-
cellulosic materials from lignocellulosic biomass, liquid hot 
water (LHW) extraction remains the most promising 
alternative for this specific application (Karuna et al., 
2023). This method employs water in its liquid state under 
high pressure at elevated temperatures (110–230°C) 
(Aftab et al., 2019; Ruiz et al., 2020), in which it undergoes 
ionization forming hydroxide ions and hydronium ions 
(Ruiz et al., 2020; Tomás-Pejó et al., 2011) to penetrate 
lignocellulosic materials. It triggers the release of acetate 
from xylan, inducing the hydrolysis and solubilization of 
hemicellulose, as well as a partial breakdown of lignin 
(Jönsson & Martín, 2016). Because it does not require 
chemical addition, LHW extraction produces no toxic 
wastewater, and subsequent treatment for the remaining 
toxic chemicals is not required. As these findings reveal, 
LHW was employed to obtain extracts from cassava leaves 
in this study. 
       The optimal conditions of the LHW extraction must be 
determined to ensure maximum nitrogen content in the 
cassava leaf extracts obtained, and the extraction is 
subsequently performed at these conditions. Nonetheless, 
this is not a trivial task by relying on one-variable-at-a-time 
experimentation as the extraction has several operating 
variables with wide working ranges. These include 
temperature (120–200°C) (Suriyachai et al., 2020), 
duration (10–60 min) (Olawuni et al., 2024), particle size 
(50–212 μm) (Kammoun et al., 2023), and solid loading 
(10–40 mass%) (Zhang et al., 2023). In addition, the pH 
value is often carefully managed to optimize the efficiency 
of the process. 
       Design of experiment (DOE) has been widely used for 
process optimization across industries (Öğütcü et al., 
2024); it systematically explores the combined effects of 
variables on responses by generating experimental 
matrices and conducting experiments. Commonly used 
procedures include the Plackett–Burman design (PBD) for 
screening influential factors (Cavazzuti, 2013; Plackett & 
Burman, 1946) and central composite design (CCD) with 
response surface methodology (RSM) for optimizing 
variable levels within constraints (Box & Wilson, 1951; 
Lamidi et al., 2022). Analysis of variance (ANOVA) 
statistically tests the model’s goodness of fit, significance, 
and prediction errors, identifying significant variable 
effects. 
       Machine learning (ML) has recently gained interest in 
various fields of study because it can handle complex, 
nonlinear relationships between variables and 
outcomes—especially when multiple objectives must be 
simultaneously achieved (Saha et al., 2024). This field 
includes a range of computational methods that allow 
systems to learn from data patterns without requiring 
explicit programming for every situation. The strength of 
ML lies in its ability to process large amounts of data and 

identify refined patterns that traditional statistical 
methods might overlook (Arboretti et al., 2022). This 
capability is transforming how researchers and engineers 
approach optimization problems across several 
disciplines. Furthermore, in situations where the amount 
of data is enormous or “big data,” it outperforms the 
traditional statistical methods (Vinitha et al., 2023); 
therefore, ML has rapidly spread across various industries. 
Recent examples of using ML include the optimization of 
microalgae culture (Coşgun et al., 2021), in which the 
existing experimental data were analyzed using the 
decision tree algorithm to determine the optimal 
conditions for maximizing biomass growth and lipid yield. 
ML algorithms, including random forest (RF), support 
vector machines (SVMs), and gradient boosting, were 
employed to predict the properties of cellulose-rich 
materials based on the raw material characteristics and 
extraction conditions (Phromphithak et al., 2021). ML 
techniques were used to optimize and predict the bio-
crude yield and higher heating values from the 
hydrothermal liquefaction of lignocellulosic biomass. The 
critical parameters, including the reaction time, 
temperature, and pressure, were evaluated. Using the 
Shapley value method, temperature was identi�ied as the 
most signi�icant variable. The extreme gradient boosting 
algorithm provided the most accurate predictions, with 
deviations of only 5–8% from the experimental results 
for yields and calori�ic values (Katongtung et al., 2024). 
Nonetheless, data are often scarce, especially when 
technologies/methods of interest have been introduced, 
making data generation and collection essential for 
developing ML models. As DOE specializes in generating a 
necessary set of experiments for exploring the impact of 
process variables, a joint application of DOE and ML, in 
which DOE is used as data generation/collection and ML 
plays a role in the analysis of DOE data, has been recently 
introduced. Recent studies have shown successful results 
from the joint applications of DOE and ML. RF with face-
centered CCD (FCCD) was used to optimize the cutting-
edge ultrasound-aided solvent extraction process. The 
optimized parameters from ML were well aligned with 
those from the DOE with RSM (Petchimuthu et al., 2023). 
The optimal conditions for the manufacture of 316L 
stainless steel specimens were determined through 
selective laser melting based on the joint application of 
RSM with five ML techniques (La Fé-Perdomo et al., 
2022).  
       Although previous studies have described methods for 
extracting nitrogen from cassava leaves (Karuna et al., 
2023), an optimal condition for the LHW extraction of 
cassava leaves has not yet been reported. Thus, this study 
aimed to determine the optimal extraction conditions for 
maximizing the amino nitrogen content in the resulting 
cassava leaves extract by using DOE with RSM and ML. 
Initially, using a PBD, three crucial factors were 
identified from five common variables affecting the 
nitrogen content in the obtained extract (output of 
interest): temperature, duration, particle size, extraction 
volume, and solid loading. Subsequently, a CCD was 
performed with the identified factors to determine the 
optimal conditions based on the obtained statistical 
model. Finally, the SVM and RF algorithms of ML were 
used with the experimental data obtained from the PBD 
and CCD to alternatively suggest the optimal conditions 
for LHW extraction. 
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2. MATERIALS AND METHODS    
 
