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ABSTRACT

Cassava leaves are a significant source of nitrogen; however, the severity of the
physicochemical extraction processes negatively affects nitrogen release. The
objective of this study was to enhance nitrogen-rich extract recovery from cassava
leaves through a comparative analysis of various experimental designs and
machine learning (ML) techniques. Using the Plackett—-Burman design, central
composite design, and response surface methodology, the optimal extraction
conditions were established: 20 min extraction time, 40% solid loading, and 150 mL
extraction volume. The predicted amino nitrogen content reached 209 mg of N,
showing a 6% deviation from the experimentally measured value. ML models—
specifically, the support vector machine with a radial basis function kernel and
random forest (RF)—were subsequently employed to refine the extraction
conditions. The RF model showed a 6.6% deviation from the actual value, while
both models identified the positive impact of increased solid loading on the total
nitrogen recovery. These findings suggest that ML approaches offer promising
potential for maximizing the amino nitrogen yield from cassava leaves.

Keywords: nitrogen; Plackett—Burman design; central composite design; support vector machine
with radial basis function kernel; random forest

large amount of cassava leaves is often left in the field as
agricultural waste. The potential use of cassava leaves as a

The demand for cassava has grown steadily over the years.
In 2020, global cassava production reached 303 Mt, with
Thailand producing 31.1 Mt (Sowcharoensuk, 2023). After
harvesting the desirable cassava root, despite their high
protein content (ca. 20% db.) (Lammens et al, 2012), a
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nitrogen/protein source for fermentation processes has
recently been reported (Boundy-Mills et al., 2019; Karuna
et al, 2025; Karuna et al, 2023). Compared with the
traditional nitrogen source in the culture medium,
specifically yeast extract, using cassava leaf extract as the
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nitrogen source in Saccharomyces cerevisiae culture
significantly enhances ethanol production (Karuna et al,
2023). As cassava leaves constitute lignocellulosic biomass,
with proteins encapsulated within the structure alongside
cellulose, hemicellulose, and lignin (Boundy-Mills et al,
2019; Karuna et al,, 2023), an effective extraction method
needs to be studied and developed to obtain an extract rich
in proteins and nitrogen content.

Although several physicochemical methods, including
those with either a diluted acid (Ashokkumar et al., 2022)
or an alkaline condition (Karuna et al, 2014; Kim et al,
2016), have been previously used for extracting non-
cellulosic materials from lignocellulosic biomass, liquid hot
water (LHW) extraction remains the most promising
alternative for this specific application (Karuna et al,
2023). This method employs water in its liquid state under
high pressure at elevated temperatures (110-230°C)
(Aftab et al., 2019; Ruiz et al,, 2020), in which it undergoes
ionization forming hydroxide ions and hydronium ions
(Ruiz et al., 2020; Tomas-Pejo et al, 2011) to penetrate
lignocellulosic materials. It triggers the release of acetate
from xylan, inducing the hydrolysis and solubilization of
hemicellulose, as well as a partial breakdown of lignin
(Jonsson & Martin, 2016). Because it does not require
chemical addition, LHW extraction produces no toxic
wastewater, and subsequent treatment for the remaining
toxic chemicals is not required. As these findings reveal,
LHW was employed to obtain extracts from cassava leaves
in this study.

The optimal conditions of the LHW extraction must be
determined to ensure maximum nitrogen content in the
cassava leaf extracts obtained, and the extraction is
subsequently performed at these conditions. Nonetheless,
this is not a trivial task by relying on one-variable-at-a-time
experimentation as the extraction has several operating
variables with wide working ranges. These include
temperature (120-200°C) (Suriyachai et al, 2020),
duration (10-60 min) (Olawuni et al.,, 2024), particle size
(50-212 pm) (Kammoun et al, 2023), and solid loading
(10-40 mass%) (Zhang et al,, 2023). In addition, the pH
value is often carefully managed to optimize the efficiency
of the process.

Design of experiment (DOE) has been widely used for
process optimization across industries (Ogiitcii et al,
2024); it systematically explores the combined effects of
variables on responses by generating experimental
matrices and conducting experiments. Commonly used
procedures include the Plackett-Burman design (PBD) for
screening influential factors (Cavazzuti, 2013; Plackett &
Burman, 1946) and central composite design (CCD) with
response surface methodology (RSM) for optimizing
variable levels within constraints (Box & Wilson, 1951;
Lamidi et al, 2022). Analysis of variance (ANOVA)
statistically tests the model’s goodness of fit, significance,
and prediction errors, identifying significant variable
effects.