2.1 Cassava leaf handling 
Cassava leaves of the Rayong 89 strain were collected and 
dried in the sun for 2–3 days. To obtain dried leaf powder 
with a specified particle size (within the range of 50 and 
212 μm) for subsequent analysis and experiments, the 
dried leaves were ground using a hammer mill (Retsch, 
Germany) and then sieved using a vibratory sieve shaker 
(Retsch Model AS 200, Germany). The obtained particles 
were then stored in a Ziplock plastic bag. 
 
2.2 Composition analysis 
The chemical composition of the cassava leaves was 
quantified following the standardized laboratory protocols 
established by the National Renewable Energy Laboratory. 
The extractable compounds present in the cassava leaves 
were extracted using a two-step process involving a 
Soxhlet apparatus. The leaves were first extracted with 
deionized water until a clear liquid was obtained; this was 
followed by a second extraction step using ethanol (Sluiter, 
et al., 2008b). For ash content determination, the cassava 
leaf powder (size, 50 µm) was placed in a crucible and 
heated to 575°C for a minimum of 4 h, before weighing the 
remaining incombustible component (Sluiter et al., 2008a). 
To determine lignin and carbohydrate contents, the leaf 
powder was hydrolyzed with hydrochloric acid to liberate 
lignin and carbohydrate, which were then quantified using 
UV-Vis spectroscopy and high-performance liquid 
chromatography, respectively, following that described in 
(Sluiter et al., 2012). The total nitrogen content of the 
cassava leaves was determined using the conventional 
Kjeldahl method as outlined in a previous study (Thiex et 
al., 2002). 
 
2.3 Extraction procedure 
LHW was employed as the extraction method to obtain the 
cassava leaf extract. Briefly, cassava leaf powder was 
mixed with deionized water in a 300-mL static Parr reactor 
at a specified solid loading (% w/w). The reactor was then 
heated to a target temperature (°C) in a furnace 
(Chavachote, Thailand). After incubation for a specified 
duration (min), the reactor was promptly quenched in an 
ice-cold water bath. The extract was collected by pouring 
the mixture onto a Whatman #1 filter within a Buchner 
funnel, and the liquid was separated through vacuum 
filtration. The collected liquid was stored for subsequent 
analysis of the total amino nitrogen content (Section 2.5) 
at 4°C. 
 
2.4 Experimental design and ML 
The experimental design was applied to identify the most 
influential variables to the response in the extraction 
process. It was also used to generate experimental data for 
the construction of a mathematical model describing the 
relationships between the variables and the response 
(Section 2.4.2) and ML (Section 2.4.3) approaches. Based 
on the obtained models, the optimal condition(s) for the 
extraction process were determined. 
 
2.4.1 PBD 
To identify the most influential variables from the five 
variables studied—temperature (X1), duration (X2), 
particle size (X3), extraction volume (X4), and solid loading 
(X5)—on the total amino nitrogen content, which was 

treated as the primary response variable in the extraction 
process, PBD was performed using Design Expert software 
(version 23.1.4 64-bit, Stat-Ease, Inc., Minneapolis, MN, 
USA). 
       As shown in Tables 1 and S1 (Supplementary data), 12 
experimental conditions for the extraction process were 
proposed based on the high (+) and low (−) levels of each 
variable. As detailed in Section 2.3, the extraction 
procedure was performed in duplicate using the designed 
experimental conditions. The three most significant 
variables were selected based on the resulting p-values 
and confidence levels of each variable. 
 