Machine learning (ML) has recently gained interest in
various fields of study because it can handle complex,
nonlinear relationships between variables and
outcomes—especially when multiple objectives must be
simultaneously achieved (Saha et al, 2024). This field
includes a range of computational methods that allow
systems to learn from data patterns without requiring
explicit programming for every situation. The strength of
ML lies in its ability to process large amounts of data and
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identify refined patterns that traditional statistical
methods might overlook (Arboretti et al, 2022). This
capability is transforming how researchers and engineers
approach  optimization problems across several
disciplines. Furthermore, in situations where the amount
of data is enormous or “big data,” it outperforms the
traditional statistical methods (Vinitha et al, 2023);
therefore, ML has rapidly spread across various industries.
Recent examples of using ML include the optimization of
microalgae culture (Cosgun et al, 2021), in which the
existing experimental data were analyzed using the
decision tree algorithm to determine the optimal
conditions for maximizing biomass growth and lipid yield.
ML algorithms, including random forest (RF), support
vector machines (SVMs), and gradient boosting, were
employed to predict the properties of cellulose-rich
materials based on the raw material characteristics and
extraction conditions (Phromphithak et al, 2021). ML
techniques were used to optimize and predict the bio-
crude yield and higher heating values from the
hydrothermal liquefaction of lignocellulosic biomass. The
critical parameters, including the reaction time,
temperature, and pressure, were evaluated. Using the
Shapley value method, temperature was identified as the
most significant variable. The extreme gradient boosting
algorithm provided the most accurate predictions, with
deviations of only 5-8% from the experimental results
for yields and calorific values (Katongtung et al., 2024).
Nonetheless, data are often scarce, especially when
technologies/methods of interest have been introduced,
making data generation and collection essential for
developing ML models. As DOE specializes in generating a
necessary set of experiments for exploring the impact of
process variables, a joint application of DOE and ML, in
which DOE is used as data generation/collection and ML
plays a role in the analysis of DOE data, has been recently
introduced. Recent studies have shown successful results
from the joint applications of DOE and ML. RF with face-
centered CCD (FCCD) was used to optimize the cutting-
edge ultrasound-aided solvent extraction process. The
optimized parameters from ML were well aligned with
those from the DOE with RSM (Petchimuthu et al., 2023).
The optimal conditions for the manufacture of 316L
stainless steel specimens were determined through
selective laser melting based on the joint application of
RSM with five ML techniques (La Fé-Perdomo et al,
2022).

Although previous studies have described methods for
extracting nitrogen from cassava leaves (Karuna et al,
2023), an optimal condition for the LHW extraction of
cassava leaves has not yet been reported. Thus, this study
aimed to determine the optimal extraction conditions for
maximizing the amino nitrogen content in the resulting
cassava leaves extract by using DOE with RSM and ML.
Initially, using a PBD, three crucial factors were
identified from five common variables affecting the
nitrogen content in the obtained extract (output of
interest): temperature, duration, particle size, extraction
volume, and solid loading. Subsequently, a CCD was
performed with the identified factors to determine the
optimal conditions based on the obtained statistical
model. Finally, the SVM and RF algorithms of ML were
used with the experimental data obtained from the PBD
and CCD to alternatively suggest the optimal conditions
for LHW extraction.
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2. MATERIALS AND METHODS

2.1 Cassava leaf handling

Cassava leaves of the Rayong 89 strain were collected and
dried in the sun for 2-3 days. To obtain dried leaf powder
with a specified particle size (within the range of 50 and
212 pum) for subsequent analysis and experiments, the
dried leaves were ground using a hammer mill (Retsch,
Germany) and then sieved using a vibratory sieve shaker
(Retsch Model AS 200, Germany). The obtained particles
were then stored in a Ziplock plastic bag.

2.2 Composition analysis

The chemical composition of the cassava leaves was
quantified following the standardized laboratory protocols
established by the National Renewable Energy Laboratory.
The extractable compounds present in the cassava leaves
were extracted using a two-step process involving a
Soxhlet apparatus. The leaves were first extracted with
deionized water until a clear liquid was obtained; this was
followed by a second extraction step using ethanol (Sluiter,
et al,, 2008b). For ash content determination, the cassava
leaf powder (size, 50 um) was placed in a crucible and
heated to 575°C for a minimum of 4 h, before weighing the
remaining incombustible component (Sluiter et al.,, 2008a).
To determine lignin and carbohydrate contents, the leaf
powder was hydrolyzed with hydrochloric acid to liberate
lignin and carbohydrate, which were then quantified using
UV-Vis spectroscopy and high-performance liquid
chromatography, respectively, following that described in
(Sluiter et al, 2012). The total nitrogen content of the
cassava leaves was determined using the conventional
Kjeldahl method as outlined in a previous study (Thiex et
al.,, 2002).