Table 1. Range of studied variables in the extraction 
process for the PBD 
 

Factors Levels 

(codes) (actual) − + 

X1 Temperature (°C) 120 200 

X2 Duration (min) 10 60 

X3 Particle size (μm) 50 212 

X4 Extraction volume (mL) 50 150 

X5 Solid loading (mass%) 10 30 

 
2.4.2 FCCD 
Following PBD, in which the three most influential factors 
in the extraction process were selected, a CCD with RSM 
was subsequently used to determine the effects of the 
selected factors: solid loading (X1, mass%), extraction 
volume (X2, mL), and duration (X3, min), on the total amino 
nitrogen content in the resulting extract (Y, mg of N). The 
codes and ranges used in the CCD are presented in Table 2. 
Here, a three-factor, five-level CCD with α = 1 or FCCD was 
performed using Design Expert software, suggesting 17 
designed runs consisting of six axial points, eight factorial 
points, and three replicates at the center point (Table 3). 
To mitigate the potential influence of any unaccounted-for 
sequential variations or those stemming from external 
factors, the experimental trials were conducted in 
duplicate and in a random sequence. The resulting total 
amino nitrogen content in the extract (Y) from all the runs 
was then used to determine its relationship with the 
studied factors (X1, X2, and X3), which is mathematically 
expressed using the quadratic equation in Equation 1:   
 
         Y= β0+∑ βiXi

3
i=1 +∑ βiiXi

23
i=1 +∑ ∑ βijXiXj

3
j=i+1

2
i=1           (1) 

 
where β0 is a model constant, βi, βii, and βij are the 
regression coefficients accounting for the linear, quadratic, 
and interaction effects of the variables on the response Y, 
respectively. Xi and Xj were estimated using Equation 2, 
which represents the dimensionless coded values of the ith 
and jth variables, respectively: 
 
          Xi = xi-xi,0

∆xi
                                                                       (2) 

 
where xi is the actual value, xi,0 is the actual value at the 
center of the studied range, and ∆xi is the step change value 
(Yahya et al., 2023). 
       To evaluate whether the obtained model adequately 
describes the experimental data, the statistical 
parameters—lack of fit, coefficient of determination (R2), 



Machine learning and experimental design for optimizing nitrogen-rich extract from cassava leaves  

 
4 

adjusted R2, predicted R2, and adequate precision—were 
estimated by ANOVA. A two-tailed Student’s t-test was 
used to determine the statistical significance of the 
variable effects on the response. To visualize the variable 
effects, surface plots were constructed based on the 
obtained model. Statistical analysis and surface plot 
construction were performed using Design Expert 
software. 
 

Table 2. Range of selected influential factors for the FCCD 
 

Factors Levels 
(codes) (actual) −1 0 1 
X1 Solid loading (mass%) 10 25 40 
X2 Extraction volume (mL) 50 100 150 
X3 Duration (min) 20 30 40 

Table 3. Designed runs and results of the FCCD 
 

Run Space type X1 X2 X3 Total amino nitrogen 
content, Y (mg of N) † 

1 Axial −1 0 0 41 (7) 
2 Factorial −1 −1 +1 13 (1.7) 
3 Factorial −1 +1 −1 50 (1.4) 
4 Factorial −1 −1 −1 17 (2.7) 
5 Factorial −1 +1 +1 54 (2.8) 
6 Axial 0 +1 0 111 (0.7) 
7 Axial 0 −1 0 67 (4.8) 
8 Axial 0 0 −1 116 (9.8) 
9 Center 0 0 0 92 (2.1) 
10 Center 0 0 0 126 (4.7) 
11 Center 0 0 0 129 (6) 
12 Axial 0 0 +1 102 (2.5) 
13 Axial +1 0 0 187 (5.7) 
14 Factorial +1 +1 −1 221 (9.9) 
15 Factorial +1 −1 −1 79 (3.1) 
16 Factorial +1 +1 +1 175 (4.2) 
17 Factorial +1 −1 +1 100 (7.3) 
18 Predicted +1 +1 −1 209 

19 Experiment +1 +1 −1 221 
Note: †Standard deviation of duplicate measurements is indicated in parentheses. 
 
       To determine the optimal levels of the factors in which 
the highest total amino nitrogen content in the extract (Y) 
would be obtained, the desirability analysis in the Design 
Expert software was used. Here, the objective function of 
maximizing the total amino nitrogen content in the extract 
was applied, and based on the obtained mathematical 
model, an optimal level(s) of the variables was suggested. 
 