2.3 Extraction procedure

LHW was employed as the extraction method to obtain the
cassava leaf extract. Briefly, cassava leaf powder was
mixed with deionized water in a 300-mL static Parr reactor
at a specified solid loading (% w/w). The reactor was then
heated to a target temperature (°C) in a furnace
(Chavachote, Thailand). After incubation for a specified
duration (min), the reactor was promptly quenched in an
ice-cold water bath. The extract was collected by pouring
the mixture onto a Whatman #1 filter within a Buchner
funnel, and the liquid was separated through vacuum
filtration. The collected liquid was stored for subsequent
analysis of the total amino nitrogen content (Section 2.5)
at4°C.

2.4 Experimental design and ML

The experimental design was applied to identify the most
influential variables to the response in the extraction
process. It was also used to generate experimental data for
the construction of a mathematical model describing the
relationships between the variables and the response
(Section 2.4.2) and ML (Section 2.4.3) approaches. Based
on the obtained models, the optimal condition(s) for the
extraction process were determined.

2.4.1 PBD

To identify the most influential variables from the five
variables studied—temperature (X:), duration (X2),
particle size (X3), extraction volume (X4), and solid loading
(Xs)—on the total amino nitrogen content, which was
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treated as the primary response variable in the extraction
process, PBD was performed using Design Expert software
(version 23.1.4 64-bit, Stat-Ease, Inc., Minneapolis, MN,
USA).

As shown in Tables 1 and S1 (Supplementary data), 12
experimental conditions for the extraction process were
proposed based on the high (+) and low (=) levels of each
variable. As detailed in Section 2.3, the extraction
procedure was performed in duplicate using the designed
experimental conditions. The three most significant
variables were selected based on the resulting p-values
and confidence levels of each variable.

Table 1. Range of studied variables in the extraction
process for the PBD

Factors Levels
(codes) (actual) - +
X1 Temperature (°C) 120 200
X2 Duration (min) 10 60
X3 Particle size (um) 50 212
X4 Extraction volume (mL) 50 150
Xs Solid loading (mass%) 10 30
2.4.2 FCCD

Following PBD, in which the three most influential factors
in the extraction process were selected, a CCD with RSM
was subsequently used to determine the effects of the
selected factors: solid loading (X:, mass%), extraction
volume (X2, mL), and duration (X3, min), on the total amino
nitrogen content in the resulting extract (Y, mg of N). The
codes and ranges used in the CCD are presented in Table 2.
Here, a three-factor, five-level CCD with a = 1 or FCCD was
performed using Design Expert software, suggesting 17
designed runs consisting of six axial points, eight factorial
points, and three replicates at the center point (Table 3).
To mitigate the potential influence of any unaccounted-for
sequential variations or those stemming from external
factors, the experimental trials were conducted in
duplicate and in a random sequence. The resulting total
amino nitrogen content in the extract (Y) from all the runs
was then used to determine its relationship with the
studied factors (X1, Xz, and X3), which is mathematically
expressed using the quadratic equation in Equation 1:

Y= Bo+ i=1 BiXi +Z;'3=1 BiiXiz +Z;'2=1 ng=i+1 BUXIXJ (1)

where Bo is a model constant, B; Bi, and Bi are the
regression coefficients accounting for the linear, quadratic,
and interaction effects of the variables on the response Y,
respectively. Xi and X; were estimated using Equation 2,
which represents the dimensionless coded values of the ith
and jth variables, respectively:

Xi~Xi,0

Xi= (2)
where xi is the actual value, xio is the actual value at the
center of the studied range, and Axi is the step change value
(Yahya etal., 2023).

To evaluate whether the obtained model adequately
describes the experimental data, the statistical
parameters—lack of fit, coefficient of determination (R?),
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adjusted R?, predicted R?, and adequate precision—were
estimated by ANOVA. A two-tailed Student’s t-test was

Table 2. Range of selected influential factors for the FCCD

used to determine the statistical significance of the Factors Levels
variable effects on the response. To visualize the variable (codes) (actual) -1 0 1
effects, surface plots were constructed based on the X Solid loading (mass%) 10 25 40
obtained . model. Statistical analysi§ and s.urface plot X Extraction volume (mL) 50 100 150
construction were performed using Design Expert X5 Duration (min) 20 30 40
software.
Table 3. Designed runs and results of the FCCD