2.4.3 ML 
A dataset of 29 experimental data points was collected 
from the PBD (12 data points) and CCD (17 data points) 
experiments. Five extraction parameters, including 
temperature, time, extraction volume, particle size, and 
solid loading, were set as features. The target was the total 
extracted nitrogen. Table 4 summarizes the range and unit 
of each parameter. The features’ values were normalized 
using a standard scaler. 
 
Table 4. Description of the dataset 
 

Parameter Range Unit Step size† 
Feature    
Temperature 120–200 °C 10 
Size 50–212 µm 6 
Duration 10–60 minute 1 
Extraction volume 50–150 mL 5 
Solid loading 10–40 mass% 1 
Target    
Total nitrogen 9–221 mg of N  

Note: †Optimal conditions were searched using these step sizes. 
 
       ML models were developed in the Python 
programming platform (Visual Studio Code) using the 

Scikit-learn library. A SVM with three kernel functions—
linear, polynomial, and radial basis function (RBF)—along 
with a RF was used to predict the total extracted amino 
nitrogen. Table 5 provides an overview of the different ML 
techniques employed in this research.  The leave-one-out 
cross-validation technique was used in this study because 
of the small dataset (Díez Valbuena et al., 2024). During 
development, the model was trained with N-1 samples to 
predict the remaining one sample as the test sample. The 
average of 29 times for R2 and root mean square error 
(RMSE) were used to evaluate the predictive performance 
of the model and calculated using Equation 3 and Equation 
4, respectively. To minimize the mean RMSE, the 
hyperparameters of the SVM and RF models were 
optimized using the grid search technique. The best 
hyperparameters of the SVM for the linear, polynomial, and 
RBF were (C = 2,601; epsilon = 0.1; gamma =1), (second 
degree; C = 277; epsilon = 21; gamma = 0.00038), and (C = 
194; epsilon = 0.001; gamma = 0.0009), respectively, while 
the best hyperparameters of the SVM for the RF were 
(max_depth = 3 and n_estimators = 9). The models with 
optimized hyperparameters were trained with 29 data 
points to predict total nitrogen. The mean absolute 
percentage error (MAPE) was calculated using Equation 5 
for comparison with the existing literature. Shapley 
additive explanation (SHAP value) was used to show the 
impact of features on the model output using the SHAP 
library. The highest total nitrogen was predicted by the 
selected trained models using the feature interval 
(Table 4). 
 
           𝑅𝑅2 = 1 − ∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴����������)2𝑛𝑛
𝑖𝑖=1

                                   (3) 
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            𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                           (4) 

 

           𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100
𝑛𝑛
∑ |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖|

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝑛𝑛
𝑖𝑖=1                  (5) 

 
Table 5. ML algorithms, description, and applications 
 

ML algorithms Description Applications 
VM SVM is a powerful technique that is widely used in engineering for classification 

and regression tasks. This algorithm works by leveraging a training dataset to 
pinpoint a hyperplane that optimally distinguishes data points into distinct 
categories, maximizing the margin, which is the greatest distance between the 
hyperplane and any data point from different classes. This hyperplane is defined 
by support vectors, which are the data points on the boundaries of the margin. 
This characteristic is the origin of the name “support vector machine” (Xia, 2020). 
 
For regression, the goal is to fit as many input data points as possible within the 
margin while minimizing margin violations, rather than maximizing the margin 
between two classes. Initially, SVM is outlined for the linearly separable case as 
described by the following equation in terms of the support vectors: 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑏𝑏) ≥ 1 

where 𝑦𝑦𝑖𝑖  is the class value of train data 𝑥𝑥𝑖𝑖. The 
vector 𝑤𝑤 represents a normal vector. The vectors 𝑥𝑥𝑖𝑖 are the support vectors. 
Parameter b determines the hyperplane position (Sittichoksataporn & 
Choksuriwong, 2012). 
 
When linear functions are inadequate for separating two classes, kernel functions 
are used. Their purpose is to map nonlinear data from a lower-dimensional space 
to a higher-dimensional space. This transformation is achieved using the 
following equation: 

𝑤𝑤 = 𝑏𝑏 +�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� 
where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier. 
Polynomial and RBF are widely used as kernel functions for SVM (Malek et al., 
2019). 
Polynomial 

𝐾𝐾�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = �𝑥𝑥𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗�
𝑑𝑑 

RBF 
𝐾𝐾�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛾𝛾�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

2� 

Battery state estimation 
(Manoharan et al., 2022), 
machine condition 
monitoring and fault 
diagnosis (Widodo & Yang, 
2007), microscopy (Wang & 
Fernandez-Gonzalez, 2017), 
precise agriculture (Kok et al., 
2021), solar and wind energy 
resources forecast 
(Zendehboudi et al., 2018), 
and structural reliability 
analysis (Roy & Chakraborty, 
2023) 
 

RF RF is a rule-based algorithm that integrates multiple decision trees into a forest 
(with random subsets of features) using the ensemble method. Each tree is 
trained on a random subset of features, and their predictions are averaged to 
enhance accuracy and prevent overfitting (Wang & Gao, 2022). It introduces 
“randomness” into the prediction process by applying bootstrap sampling 
techniques iteratively.  

Prediction model of the pore 
structure in global shale 
sediments (Jiang et al., 2023), 
and prediction of the yield 
strength of as-cast alloys 
(Zhang et al., 2024) 

 
3. RESULTS AND DISCUSSION 
 
3.1 Composition of cassava leaves 
Cassava leaves of the Rayong 89 variety contained 9.9% 
w/w ash, 28.9% w/w water extract, and 12.9% w/w 
ethanol extract. Water and ethanol extracts primarily 
targeted nonstructural compounds. Water extracts 
proteins (Karuna et al., 2023), soluble sugars (Zhang et al., 
2007), certain phenolic compounds (Mota et al., 2008), 
saponins, and glycosides (Sparg et al., 2004), as well as 
water-soluble vitamins—such as vitamin C and some B 
vitamins—and minerals (Manach et al., 2004). In contrast, 
ethanol primarily extracts flavonoids, polyphenols, and 
saponins (Chahyadi & Elfahmi, 2020). Therefore, the 
extraction results showed that cassava leaves contained 
higher combined amounts of proteins, soluble sugars, 
certain phenolic compounds, saponins, glycosides, and 
water-soluble vitamins than the total amount of flavonoids 
and polyphenols. The composition also included 13.6% 
w/w glucan and 7.7% w/w xylan, along with 22.4% w/w 

acid-insoluble residue. Furthermore, the compost 
contained 2.94% nitrogen, equivalent to 18% protein, 
using a conversion factor of 6.25 (Table 6). Despite the 
influence of factors such as cultivar, leaf position, and plant 
age on the quality of cassava leaves (Chaiareekitwat et al., 
2022), the protein content in this particular strain 
remained comparable with that in previous studies, 
ranging from 17% to 34% on dried basic (Chaiareekitwat 
et al., 2022; Hue et al., 2012). 
 
3.2 Plackett–Burman experimental design 
A PBD was first performed to determine the most 
influential factors on the nitrogen content in the casava leaf 
extract (Y) among the five studied operating variables of 
the LHW pretreatment process: temperature (X1), duration 
time (X2), particle size (X3), extraction volume (X4), and 
solid loading (X5). As shown in Table S1 (see 
Supplementary Material), the experimental data of the 
total nitrogen content in the extract were obtained by 
performing the extraction using the designed experimental 
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conditions. Statistical linear relationships between the 
studied factors and the response (Y) were computationally 
determined through regression and ANOVA. Table 7 shows 
the obtained key statistical parameters, p-value and 
confidence level, for each factor, which suggested the 
extent to which each factor affected the response. The 
lower the p-value (or the higher the confident level), the 
more influential the response. X5 (solid loading), X4 

(extraction volume), and X2 (duration) were found to be 
the most important (ranking 1, 2, and 3, respectively), as 
indicated by their highest confidence levels (or lowest 
p-values) of 99.99% (p<0.0001), 93.11% (p<0.0689), and 
89.2% (p<0.1079), respectively. Although the p-values 
indicated that the extraction volume and duration were not 
significant during the screening test, these factors may still 
prove significant under the optimized conditions explored 
in the CCD experiments (SixSigma, 2024). Therefore, they 
were still selected for the subsequent CCD for further 
determination of their optimal levels toward maximizing 
the total nitrogen content in the extract. 
 