Run Space type X1 X X3 Total amino nitrogen

content, Y (mg of N) t

1 Axial -1 0 0 41 (7)

2 Factorial -1 -1 +1 13 (1.7)

3 Factorial -1 +1 -1 50 (1.4)

4 Factorial -1 -1 -1 17 (2.7)

5 Factorial -1 +1 +1 54 (2.8)

6 Axial 0 +1 0 111 (0.7)

7 Axial 0 -1 0 67 (4.8)

8 Axial 0 0 -1 116 (9.8)

9 Center 0 0 0 92 (2.1)

10 Center 0 0 0 126 (4.7)

11 Center 0 0 0 129 (6)

12 Axial 0 0 +1 102 (2.5)

13 Axial +1 0 0 187 (5.7)

14 Factorial +1 +1 -1 221 (9.9)

15 Factorial +1 -1 -1 79 (3.1)

16 Factorial +1 +1 +1 175 (4.2)

17 Factorial +1 -1 +1 100 (7.3)

18 Predicted +1 +1 -1 209

19 Experiment +1 +1 -1 221

Note: tStandard deviation of duplicate measurements is indicated in parentheses.

To determine the optimal levels of the factors in which
the highest total amino nitrogen content in the extract (Y)
would be obtained, the desirability analysis in the Design
Expert software was used. Here, the objective function of
maximizing the total amino nitrogen content in the extract
was applied, and based on the obtained mathematical
model, an optimal level(s) of the variables was suggested.

2.4.3 ML

A dataset of 29 experimental data points was collected
from the PBD (12 data points) and CCD (17 data points)
experiments. Five extraction parameters, including
temperature, time, extraction volume, particle size, and
solid loading, were set as features. The target was the total
extracted nitrogen. Table 4 summarizes the range and unit
of each parameter. The features’ values were normalized
using a standard scaler.

Table 4. Description of the dataset

Parameter Range Unit Step sizet
Feature

Temperature 120-200 °C 10

Size 50-212 um 6
Duration 10-60 minute 1
Extraction volume 50-150 mL 5

Solid loading 10-40 mass% 1

Target

Total nitrogen 9-221 mg of N

Note:tOptimal conditions were searched using these step sizes.

ML models were developed in the Python
programming platform (Visual Studio Code) using the
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Scikit-learn library. A SVM with three kernel functions—
linear, polynomial, and radial basis function (RBF)—along
with a RF was used to predict the total extracted amino
nitrogen. Table 5 provides an overview of the different ML
techniques employed in this research. The leave-one-out
cross-validation technique was used in this study because
of the small dataset (Diez Valbuena et al,, 2024). During
development, the model was trained with N-1 samples to
predict the remaining one sample as the test sample. The
average of 29 times for R? and root mean square error
(RMSE) were used to evaluate the predictive performance
of the model and calculated using Equation 3 and Equation
4, respectively. To minimize the mean RMSE, the
hyperparameters of the SVM and RF models were
optimized using the grid search technique. The best
hyperparameters of the SVM for the linear, polynomial, and
RBF were (C = 2,601; epsilon = 0.1; gamma =1), (second
degree; C = 277; epsilon = 21; gamma = 0.00038), and (C =
194; epsilon = 0.001; gamma = 0.0009), respectively, while
the best hyperparameters of the SVM for the RF were
(max_depth = 3 and n_estimators = 9). The models with
optimized hyperparameters were trained with 29 data
points to predict total nitrogen. The mean absolute
percentage error (MAPE) was calculated using Equation 5
for comparison with the existing literature. Shapley
additive explanation (SHAP value) was used to show the
impact of features on the model output using the SHAP
library. The highest total nitrogen was predicted by the
selected trained models using the feature interval
(Table 4).

Y (Predicted;—Actual;)?
Yk, (Actual;—Actual)?

RZ=1- (3)
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X 100 |Predicted;—Actual;|
" (Predicted;—Actual;)? — 100 ¢n [Predicted;—Actuat;|
RMSE = \/21_1( redicted,Actua b) ) MAPE = —37 o (5)
Table 5. ML algorithms, description, and applications

ML algorithms Description Applications

VM SVM is a powerful technique that is widely used in engineering for classification Battery state estimation
and regression tasks. This algorithm works by leveraging a training dataset to (Manoharan et al., 2022),
pinpoint a hyperplane that optimally distinguishes data points into distinct machine condition
categories, maximizing the margin, which is the greatest distance between the monitoring and fault
hyperplane and any data point from different classes. This hyperplane is defined diagnosis (Widodo & Yang,
by support vectors, which are the data points on the boundaries of the margin. 2007), microscopy (Wang &
This characteristic is the origin of the name “support vector machine” (Xia, 2020).  Fernandez-Gonzalez, 2017),

precise agriculture (Kok et al,,
For regression, the goal is to fit as many input data points as possible within the 2021), solar and wind energy
margin while minimizing margin violations, rather than maximizing the margin resources forecast
between two classes. Initially, SVM is outlined for the linearly separable case as (Zendehboudi et al,, 2018),
described by the following equation in terms of the support vectors: and structural reliability
analysis (Roy & Chakraborty,
yiwTx; —b) > 1 2023)
where y; is the class value of train data x;. The
vector w represents a normal vector. The vectors x; are the support vectors.
Parameter b determines the hyperplane position (Sittichoksataporn &
Choksuriwong, 2012).
When linear functions are inadequate for separating two classes, kernel functions
are used. Their purpose is to map nonlinear data from a lower-dimensional space
to a higher-dimensional space. This transformation is achieved using the
following equation:
w=>b+ Z al-yl-l((xl-,xj)
where q; is the Lagrange multiplier.
Polynomial and RBF are widely used as kernel functions for SVM (Malek et al.,
2019).
Polynomial
d
K(xi%;) = (x; %))
RBF
2
K(xi,xj) = exp (—y”xi — x]-” )
RF RF is a rule-based algorithm that integrates multiple decision trees into a forest Prediction model of the pore

(with random subsets of features) using the ensemble method. Each tree is
trained on a random subset of features, and their predictions are averaged to
enhance accuracy and prevent overfitting (Wang & Gao, 2022). It introduces
“randomness” into the prediction process by applying bootstrap sampling

structure in global shale
sediments (Jiang et al.,, 2023),
and prediction of the yield
strength of as-cast alloys

techniques iteratively.

(Zhang et al,, 2024)

3. RESULTS AND DISCUSSION

3.1 Composition of cassava leaves

Cassava leaves of the Rayong 89 variety contained 9.9%
w/w ash, 28.9% w/w water extract, and 12.9% w/w
ethanol extract. Water and ethanol extracts primarily
targeted nonstructural compounds. Water extracts
proteins (Karuna et al,, 2023), soluble sugars (Zhang et al,,
2007), certain phenolic compounds (Mota et al., 2008),
saponins, and glycosides (Sparg et al,, 2004), as well as
water-soluble vitamins—such as vitamin C and some B
vitamins—and minerals (Manach et al,, 2004). In contrast,
ethanol primarily extracts flavonoids, polyphenols, and
saponins (Chahyadi & Elfahmi, 2020). Therefore, the
extraction results showed that cassava leaves contained
higher combined amounts of proteins, soluble sugars,
certain phenolic compounds, saponins, glycosides, and
water-soluble vitamins than the total amount of flavonoids
and polyphenols. The composition also included 13.6%
w/w glucan and 7.7% w/w xylan, along with 22.4% w/w
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acid-insoluble residue. Furthermore, the compost
contained 2.94% nitrogen, equivalent to 18% protein,
using a conversion factor of 6.25 (Table 6). Despite the
influence of factors such as cultivar, leaf position, and plant
age on the quality of cassava leaves (Chaiareekitwat et al.,
2022), the protein content in this particular strain
remained comparable with that in previous studies,
ranging from 17% to 34% on dried basic (Chaiareekitwat
etal, 2022; Hue et al,, 2012).

3.2 Plackett-Burman experimental design

A PBD was first performed to determine the most
influential factors on the nitrogen content in the casava leaf
extract (Y) among the five studied operating variables of
the LHW pretreatment process: temperature (X1), duration
time (Xz), particle size (X3), extraction volume (X4), and
solid loading (Xs5). As shown in Table S1 (see
Supplementary Material), the experimental data of the
total nitrogen content in the extract were obtained by
performing the extraction using the designed experimental
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conditions. Statistical linear relationships between the
studied factors and the response (Y) were computationally
determined through regression and ANOVA. Table 7 shows
the obtained key statistical parameters, p-value and
confidence level, for each factor, which suggested the
extent to which each factor affected the response. The
lower the p-value (or the higher the confident level), the
more influential the response. Xs (solid loading), X4
(extraction volume), and Xz (duration) were found to be
the most important (ranking 1, 2, and 3, respectively), as
indicated by their highest confidence levels (or lowest
p-values) of 99.99% (p<0.0001), 93.11% (p<0.0689), and
89.2% (p<0.1079), respectively. Although the p-values
indicated that the extraction volume and duration were not
significant during the screening test, these factors may still
prove significant under the optimized conditions explored
in the CCD experiments (SixSigma, 2024). Therefore, they
were still selected for the subsequent CCD for further
determination of their optimal levels toward maximizing
the total nitrogen content in the extract.