Table 6. Proximate composition of cassava leaves of the 
Rayong 89 variety 
 

Composition Unprocessed leaf (% w/w)† 
Moisture 11.1 
Ash 9.9 (0.01) 
Total extractives  41.8 
         Extractive in water 28.9 
Extractive in ethanol 12.9 
Acid-insoluble residue  22.4 (3.86) 
Nitrogen 2.9 (0.12) 
Structural sugars 22.0 
         Glucan 13.6 (0.58) 
         Xylan 7.7 (0.60) 
         Arabinan 0.7 (0.05) 
Total 99.0 (3.96) 

Note: †Standard deviation of triplicate measurements is indicated in 
parentheses. 
 

Table 7. ANOVA table for the response model from the nitrogen concentration 
 

Source Sum of squares p-value Con�idence level (%) In�luential ranking  

X1 Temperature (°C) 0.2071 79.29 79.29 5 

X2 Duration (min) 0.1079 89.21 89.21 3 

X3 Particle size (μm) 0.1176 88.24 88.24 4 

X4 Extraction volume (mL) 0.0689 93.11 93.11 2 

X5 Solid loading (mass%) <0.0001 99.99 99.99 1 

 
3.3 Face-centered composite experimental design 
A FCCD with RSM was conducted with the selected most 
influential factors—solid loading (X1), extraction volume 
(X2), and duration (X3)—to suggest their optimal level(s) 
for achieving the highest total nitrogen content in the 
extract (response, Y). Statistical analysis results and 
parameters of the model—model significance, lack of fit, 
R2, adjusted R2, predicted R2, and adequate precision—are 
presented in Table 8. The plots of residuals versus normal 
probability, model predictions, and run numbers from the 
model were evaluated to ensure that the ANOVA result was 
valid and that they met the assumptions required for 
ANOVA (Figure S1 in Supplementary data). The obtained 
model was significant (p = 0.0002) with an insignificant 
lack of fit (p = 0.6935). Furthermore, the model’s R2 and 
adjusted R2 were close to unity (0.9679 and 0.9266, 
respectively), indicating that the model adequately 
describes the experimental data. Based on the obtained 
p-values for each factor, the solid loading (X1) and 
extraction volume (X2) were significant to the total 
nitrogen content in the extract (p<0.0001 and p = 0.0002, 
respectively) while the duration (X3) was insignificant. 
This was in fair agreement with the PBD result, in which 
solid loading was found to be the most influential factor, 
followed by extraction volume, while duration was not 
previously found significant. The interactions between the 
factors were not significant; however, the power term of  

the extraction volume was identified as a significant factor 
to be included in the coded Equation 6. 
     
           𝑌𝑌 = 113.85 + 68.50X1 + 52.50X2 − 26.17𝑋𝑋22             (6) 
 
       An equation derived from the experimental data was 
represented in the response surface plots, which show the 
total amino nitrogen extracted from cassava leaves (Figure 
1) as a function of two factors simultaneously, while 
maintaining all other factors constant. The code equation 
is valuable for assessing the relative influence of the 
variables by examining the coefficients of each factor. 
Consequently, based on Equation 6, the solid loadings (X1) 
exert a greater influence on the total extract nitrogen than 
the extraction volume (X2), and a higher extraction volume 
has a negative impact on the response. 
       The optimum condition for amino nitrogen extraction 
from this experimental design was achieved with a 
duration of 20 min with 40% solid loading, and the 
extraction volume was set at 150 mL. The particle size and 
temperature were kept constant at 212 μm and 120°C, 
respectively. Under these conditions, the predicted amino 
nitrogen concentration was 209 mg of N, whereas the 
actual measured content was 221 mg of N; this represented 
a 6% deviation from the actual value. The extraction 
process duration was a key factor influencing the release 
of nitrogen components from cassava leaves. 
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Table 8. ANOVA results of the proposed mathematical model based on the FCCD 
 

Source Sum of squares  Mean square F-value p-value Significance* 

Model 150.66  16.74 23.43 0.0002 Significant 

X1-Solid loading 102.88  102.88 144.03 <0.0001 Significant 

X2-Extraction volume 33.40  33.40 46.76 0.0002 Significant 

X3-Duration 0.2031  0.2031 0.2843 0.6104 Insignificant 

X1X2 0.7982  0.7982 1.12 0.3256 Insignificant 

X1X3 0.0128  0.0128 0.0179 0.8972 Insignificant 

X2X3 0.4621  0.4621 0.6469 0.4477 Insignificant 

X1² 0.8879  0.8879 1.24 0.3017 Insignificant 

X2² 4.34  4.34 6.08 0.0431 Significant 

X3² 0.1098  0.1098 0.1537 0.7067 Insignificant 

Lack of fit 3.12  0.6232 0.6614 0.6935 Insignificant 

        Statistic parameters 

R2 0.9679      

Adjusted R2 0.9266      

Predicted R2 0.6605      

Adeq. Precision 16.3999      
Note: *Data were considered significant when the p<0.05. 
 