Table 6. Proximate composition of cassava leaves of the
Rayong 89 variety

Composition Unprocessed leaf (% w/w)f
Moisture 11.1
Ash 9.9 (0.01)
Total extractives 41.8
Extractive in water 28.9
Extractive in ethanol 129
Acid-insoluble residue 22.4(3.86)
Nitrogen 2.9 (0.12)
Structural sugars 22.0
Glucan 13.6 (0.58)
Xylan 7.7 (0.60)
Arabinan 0.7 (0.05)
Total 99.0 (3.96)

Note: tStandard deviation of triplicate measurements is indicated in
parentheses.

Table 7. ANOVA table for the response model from the nitrogen concentration

Source Sum of squares p-value Confidence level (%) Influential ranking
X1 Temperature (°C) 0.2071 79.29 79.29 5
X2 Duration (min) 0.1079 89.21 89.21 3
X3 Particle size (um) 0.1176 88.24 88.24 4
X4 Extraction volume (mL) 0.0689 93.11 93.11 2
Xs Solid loading (mass%) <0.0001 99.99 99.99 1

3.3 Face-centered composite experimental design
A FCCD with RSM was conducted with the selected most
influential factors—solid loading (X1), extraction volume
(X2), and duration (X3)—to suggest their optimal level(s)
for achieving the highest total nitrogen content in the
extract (response, Y). Statistical analysis results and
parameters of the model—model significance, lack of fit,
R?, adjusted R?, predicted R?, and adequate precision—are
presented in Table 8. The plots of residuals versus normal
probability, model predictions, and run numbers from the
model were evaluated to ensure that the ANOVA result was
valid and that they met the assumptions required for
ANOVA (Figure S1 in Supplementary data). The obtained
model was significant (p = 0.0002) with an insignificant
lack of fit (p = 0.6935). Furthermore, the model's RZ and
adjusted R? were close to unity (0.9679 and 0.9266,
respectively), indicating that the model adequately
describes the experimental data. Based on the obtained
p-values for each factor, the solid loading (X:) and
extraction volume (Xz) were significant to the total
nitrogen content in the extract (p<0.0001 and p = 0.0002,
respectively) while the duration (X3) was insignificant.
This was in fair agreement with the PBD result, in which
solid loading was found to be the most influential factor,
followed by extraction volume, while duration was not
previously found significant. The interactions between the
factors were not significant; however, the power term of
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i=H

the extraction volume was identified as a significant factor
to be included in the coded Equation 6.

Y =113.85 + 68.50X; + 52.50X, — 26.17X? (6)

An equation derived from the experimental data was
represented in the response surface plots, which show the
total amino nitrogen extracted from cassava leaves (Figure
1) as a function of two factors simultaneously, while
maintaining all other factors constant. The code equation
is valuable for assessing the relative influence of the
variables by examining the coefficients of each factor.
Consequently, based on Equation 6, the solid loadings (X1)
exert a greater influence on the total extract nitrogen than
the extraction volume (X2), and a higher extraction volume
has a negative impact on the response.

The optimum condition for amino nitrogen extraction
from this experimental design was achieved with a
duration of 20 min with 40% solid loading, and the
extraction volume was set at 150 mL. The particle size and
temperature were kept constant at 212 um and 120°C,
respectively. Under these conditions, the predicted amino
nitrogen concentration was 209 mg of N, whereas the
actual measured content was 221 mg of N; this represented
a 6% deviation from the actual value. The extraction
process duration was a key factor influencing the release
of nitrogen components from cassava leaves.
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Table 8. ANOVA results of the proposed mathematical model based on the FCCD

Source Sum of squares Mean square F-value p-value Significance®
Model 150.66 16.74 23.43 0.0002 Significant
X1-Solid loading 102.88 102.88 144.03 <0.0001 Significant
Xz-Extraction volume 33.40 33.40 46.76 0.0002 Significant
X3-Duration 0.2031 0.2031 0.2843 0.6104 Insignificant
X1X2 0.7982 0.7982 1.12 0.3256 Insignificant
Xi1Xs3 0.0128 0.0128 0.0179 0.8972 Insignificant
X2X3 0.4621 0.4621 0.6469 0.4477 Insignificant
Xi® 0.8879 0.8879 1.24 0.3017 Insignificant
X 4.34 434 6.08 0.0431 Significant
X5 0.1098 0.1098 0.1537 0.7067 Insignificant
Lack of fit 3.12 0.6232 0.6614 0.6935 Insignificant
Statistic parameters

R? 0.9679

Adjusted R? 0.9266

Predicted R? 0.6605

Adeq. Precision 16.3999

Note:"Data were considered significant when the p<0.05.
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Figure 1. The response surface methodology (RSM) of the face-centered central composite design (FCCD) for optimizing

the amino nitrogen concentration

Note: The effects of the independent variables Xi: solid loading, X2: extraction volume, and X3: duration on the dependent

variable Y: total nitrogen.