 
 
 
Figure 1. The response surface methodology (RSM) of the face-centered central composite design (FCCD) for optimizing 
the amino nitrogen concentration  
Note: The effects of the independent variables X1: solid loading, X2: extraction volume, and X3: duration on the dependent 
variable Y: total nitrogen. 
 
       The duration allocated for extraction directly impacts 
the kinetics of nitrogen extraction. An optimal duration 
ensured that the process reached equilibrium without 
degrading sensitive components. In this study, the 
significant influence of the extraction duration highlights 
the importance of striking a balance to maximize the 
nitrogen yield while minimizing the potential degradation. 
The quantity of cassava leaf material used, represented by 
the solid loadings, was a critical factor in determining the 
concentration of nitrogen components in the extracted 
solution. Higher solid loadings contributed to increased 
nitrogen content. The extraction volume level applied 
during the extraction process also emerged as a significant 
factor in this study. Higher extraction volumes increase the 
solute diffusion driving force from the solid into the 
solvent. This process is governed by Fick’s law of diffusion, 
where a larger solvent volume reduces the solute 
concentration in the solvent phase, thereby maintaining 
a concentration gradient for continuous extraction. For 

instance, the ethanol ratio and temperature were key 
variables in the polyphenol extraction from grape pomace 
experiment. The solvent volume indirectly affects the 
extraction kinetics by altering the solvent penetration into 
the solid matrix (Moldovan et al., 2019); however, 
excessively high volumes can dilute the extract, reduce 
process efficiency, and increase costs (Azwanida, 2015). 
       Solid loading and extraction volume were significant 
factors influencing nitrogen extraction from cassava leaves 
(Table 8); this is likely because the total nitrogenous 
compounds available for extraction are determined by 
solid loading. Higher loading increases substrate 
availability but requires sufficient solvent for dissolution, 
and the mass transfer efficiency is governed by the 
extraction volume. Low volumes limit solute diffusion, 
reducing the nitrogen yield. Excessive volumes dilute 
extracts and increase costs without yield improvement 
(Chahyadi & Elfahmi, 2020). 
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3.4 Model evaluation and feature impact 
The variance between the actual and predicted values was 
evaluated using the predicted values (Figure 2). This 
comparison revealed low variance values, with an adjusted 
R-squared (adjusted R2) of the model of 0.9266 with a 
p-value of 0.0002 from the statistical regression method. 
This outcome suggested that the quadratic model term for 
cassava leaf extraction was significant. However, the mean 
R2 values of the training set for SVM with linear, 
polynomial, RBF, and RF were within the acceptable ranges 
of 0.82, 0.82, 0.96, and 0.96, respectively. The mean RMSE 
of the test set served as a comprehensive metric to evaluate 
the robustness of the models. The analysis showed that 
SVM with polynomial regression exhibited the lowest 
accuracy, with an RMSE of 46.89, whereas the RMSE values 

for linear, RBF, and RF were 22.89, 17.10, and 13.37, 
respectively. This disparity implies that the dataset has 
complex characteristics. MAPE values for SVM with linear, 
polynomial, RBF, and RF were 29.1%, 13.1%, 13.4%, and 
12.2%, respectively. Although the SVM-RBF exhibited 
excellent performance (the highest R2 value for the training 
set and the lowest MAPE), it also showed a high mean 
RMSE for the test set, indicating the model’s fair robustness 
for unseen data (Montesinos López et al., 2022). Only the 
SVM-RBF and RF models showed good reliability, with 
MAPE values between 1% and 16% for ML predictions of 
solvent extraction (Iweka et al., 2023; Patil et al., 2023; 
Petchimuthu et al., 2023). This confirms the accuracy of 
these trained models.

 

 
 
Figure 2. Comparison between predicted and experimental total nitrogen levels 
Note: Predictions stem from various models, including a) statistic regression; and SVM models: b) linear regression, c) 
polynomial regression, d) SVM-RBF, and e) RF. 
 