The duration allocated for extraction directly impacts
the kinetics of nitrogen extraction. An optimal duration
ensured that the process reached equilibrium without
degrading sensitive components. In this study, the
significant influence of the extraction duration highlights
the importance of striking a balance to maximize the
nitrogen yield while minimizing the potential degradation.
The quantity of cassava leaf material used, represented by
the solid loadings, was a critical factor in determining the
concentration of nitrogen components in the extracted
solution. Higher solid loadings contributed to increased
nitrogen content. The extraction volume level applied
during the extraction process also emerged as a significant
factor in this study. Higher extraction volumes increase the
solute diffusion driving force from the solid into the
solvent. This process is governed by Fick’s law of diffusion,
where a larger solvent volume reduces the solute
concentration in the solvent phase, thereby maintaining
a concentration gradient for continuous extraction. For

Silpakorn University

instance, the ethanol ratio and temperature were key
variables in the polyphenol extraction from grape pomace
experiment. The solvent volume indirectly affects the
extraction kinetics by altering the solvent penetration into
the solid matrix (Moldovan et al, 2019); however,
excessively high volumes can dilute the extract, reduce
process efficiency, and increase costs (Azwanida, 2015).

Solid loading and extraction volume were significant
factors influencing nitrogen extraction from cassava leaves
(Table 8); this is likely because the total nitrogenous
compounds available for extraction are determined by
solid loading. Higher loading increases substrate
availability but requires sufficient solvent for dissolution,
and the mass transfer efficiency is governed by the
extraction volume. Low volumes limit solute diffusion,
reducing the nitrogen yield. Excessive volumes dilute
extracts and increase costs without yield improvement
(Chahyadi & Elfahmi, 2020).
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3.4 Model evaluation and feature impact

The variance between the actual and predicted values was
evaluated using the predicted values (Figure 2). This
comparison revealed low variance values, with an adjusted
R-squared (adjusted R?) of the model of 0.9266 with a
p-value of 0.0002 from the statistical regression method.
This outcome suggested that the quadratic model term for
cassava leaf extraction was significant. However, the mean
R?2 values of the training set for SVM with linear,
polynomial, RBF, and RF were within the acceptable ranges
of 0.82, 0.82, 0.96, and 0.96, respectively. The mean RMSE
of the test set served as a comprehensive metric to evaluate
the robustness of the models. The analysis showed that
SVM with polynomial regression exhibited the lowest
accuracy, with an RMSE of 46.89, whereas the RMSE values

Predicted

b)

Bredated

20| Mean RMSE Test: 22.69

for linear, RBF, and RF were 22.89, 17.10, and 13.37,
respectively. This disparity implies that the dataset has
complex characteristics. MAPE values for SVM with linear,
polynomial, RBF, and RF were 29.1%, 13.1%, 13.4%, and
12.2%, respectively. Although the SVM-RBF exhibited
excellent performance (the highest RZ value for the training
set and the lowest MAPE), it also showed a high mean
RMSE for the test set, indicating the model’s fair robustness
for unseen data (Montesinos Lépez et al., 2022). Only the
SVM-RBF and RF models showed good reliability, with
MAPE values between 1% and 16% for ML predictions of
solvent extraction (Iweka et al, 2023; Patil et al,, 2023;
Petchimuthu et al., 2023). This confirms the accuracy of
these trained models.

Mean R2 Train: 0.82
Mean RMSE Train: 22.73

Mean R2 Train: 0.52
Mean RMSE Train: 23.14
o0, Mean RMSE Test: 46.99 04

Mean B2 Train: 0.96

Mean RMSE Train: 10.92
Mean RMSE Test: 17.10

Hean R2 Train: 0.96
Mean RMSE Train: 10.88
200 Mean RMSE Test: 13.37

Figure 2. Comparison between predicted and experimental total nitrogen levels
Note: Predictions stem from various models, including a) statistic regression; and SVM models: b) linear regression, c)

polynomial regression, d) SVM-RBF, and e) RF.