       Table 9 shows the optimal conditions for extracting 
nitrogen from cassava leaves using trained SVM-RBF and 
RF models. The highest total nitrogen yields were 
predicted as 192 and 196 mg of N from the SVM-RBF and 
RF techniques, respectively. These ML model results 
closely matched the RSM prediction result of 209 mg of N. 
The optimum conditions could be more than one, 
especially in complex systems. After the optimized 
conditions were validated, the nitrogen contents were 
found to be 8.9%, 6.6%, and 6% using the SVM-RBF, RF, 
and statistical methods, respectively. This suggests that RF 
and statistical regression demonstrated better prediction 
accuracy than SVM-RBF. One potential reason for this 

difference in accuracy might be the disparity in the amount 
of data used for training the ML models. While the SVM-
RBF and RF modes were trained using the full dataset of 29 
experimental data points, the statistical regression method 
was applied to a smaller subset of 17 data points for the 
RSM calculations. Despite having access to the same 
amount of training data, the inherent differences in the 
SVM-RBF and RF algorithms may have contributed to their 
varying levels of prediction accuracy for the amino 
nitrogen content. The specific characteristics of the dataset 
and the target variable may have favored the RF approach 
in terms of predictive performance compared with the 
SVM-RBF method. 

 
 
 
 

e) 
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Table 9. Comparison of the optimum conditions obtained from various analyses 
 

Method SVM-RBF RF Statistical regression 
Solid loadings (mass%) 40 40 40 
Extraction volume (mL) 150 150 150 

Duration (min) 24 24 20 

Particle size (µm) 212 212 212 

Temperature (°C)  120 120 120 

Predict-N (mg) 192 196 209 

Actual-N (mg) 209 209 221 

Off (%) 8.9 6.6 6 
 
       The SHAP value plots of the SVM-RBF and RF models 
showed that the most influential factors for nitrogen 
extraction were solid loading and extraction volume 

(Figure 3). Higher solid loading and extraction volume had 
a positive effect on total nitrogen. These trends were 
consistent with the statistical regression findings. 

 

 
 
Figure 3. SHAP value plots of (a) SVM-RBF, and (b) RF 
 
4. CONCLUSION 
 
This study successfully determined the optimal 
conditions for extracting nitrogen from cassava leaves, 
recognizing its importance as a nitrogen source for 
fermentation processes. Significant factors influencing 
amino nitrogen extraction were identified by employing 
experimental design methodologies such as PBD and 
FCCD. Through RSM analysis, the optimal extraction 
conditions were determined, including a 20-min 
extraction duration, 40% solid loading, and a 150 mL 
extraction volume. Despite a slight difference between 
the predicted and experimental values, ML models, 
specifically RF, effectively predicted the nitrogen content. 
Furthermore, the study revealed the positive effect of 
increased solid loading and extraction volume on the 
total extracted nitrogen. The comparative analysis  

showed that statistical regression and ML techniques, 
such as RF, provided accurate predictions of the 
optimized nitrogen content. The obtained high-quality 
nitrogen extract can be further explored for its potential 
applications in various fermentation-based industries, 
such as biofuel and bioplastic production. 
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SUPPLEMENTARY DATA  
 
Table S1. Experimental runs and results of Plackett-Burman design with actual values (coded values) 

Run X1 X2 X3 X4 X5 Y (mg of N/L) † 
1 120 (-1) 60 (+1) 212 (+1) 150 (+1) 10 (-1) 291 ± 20 

2 120 (-1) 60 (+1) 50 (-1) 150 (+1) 30 (+1) 864 ± 136 

3 120 (-1) 10 (-1) 50 (-1) 50 (-1) 10 (-1) 283 ± 23 

4 120 (-1) 10 (-1) 50 (-1) 150 (+1) 10 (-1) 212 ± 30 

5 200 (+1) 60 (+1) 50 (-1) 50 (-1) 10 (-1) 173 ± 29 

6 200 (+1) 10 (-1) 212 (+1) 150 (+1) 10 (-1) 282 ± 13 

7 200 (+1) 10 (-1) 212 (+1) 150 (+1) 30 (+1) 835 ± 28 

8 120 (-1) 10 (-1) 212 (+1) 50 (-1) 30 (+1) 1303 ± 72 

9 200 (+1) 60 (+1) 212 (+1) 50 (-1) 10 (-1) 324 ± 27 

10 200 (+1) 10 (-1) 50 (-1) 50 (-1) 30 (+1) 1029 ± 10 

11 200 (+1) 60 (+1) 50 (-1) 150 (+1) 30 (+1) 647 ± 10 

12 120 (-1) 60 (+1) 212 (+1) 50 (-1) 30 (+1) 897 ± 205 

Note: †The ± value in the concentration column represents the standard deviation of duplicate measurements. 
 
 

 
Figure S1. The plots of residuals versus (a) normal probability, (b) model predictions, and (c) run numbers from the model 
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