Table 9 shows the optimal conditions for extracting
nitrogen from cassava leaves using trained SVM-RBF and
RF models. The highest total nitrogen yields were
predicted as 192 and 196 mg of N from the SVM-RBF and
RF techniques, respectively. These ML model results
closely matched the RSM prediction result of 209 mg of N.
The optimum conditions could be more than one,
especially in complex systems. After the optimized
conditions were validated, the nitrogen contents were
found to be 8.9%, 6.6%, and 6% using the SVM-RBF, RF,
and statistical methods, respectively. This suggests that RF
and statistical regression demonstrated better prediction
accuracy than SVM-RBF. One potential reason for this
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difference in accuracy might be the disparity in the amount
of data used for training the ML models. While the SVM-
RBF and RF modes were trained using the full dataset of 29
experimental data points, the statistical regression method
was applied to a smaller subset of 17 data points for the
RSM calculations. Despite having access to the same
amount of training data, the inherent differences in the
SVM-RBF and RF algorithms may have contributed to their
varying levels of prediction accuracy for the amino
nitrogen content. The specific characteristics of the dataset
and the target variable may have favored the RF approach
in terms of predictive performance compared with the
SVM-RBF method.
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Table 9. Comparison of the optimum conditions obtained from various analyses

Method SVM-RBF RF Statistical regression
Solid loadings (mass%) 40 40 40

Extraction volume (mL) 150 150 150

Duration (min) 24 24 20

Particle size (um) 212 212 212

Temperature (°C) 120 120 120

Predict-N (mg) 192 196 209

Actual-N (mg) 209 209 221

Off (%) 8.9 6.6 6

The SHAP value plots of the SVM-RBF and RF models
showed that the most influential factors for nitrogen
extraction were solid loading and extraction volume

(Figure 3). Higher solid loading and extraction volume had
a positive effect on total nitrogen. These trends were
consistent with the statistical regression findings.
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Figure 3. SHAP value plots of (a) SVM-RBF, and (b) RF

4. CONCLUSION

This study successfully determined the optimal
conditions for extracting nitrogen from cassava leaves,
recognizing its importance as a nitrogen source for
fermentation processes. Significant factors influencing
amino nitrogen extraction were identified by employing
experimental design methodologies such as PBD and
FCCD. Through RSM analysis, the optimal extraction
conditions were determined, including a 20-min
extraction duration, 40% solid loading, and a 150 mL
extraction volume. Despite a slight difference between
the predicted and experimental values, ML models,
specifically RF, effectively predicted the nitrogen content.
Furthermore, the study revealed the positive effect of
increased solid loading and extraction volume on the
total extracted nitrogen. The comparative analysis
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showed that statistical regression and ML techniques,
such as RF, provided accurate predictions of the
optimized nitrogen content. The obtained high-quality
nitrogen extract can be further explored for its potential
applications in various fermentation-based industries,
such as biofuel and bioplastic production.
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SUPPLEMENTARY DATA

Table S1. Experimental runs and results of Plackett-Burman design with actual values (coded values)

Run Xi Xz Xs X4 Xs Y (mg of N/L) t
1 120 (-1) 60 (+1) 212 (+1) 150 (+1) 10 (-1) 291+ 20
2 120 (-1) 60 (+1) 50 (-1) 150 (+1) 30 (+1) 864 + 136
3 120 (-1) 10 (-1) 50 (-1) 50 (-1) 10 (-1) 283 +23
4 120 (-1) 10 (-1) 50 (-1) 150 (+1) 10 (-1) 212430
5 200 (+1) 60 (+1) 50 (-1) 50 (-1) 10 (-1) 173+29
6 200 (+1) 10 (-1) 212 (+1) 150 (+1) 10 (-1) 282+13
7 200 (+1) 10 (-1) 212 (+1) 150 (+1) 30 (+1) 835+ 28
8 120 (-1) 10 (-1) 212 (+1) 50 (-1) 30 (+1) 1303+ 72
9 200 (+1) 60 (+1) 212 (+1) 50 (-1) 10 (-1) 324 +27
10 200 (+1) 10 (-1) 50 (-1) 50 (-1) 30 (+1) 1029 + 10
11 200 (+1) 60 (+1) 50 (-1) 150 (+1) 30 (+1) 647+ 10
12 120 (-1) 60 (+1) 212 (+1) 50 (-1) 30 (+1) 897 + 205

Note:1The * value in the concentration column represents the standard deviation of duplicate measurements.
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Figure S1. The plots of residuals versus (a) normal probability, (b) model predictions, and (c) run numbers from the model
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